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It is shown that the reason for the absence of superconductivity in metals of the bismuth 
type is the weakness of the interaction between electron excitations. 

PREVIOUSLY [1 J we have obtained the dielectric Intending only to estimate the effect, we examine 
tensor for metals with crystal lattices of the bis- the Debye model for the phonons. In this case, the 
muth type. The calculation was based on a theory D-function of the longitudinal phonons has the form 
of the electron spectrum developed in the article wfi(k)/[w2 -wfi(k)] (see C4J). Therefore, the ver-
by the author and Fal'kovskil. [2] It was found that tex which describes the elementary interaction of 
the principal values of the dielectric tensor, re- electrons via phonon exchanges is 
garded as functions of frequency and wave vector 
Efk(w, k) in the frequency range w ~ y ~ 0.01 to 
0.1 eV (for momenta k ~ y/v, where v ~ 108 

em/sec), and also in the region of momenta k 
~ y/v (at frequencies w ~ y), are the order of 
(E0 /y) 2 ~ 100 (E0 ~ 0.1 to 1 eV). These regions 
of frequencies and momenta are of the greatest 
interest, since it is precisely in these regions 
that the Fermi energy and limiting Fermi momen­
tum of electron and hole excitations occur. 

The large dielectric constant reduces the mu­
tual interaction between electrons at momentum 
and energy transfers in the ranges mentioned, 
and also weakens the interaction of electrons with 
phonons of corresponding momenta and frequen­
cies. It is shown in the present article that this 
circumstance is the reason for the absence of 
superconductivity in the metals under consider­
ation. 

As is well-known (see, for example, [3J), in an 
investigation of the superconductivity, it is first 
of all necessary to consider two types ·of elemen­
tary electron interactions. The first of these in­
teractions-the direct Coulomb interaction of 
electrons in the momentum representation-has 
the form 

(1) 

The second interaction results from phonon ex­
change. As indicated in [1], the vertex which de­
scribes the interaction of an electron with a pho­
non in the case under consideration is 

(2) 

where t ~ 1, a is the lattice period and m is the 
mass of the free electron. 

(;2 (!)~ (k) 
U 2 (w,k)=" [kk· (k )p ---. am i k"8 ik , w w2 - w~ (k) (3) 

According to Eq. (3), U 2 ( w, k) decreases rapidly 
when w significantly exceeds w0(k). If w ~ w0(k), 
then one can replace D( k) in U2( w, k) by -1. 
Thus U 2 is negative in the important frequency 
region. 

Inasmuch as the Fermi surface in the metals 
under consideration consists of very small regions 
in the neighborhood of specific points in momen­
tum space, two cases are possible. Upon emission 
of a phonon, the electron either remains in its 
"own" region, or else it goes over to one of the 
"foreign" regions. 

First we consider u~1> for the case when the 
electron remains in its "own" region. In this case 
the phonon momentum must be less than y/v, and 
the energy less than w0( y/v) ~ uy/v « y. Accord­
ing to the results of the previous article, [1] Eik 
~ E0y/v2k2 for w ~ vk, where Eo~ (E 0 /y)2 ~ 100. 
This means that the Coulomb interaction is 
screened over distances of the order of y/v, and 
therefore small k do not play a preferred role. 
Substituting Eik into (3) and taking the rapid de­
crease of U2 for w > w0(k) into account, we ob­
tain instead of (3) the approximate expression 

w ~ Wr ~ uy/v 

w > w 1 (4a) 

for k ~ y/v. We use here the fact that v/a ~ E0 

~ 1 eV and Eo~ (E0 /y)2• The constants Ci and 
C1 are positive and of order unity. 

In the second case, when the electron goes from 
one isolated part of the Fermi surface to another, 

512 . 
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the momentum of the emitted phonon is of the order 
of the period of the reciprocal lattice, i.e., its en­
ergy w0 ~ wu ~ y. Hence once more w « kv and 
Eikkikk ~ Eij/v2• An approximate expresston for 
the interaction is in this case 

U l2) .~I - Czalm, 
2 ~\ 0, 

w .:s;;; W 2 - Wu- Y 

w > w2 
(4b) 

for k ~ E0 /v. The constant C2 is positive and of 
order unity. Here it is essential to note that, in 
contrast to the interaction U ~1> which can be re­
garded as approximately isotropic with respect 
to the direction of k, the interaction u~2 ) is ef­
fective only in very narrow regions of solid angles 
[of order (y/E 0 ) 2 ]. This is connected with the 
fact that upon absorption or emission of a phonon 
with momentum k ~ E 0 /v the electron must go 
from one part of the Fermi surface to another. 
But the linear dimensions of these segments in 
momentum space are of order y/v. As is well­
known, U multiplied by the density of final states 
of the electron plays the role of a dimensionless 
coupling constant. As a result it turns out that 
u~2 ) is equivalent to an isotropic interaction of 
the type (4b), for which, however, k ~ y/v. As 
we shall presently see, the Coulomb interaction 
has approximately the same form (apart from 
the sign). 

It is also possible to represent the direct Cou­
lomb interaction of the electrons (1) in an approx­
imate form. Here, too, two cases are possible: 
either the electrons (from the same or from dif­
ferent isolated segments ) remain in their "own" 
segments, or electrons are exchanged by two dif­
ferent segments. In the first case k ~ y/v and, 
as we see below, w ~ kv are important. In the 
second case k ~ E 0/v, w ~ y, i.e., w « kv; hence, 
in both cases w ~ kv and Eikkikk ~ Eij/v2• 

With regard to transitions of the second type, 
the same considerations pertaining to the restric­
tion of solid angles are also valid for the interac­
tion by means of exchanges of short-wave phonons. 
In view of this, both types of electron transitions 
give one and the same effect, approximately equiv­
alent to the contribution from the isotropic inter­
action: 

for k ~ y/v ( C3 is a positive constant of order 
unity). Adding the two contributions, we obtain 

( B1ajm, 

U = U1 + U2 = ~ Bza/m, 

~ 0, 

w<w1-jujv 

w1<w<wz-i, 
w>wz 

(5) 

(6) 

where B1 = C3 - C1o B2 = C3 - C2, where B1 and 
B2 are of order unity and may have arbitrary sign. 

In order to analyze the question of superconduc­
tivity, we apply the method of Cooper in a manner 
similar to [S]. Here U plays the role of Fourier 
component of the potential, and it is necessary to 
set k=p-p', w = ~(p)- ~(p'), ~ = E(p) -J.L. 
Near the Fermi level ~(p)::::::: v(p-p0 ), i.e., w 
= ~(p)- Hp')::::::: v(p-p') ~ v(lp-p'l) =vk. This 
justifies approximations (4) and (5) for the poten­
tials U1 and U2• The Schrodinger equation for the 
Cooper-pair wave function has the form 

(2£ (p) -E) ap + B1 ~ ~ .. ~ll) ap' + B2 ~ + 2)12) ap' oo.= 0. 
. ~ ~ ~) 

Here ap is the coefficient of the expansion of the 
pair function zj;(r, r' ), with total momentum equal 
to zero, in terms of the functions exp [ ip • ( r- r' )] ; 
the first summation goes over the region I ~ - ~' I 
< w1, ~' > 0, the second is over the range w2 

> I~-~' I > w1, ~' > 0. Expression (6) is substi­
tuted for the potential energy. 

We introduce the symbols 

r:t = .~ ~11l ap', ~ = ~ ~12) ap·· (8) 
p' p' 

From (7) we obtain 

(2£ (p) -E) ap = - __!!:__ B1a- _!!__ B2~. 
m m 

(2£ (p) -E) ap = - _!!:__ B2 (a+ ~), 
m 

From this and from (8) we obtain equations for 01. 

and {3. Since the integrals with respect to ~ (p) 
appearing in these (equations) are logarithmic, 
it turns out that (values of) ~ « EF ~ y ~ w2 ar~ 

important, i.e., the integration is near the Fermi 
surface. In view of this, the system of equations 
takes the form 

r:t(l + 1(1 ln ~1 ) + ~1(2 ln ~ = 0, 

al(2 ln~+ ~(1 + 1(2 ln 'wz) = 0, (9) 
W1 W1 

where ~ = - E/2, and the constants K1 and K2 

are of order I K1, 2 I ,..... y2a/v3m ,..... y2 /EB ~ 1/ Eo 
~ 10-2, where the signs of the constants K1 and 
K2 can be arbitrary. 

Since v/u"' 102, K2 ln(wdwd,..... K2 ln(v/u) 
« 1. Therefore the equation for the gap in the 
spectrum has the form 

(10) 

If K1 is negative, then this equation has the solu­
tion 
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In other words, 

~- uv-1 y exp (1/1(1) ~ exp (- 11 I K1l) deg (11) 

where 1/ I K1 I ...... 100. This means that supercon­
ductivity can exist in principle, but at temperatures 
which cannot be reached experimentally. 

This also explains the well-known fact that 
superconductivity is not observed in metals of the 
bismuth type. Such a conclusion is a consequence 
of the special structure of the electron spectrum, 
i.e., in the final analysis, a consequence of the 
crystal structure of the metals in question. The 
other modifications of bismuth which exist under 
large pressures are, as is well..:known, supercon­
ducting. [6] 
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