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It is shown that at sufficiently low temperatures transport processes in solids may be deter
mined by anharmonicities of arbitrarily high order. For this it is necessary that the energy 
of the corresponding quasiparticles vary more rapidly than linearly as a function of the 
quasimomentum. A specific calculation is carried out for the spin-wave induced thermal 
conductivity of ferrites. 

As is well-known, finite coefficients of thermal 
and electrical conductivities can be obtained for 
an infinite, perfect single-crystal only by taking 
Umklapp processes into account. If these proces
ses are absent, collisions between quasiparticles 
do not change their total quasimomentum, which 
will increase indefinitely with time under the ac
tion of external forces. If the quas iparticles obey 
Bose statistics (for example, phonons or spin 
waves), then at low temperatures the probability 
of a collision accompanied by an Umklapp process 
is exponentially small[~ exp(-y®/T), where y 
is a numerical coefficient and ® is the Debye tem
perature in the case of phonons or the Curie tern
perature in the case of spin waves; T « ®) . In 
order to understand the origin of this exponential 
dependence, we consider as an example the case 
when there are two particles, both before and 
after the collision. 

From the laws of energy and momentum con-
servation 

(b = reciprocal lattice vector) we can see that at 
least two of the four k vectors must be of order b. 
The energy corresponding to these large k is 
E ~ ® » T. Therefore the probability of a colli
sion will be proportional to exp { -(E1 + E 2 )/T}, 
where it is necessary to take the minimum value 
allowable by the conservation laws for the energy 
E1 + E2 of the colliding particles; this minimum 
is evidently ~®. The probability of a similar 
process in which not necessarily two but some 
arbitrary number of particles, n, participate is 
proportional to exp( - T -1 ~ E i) , where one must 
take for ~ q the smallest value allowed by the 
conservation laws: 

n 2n n 2n 

e·- e·= ~ ~-, 0 
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2,; k,- 2; k, = b. 
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In addition, the power of the small parameter 
(T /®) in the factor preceding the exponential will 
increase with an increase of the order of the proc
ess according to the law (T /®)f3n; the constant {3 
depends on the nature of the dispersion law. It is 
easy, however, to understand that the exponential 
factors, which primarily determine the small 
probability of collisions accompanied by Umklapp 
processes, may increase with increase of the order 
of the process n. For this to happen, it is neces
sary that the energy of a quasiparticle change 
more rapidly, as a function of the quasimomentuin, 
than according to a linear law. 

As a specific example, we consider spin waves 
in a cubic crystal. Then, at not too low tempera
tures [1] we have E(k) = ®(ak) 2 , the minimum non
zero value is I bl = 21f /a and, as is easily shown, 
{3 = 3 ; here ® is of the order of magnitude of the 
Curie temperature and a is the lattice constant. 
If one assumes that the quadratic dispersion law 
is valid up to k ~ b/2n, then the minimum value 
of ~ Ei is reached at the point ki = b/2n (i ::::: n) or 
ki = - b/2n (i > n) and equals n E(b/2n) = rr 2 ®/n . 
Therefore one would expect that the total proba
bility for loss of momentum by the spin wave sys
tem, with account of anharmonicities of all orders, 
would be proportional to an expression of the form 

~Bn (T/8t' exp (- n2<'->,.nT), 
n 

where the Bn are numerical coefficients. 
It follows from this formula that with a lowering 

of the temperature the kinetic processes will be 
determined by anharmonicities of ever increasing 
order. We note that the latter assertion is essen
tially based on only two assumptions: the "non
linear" dispersion law and the presence of anhar
monicities of different order in the quasiparticle 
interaction Hamiltonian. 

In order to show J:tow similar results can be 
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specifically obtained by starting from a given 
Hamiltonian, we calculate the thermal conductivity 
of a ferrite, due to spin waves. In the simplest 
case of a cubic crystal, the Hamiltonian for the 
exchange interaction has the form 

' C! ~ :Je = 2 ...::.J k2mkm-k, 
k 

(1) 

where a = a2 ®/i . .tM0 , f.1 is the Bohr magneton, M0 

is the saturation magnetic moment, and mk is the 
Fourier component of the magnetization m(r) 
corresponding to wave vector k . In the following 
we shall assume that the external magnetic field 
is negligibly small (f.1 H « T) and that relativistic 
interactions are unimportant ( T » 11 2 /a3 ~ 1 o K). 

As usual, following Holstein and Primakoff, we 
express the magnetization m(r) in terms of boson 
operators a+ (r) and a(r): 

We expand the square root appearing in these 
formulas in a series with respect to a+ (r) a(r), 
and we go over to the Fourier representation. As 
a result, the Hamiltonian for the exchange inter
action (1) can be represented in the form 

(2) 

E(k) = ®(ak) 2 ; the real and symmetric amplitudes 
~ can be easily found, for example 

6 

<I> - t e 2 ( fl. )2 [ . ..._, 2 
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- {- (L: k; YJ ~ (k1 + k2 + ka - k4-k8-k6), 

i=I 

where V is the volume of the sample. 
The kinetic equation for the spin wave distri

bution function, Nk = ( a k ak) , can be easily ob
tained. Omitting the standard calculations, we 
present only the result. The collision operator W 
in the quadratic approximation (with respect to 
the amplitudes ~) can be represented in the form 
of a sum of operators associated with individual 
terms in the Hamiltonian (2): 

W =~ Wn. 

If the nonequilibrium correction to the distribution 
function is represented in the form 

then in the linear (in ~k) approximation 
n :m 

W2nN k, = - n (n!)2 ~71: L: I <l>1, . ... n; n+I. ... 2n 12 6 (L: c.; - L: c.;) 
1 n+l 

n 2 n 

X exp (- ~ ~ e;) n (l + N)0l) 
1 1 

n 2n n 2n 

X (L:IP;- L: IP;)~ (L:k;- L: k;- b), 
1 n+l 1 n+l 

where the summation is over all wave vectors 
k2 , k3 , ••• k20 (within the Brillouin zone) and 
over all reciprocal lattice vectors b . 

For what follows, it is convenient to represent 
the collision operator as the sum of two operators, 
\VN and wU, which describe processes in which 
quasimomentum is conserved (b = 0) and Umklapp 
processes (b "' 0). In this connection, the kinetic 
equation is written in the form 

Nk0)(1 + Nk0)) c.k y- 2 (vkVT) = WNijlk + W:;IJlk· (3) 

The left-hand side determines the change in the 
number of spin waves due to the effect of a small 
temperature gradient VT; Vk = n-1 OEk/8k. 

At low temperatures the term wu C"Pk is small. 
It is natural to take advantage of this fact in order 
to approximately solve the kinetic equation. [2•3] 

However, if we simply discard the term wu C"Pk 
in the zero-order approximation, then the resulting 
equation does not have a solution. We therefore 
look for a solution of the kinetic equation in the 
form C"Pk = C"Pk 0> + cp~n, where I C"Pk0>1 »I C"Pknl and 
the following equations are satisfied 

WN ljl~o) = 0, WN ljl~1 ) = Nk0) (1 + N),Ol) c.kr-2 (vk VT)- W:; ljl~o). 

From the first equation C"Pk0 l = gk, and the con
stant vector g can be found from the condition for 
solvability of the second equation with respect to 
cp~t): 

~ kNk0 l (1 + Nk0l) ;~ (vkVT) = h kWugk. 
k k 

For a simple cubic lattice, taking into account only 
the minimum absolute values of b (I bl = 2rr /a and, 
as is easily shown, quantities of higher order in 
exp(- e /T) can be neglected), we obtain 

g = IVA, R = (2~)" ~ kNk0l (1 + Nl,0l) ;~ (vk VT) dk, 

00 

A = ( 2an t : n~2 (n!)2 (2:)sn ~ dk1 .. · dk2n I <l>1.2 ..... n;n+1, .. 2n !2 

n 2n n 2n 

X 6 (L: e; -- ~ e;) exp (- ~ L: e;) lT (1 + N~0)) 
1 n+ 1 1 1 

n 2n 

X 6 (L: k;- ~ k;- ~n v), 
1 n-H 

(4) 
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where 11 is an arbitrary unit vector. 
The integrals in the last formula can be approxi

mately evaluated since, for T « ®, a small region 
in k-space surrounding the point at which J::? q 
reaches the minimum value allowed by the conser
vation laws gives, evidently, the major contribution. 
In order to find these minimum values, it is neces
sary to know the dispersion law for t:(k) for large 
values of I k I . It may be possible, for example, to 
use the law 

e(k) = 28(3 -cos kxa -cos kya- cos kza), 

but if we simply assume E(k) = ®(ak) 2 , then the 
corresponding minimum values are reached at 
I ki I = rr /na (see the beginning of the article). 
Hence the assumed quadratic nature of the dis
persion law becomes all the more valid as the 
number n increases, but even for the evaluation 
of the first integral (n = 2) this assumption, as one 
can easily verify, does not lead to a large error. 

Omitting the rather cumbersome calculations, 
we present at once the result for the coefficient of 
thermal conductivity K (the heat current 
Q = J::Nk Vk E(k) = KV'T): 

"X.(Tj 

T 

temperature dependence becomes more gradual: 

x ~ (T j1ia) (8jT)3 e"'9/3T. 

Finally, for ln (®/T) » 1, when the term with num
ber nT » 1 plays the major role, 

x~ :a ( ~ r exp ( 2:rt V3 v ~ ln ~ ) . 
The temperature dependence of K(T) is qualitatively 
shown in the figure (solid curve). The upper dashed 
curve corresponds to the usual dependence (6). 

In order to clarify the possibility of observing 
such a dependence, we shall determine the effective 
free path length in the region where deviations 
from (6) begin, i.e., at T ~ T1 • Comparing the 
well-known formula 

x~Clv 

(C is the heat capacity, lis the effective mean 

where s = a 3 M 0/i.L is the atomic spin; the sum
mation goes from n = 2 up to n ~ ®/T. 

(5) free path, and v is the average velocity; in the 
present case v ~ n-1 a E/8k IE ~T ~a v' T e/n) with 
the results obtained above, one can show that the 
function l (T1) ~ 1 em for s ~1. Therefore, it is 
necessary to have pure single-crystal samples 0 The last limitation is essential, for owing to the 

presence of the factors (n !) 2 in the coefficients Bn 
the terms of the series begin to increase for 
n > ®/T. This is not surprising since it has been 
assumed in the calculation of the integrals in (4) 
that ®/nT » 1 . The exact value of the upper limit 
on the summation over n is not important, since 
for n ~ ® /T the terms of the series are negligibly 
small. Moreover, it turns out that at any tempera
ture only one specific term of the sum in (5), the 
term with 

( 8 )'/. 8 
nT~n 3Tln (8/T) ~T 

plays a major role (it is assumed that ln(®/T) » 1). 
As a result, the following picture is obtained for 

the temperature dependence of the coefficient of 
thermal conductivity. At relatively high tempera-

tures (but for e ®/T » 1) the first term of the 
sum plays the dominant role, in agreement with [3], 

X~ (Tj1ia) e"'9 /2T. (6) 

Beginning at the temperature T 1 ~ ®/10, the sec
ond term (n = 3) of the sum dominates, and the 

of transverse dimension d > 1 em. Otherwise, it 
appeared that boundary scattering of spin waves 
would play the major role. 

However, in reality the transfer of momentum 
from the spin-wave gas to the walls may be 
strongly impeded, owing to normal collisions in 
which momentum is conserved. We denote the free 
path lengths corresponding to normal collisions 
and Umklapp collisions by zN and l U, respec-
tively. Estimates show that the inequality 
lN « d « l U will be fulfiljed in not too thin sam
ples at a sufficiently low temperature. In this con-
nection a situation arises, analogous to that con
sidered earlier by the author for the case of an 
electron gas,[(] and the effective free path turns 
out to be of order d2 ;zN and is, therefore, con
siderably larger than d. These considerations, 
which may also turn out to be important for the 

1lWe note that at low temperatures the scattering of spin 
waves by impurity atoms is unimportant in sufficiently pure 
samples, since the long-wavelength oscillations are weakly 
scattered by local defects. 
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phonon thermal conductivity, will be examined 
separately. 
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