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It is demonstrated that at low temperatures the intensity of interaction of light with exciton 
states of thin crystals is a nonmonotonic function of the crystal thickness. This nonmonotonic 
variation is due to the discrete values of the energy and wave vector of the exciton. An inter
pretation is presented of the experimental data of Brodin, who observed an oscillating thick
ness dependence of the absorption coefficient of light in an anthracene crystal. 

1. INTRODUCTION 

BRODIN [1•2] observed, in investigations of the 
absorption of light in thin anthracene-crystal films 
at 20°K, an oscillating dependence of the absorption 
and refraction coefficients on the film thickness at 
25108 cm-1• These results were interpreted[a] as 
proving the presence in the crystal exciton ab
sorption region of additional light waves differing 
from the ordinary waves only in the refractive in
dex. The interference of two waves of identical po
larization on leaving the crystal can lead to an os
cillating dependence of the intensity of the trans
mitted light on the thickness of the plate. 

For a quantitative interpretation of Brodin's 
experiments it became necessary to assume [2- 4] 

for the difference in the refractive indices of these 
waves a value n+ -n_ = 6.9. In the experiment, the 
refractive index ranged from 4 to 7. If we assume 
that n_ = 5, then n+ = 11.9. The additional waves 
(with the larger refractive index) should also have 
large absorption coefficients, in accordance with 
the calculations by the author[5J and with an inde
pendent calculationC6J. For the parameters corre
sponding to the anthracene crystal at the frequency 
indicated above, the absorption coefficient of the 
additional waves is one order of magnitude higher 
than that of the ordinary waves. If we exclude the 
unlikely assumption that the secondary waves have 
an amplitude much larger than the ordinary waves, 
then the second wave cannot leave the crystal under 
the conditions of Brodin's experiments. It is there
fore difficult to attribute the experimentally ob
served oscillations to interference. 

We present here a new interpretation of Brodin's 
experiments. This interpretation is based on the 
discreteness of the energy and the wave vector of 
the excitons in thin films of crystals. As a conse
quence of this discreteness, as will be shown be-

low, the intensity of the interaction varies with 
variation of crystal thickness. 

2. EXCITONS IN THIN CRYSTALS 

Let us consider for simplicity a cubic crystal 
with lattice constant a, having one isotropic mole
cule per unit cell. The crystal is unbounded along 
the x and y axes and consists of Na molecular 
layers in the z direction. We investigate the pos
sible values of the exciton-state energies of such 
a crystal, assuming that the molecules are rigidly 
fixed in the lattice sites, identified by the lattice 
vector m = ~miai, where mi are integers; ai • aj 
= Oij (i,j = 1, 2, 3 ). 

The choice of the boundary conditions in the xy 
plane does not play an important role in films of 
large area. We can therefore assume cyclicity 
with large periods N1a1 and N2a2, where N1, N2 

» Na. The boundary conditions along the- z axis 
reduce to the requirement that there be no mole
cules for values rna ::::: 0 and rna ?: Na + 1, for 
which we assume the wave functions of the crystal 
exciton states to vanish, too. The total number of 
molecules in the crystal is N = N1N2Na. 

Let .6E, cp 0, and <Pf be respectively the excita
tion energy and the actual wave functions of the 
ground and excited states of an isolated molecule. 
Then, in the Heitler-London approximation, the 
crystal excitation energy operator has in the sec
ond quantization representation (see, for example, 
[ 7]) the form 

11H = (11e +D)~ B;;,Bm + ~· B;;,BnMmn' (1) 
m m, n 

where D is the difference in the energy of interac
tion of the excited and non-excited molecule with 
all the remaining molecules; Mmn is the matrix 
element for the transfer of excitation from mole-
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cule n to molecule m (see [B]); B;n, and Bm are 
the operators for the creation and annihilation of 
excitations in the molecule m. These operators 
satisfy the commutation relations BmB~- B~Bm 
= 6mn; the prime at the summation sign denotes 
that m ~ n. 

The operator (1) is diagonalized by going from 
the operators Bm to new operators A ( k) with the 
aid of the unitary transformation 

Bm =~A (k) Um (k), 
k 

where 

Um (k) = V2/N sin (ak3m3) exp {i (k1m1 + k2m2) a}, 

~ u;, (k') Um (k) = 6kk'· 

m 

(2) 

Um is a complete orthonormal system of functions 
satisfying the required boundary conditions at 
kt = 2nv;/aNt, -Ntl2 < Vt < Ntl2, i = 1, 2, 3; 

v3 = 1, 2, ... , N 3• (3) 

The new operators A(k) satisfy the commutation 
relations 

A (k) A+ (k') -A+ (k') A (k) = 6kk'. 

A+ ( k) are the operators for the creation of exciton 
states with a wave vector k. The operators A ( k) 
annihilate the corresponding exciton states. 

Substituting (2) in (1) we obtain the operator for 
the crystal excitation energy 

I'!H = ~ lii(k) A+(k) A(k); (4) 
k 

S'(k) = l'!c. + D + L (k), 

L (k) = 'S"< Um (k) MmnU~ (k). ..._. (5) 
m,n 

The crystal excitation energy operator (4) is diag
onal with respect to the exciton-state occupation
number operators N(k) =A+ (k) A(k). Its eigen-
functions are therefore I ... N(k) ... ), where the 
quantum numbers N(k) = 0, 1, 2, ... determine the 
number of exciton states. The states of the crystal 
with one excitation corresponding to a fixed k are 
characterized by the excitation energy (5). The ag
gregate of the excitations (5) corresponding to the 
values of the wave vector and satisfying conditions 
(3) comprises the exciton-state band. The excita
tion energy (5) assumes N3 discrete values at fixed 
values of k1 and k2• 

3. EXCITATION OF EXCITONS IN THIN CRYSTAL 
FILMS BY MEANS OF LIGHT 

The interaction between a crystal and a trans
verse electromagnetic field of frequency w is de-

scribed in the dipole approximation by the operator 

Hint= - ,2; E (m) d (m) = we-twt + comp. conj. (6) 
m 

where E ( m) is the electric field intensity at the 
m-th site of the lattice and d(m) is the molecule 
dipole-moment operator. If E(m) corresponds 
to the external field of a plane electromagnetic 
wave perpendicularly incident on the surface of 
the crystal fpm, and if the thickness of the film is 
such (N3 > 100) that the refractive index in the 
absorption coefficient can be regarded macroscop
ically, then we have inside the film, for weak ab
sorption, 

E (m) = 2E0 sin (aQm3 - rot), 

where Q = wn/ c, w is the frequency of the light, 
and n is the refractive index. 

(7) 

The interaction between the light and the crystal 
is a self-consistent problem. The light wave is 
determined by the values of the refractive index, 
which in turn depends on the interaction between 
the light wave and the crystal molecules. Owing 
to the linearity of Maxwell's equations and the 
linearity of the crystal polarizability relative to 
the electric field intensity, such a problem can be 
solved in two stages, by first calculating the crys
tal specific polarizability (or the polarization cur
rent density) due to the external light wave, and 
then using Maxwell's equations to reconcile the 
parameters of the light wave with the obtained 
specific polarization. 

In the representation of the occupation numbers 
corresponding to the operator BmBm the molecule 
dipole moment operator is of the form 

d (m) = <!J>r I er I q>o) (B-:r, + Bm)· (8) 

Substituting this expression and (7) in (6) and using 
the canonical transformation (2) we obtain the value 
of w in the operator (6) in the representation of the 
occupation numbers of the exciton states: 

w = Eo <cpf I er I q>o) V Nj2 ~(A+ (k) 
k 

(9) 

1'1 ( _ ) _ cos [1/2 a (N3 + 1) (x- y)J sin [1/2 aNa (x- y)J (10) 
X Y - Na sin [1/2 a (x- y)J • 

A(x-y) is equal to unity when x = y and van
ishes when lx-y I= 27T/aN3• With further in
crease of I x - y I, the function ( 10) increases 
periodically and reaches values of the order of 
N31• As N3 - oo this function reduces to the 
Kronecker symbol 6xy. 

It follows from (9) that for a fixed frequency 
and wave -vector direction the light wave interacts 



498 A. S. DA VYDOV 

only with the excitons characterized by values k1 

= k2 = 0 and 

k3 = nv3ja(N3 + 1) = Q = wnjc. (11) 

In the general case, owing to the discreteness of 
k3, Eq. (11) is not satisfied for fixed values of N3 
and Q. For example, for radiation of frequency 
25,000 cm-1 and n = 4.5, Eq. (11) is satisfied for 
v3 = 1 only if the crystal thickness is a ( N3 + 1 ) 
= L0 = 0.044J.t. When the thickness of the crystal 
deviates slightly 1> from this value, w decreases 
sharply, but when the thickness of the crystal 
reaches values that are a multiple of L0, the value 
of w is again maximal. Indeed, if a ( N3 + 1 ) 
= v3L0 ( v3 = 2,3, ... ), Eq. (11) is again satisfied. 
For large crystal thicknesses, the spacing between 
the neighboring discrete permissible values of k3 

increases, and (11) is satisfied in practice for any 
crystal thickness. 

To investigate the volume properties of a crys
tal it is sufficient to know its complex polarizabil
ity. To determine the polarizability it is necessary 
to calculate the average value of the specific elec
tric moment produced under the influence of the 
external wave. 

If I 0) is the wave function of the crystal without 
the excitons, then the wave function of the crystal 
in the presence of a wave (7), having a frequency 
close to the exciton-excitation frequency g ( k3 ) 

= !il'(k3 )/n is, in first order perturbation theory, 

1 ~ we-iwt 
'ljl = I 0) + h ..W Q (ka)- w- 'I• ij (ka) A+ (k3) I 0), 

k, 

where ny( k3) characterizes the exciton-state 
width due to the interaction between the excitons 
and the vibrations of the molecules in the lattice. 
y( k3 ) increases with temperature. 

If v is the volume of the crystal unit cell, then 
the average value of the polarization vector per 
unit crystal volume in the state zp, at the place 
occupied by the site m, is determined by the equa
tion 

P (m) = v-1 <1Jll d (m) \ 'ljl). 

Substituting (8), (9), and (2) in this expression and 
separating the complex polarizability a ( w ) , we 
obtain 

( ) = <cr,Jerjcpo> 2 L; ~(k3 - Q) 
(J, W liv Q (ka)- w - 1/2 ij (k3) • 

k, 

If Eo is the dielectric constant due to all other 

')Strictly speaking, for a fixed value of N3 the crystal 
thickness is l = (N3 - l)a. Consequently, Lo "'(N3 + l)a = 

l + 2a. 

electron states of the crystal, then it follows from 
Maxwell's equations that the refractive index and 
the absorption coefficient K of a monochromatic 
wave of frequency w are defined by (n + iK )2 = Eo 

+ 47ra ( w ), from which it follows that 

n2 = + { V 8i + 8; + 8 1} , 
2 1 rv 2 2 } x = 2"\ 81 + 8 2 - 81 , 

where 

_ 4:rt <IPt I er I !po)2 ~ [Q (k3)- w] ~ (k3 - Q) 
8 1 - Eo + liv ..W [Q (ka)- w] 2 + '1•12 (ka)' 

k, 

- 2n <IPt I er I !po)2 ~ r (ka) ~ (ka- Q) (12) 
E 2 - liv .LJ [Q (ka)- w]2 + '1•12 (ka) • 

k, 

Let us assume that for some value k~ = ( r.v~/a) x 
( N3 + 1) the following two equations are simulta
neously satisfied: 

(j) = Q (k~). k~ = wn!c. (13) 

Then only the terms k3 = k~ for which ~ ( k~ - Q ) 
= 1 make a noticeable contribution to the sums in 
(12). When w = g ( k~) the imaginary part of the 
dielectric constant and the absorption coefficient 
reach their maximum values 

Then the value of n in (13) is given by 

n2 = + {Ve2 + f2 + 8}, (15) 

and E is obtained from E1 (12) by eliminating the 
values of k~ from the sum over k3• 

The refractive index has a maximum when the 
following two conditions are satisfied simultane
ously 

I Q (k~) - w 1 = {-- r (kg), k~ = wnmaxlc. (16) 

In this case 

( e,) max = 8 + + r' 82 = + r' 
n;,ax = + { v B2+ 8r + r2/2 + 8 + + r} ' 

where r is defined by (14). 
Generally speaking, conditions (13) and (16) are 

satisfied for different crystal thicknesses. For 
small y( k~) the refractive index given in (13) and 
(15) differs little from nmax• so that conditions 
(13) are more important. 

Substituting in (13) the value of k~ we can ver
ify that these conditions are satisfied for crystal 
thicknesses 



EXCITONS IN THIN CRYSTALS 499 

L =a (N3 + 1) = ncv3/ron, v3 = 1, 2, 3, ... (17) 

Let us assume that this equation is satisfied for 

Lo = mv~jron. (18) 

Then (17) and (13) are satisfied also for crystal 
thicknesses that are multiples of L0 (if n is con
stant). 

The foregoing results pertain to the case of 
weak absorption, when the decrease in the ampli
tude of the light wave passing through the crystal 
can be neglected. An account of the light-wave 
attenuation leads to an uncertainty in the value of 
the .wave vector inside the crystal. This uncer
tainty is of the order of wt</c, where K is the ab
sorption coefficient. In this connection, condition 
(13) can be satisfied accurate to wt</c. To obtain 
discrete values of k3 it is necessary to satisfy 
the inequality 

(19) 

For energy resonances to occur it is necessary 
that the distances between the exciton-state levels 
pertaining to different values of k3 exceed the cor
responding value of y. The order of magnitude of 
this distance is M/N3, where M is the width of 
the exciton band of a thick crystal. Consequently, 
the following inequality must be satisfied 

(20) 

Inequalities (19) and (20) are easier to satisfy if 
N3 is small. However, at very small values of N3 

the sharp maximum of the function (10), which de
termines the resonance in the wave numbers, be
comes smoothed out and n or K is no longer mac
roscopic. 

At low temperatures (small y) we can hope to 
observe a change in the values of n and K with 
variation of crystal thickness in the region of ex
citon bands with M ~ 103 cm-1, for crystals con
taining several hundred molecular layers. 

In the cited experiments by Brodin, variations 
of K and n were observed at 20°K in anthracene 
crystals at 25,108 cm-1, with the crystal thickness 
varying from 0.07 to 0.3 Jl (variation of N3 from 
74 to 310 ). This frequency corresponds to an ex
citon band several thousand em - 1 thick. For 
a(N3 + 1) = 0.1J..t the measured value of K is 0.96. 
Consequently, 7t/a(N3 + 1) = 3.14 x 105 cm-1, and 
wK/c = 1.5 x 105 cm-1• Thus, inequality (19) is 
still satisfied. At thicknesses above 0.3 Jl (19) is 
not satisfied. 

The maximum values of the absorption coeffi
cient were observed by Brodin at crystal thick
nesses 0.105, 0.168, and 0.223 Jl. We can therefore 
assume L0 ~ 0.059 ll· According to (18) this can 

correspond to n = 3.38 for v3 = 1 or n = 6. 76 for 
v3 = 2. In Brodin's experiments the refractive in
dex reached 6.8. Consequently, the second variant 
(n = 6. 76 and v3 = 2) is in good agreement with 
experiment. Our simplified theory cannot claim 
better agreement. It is important that comparison 
of the theoretical estimates with experiment does 
not call for additional (unmeasured) parameters 
to be introduced. We recall that the interpretation 
of Brodin's experiments on the basis of the notion 
of second waves [2- 4] calls for these waves to have 
a refractive index ~ 12 and a low absorption coef
ficient. Since the measured values of n do not ex
ceed 7, it is still necessary to explain why no val
ues n "' 12 are observed in experiment, although 
it is assumed that the second waves pass through 
the crystal. 

Thus, small crystal thicknesses lead to dis
creteness of the possible values of the wave vector 
and exciton energy. At low temperatures and for 
not very thin crystals this discreteness can mani
fest itself in a nonmonotonic thickness dependence 
of the interaction between the crystal and the light. 
With increasing temperature, the value of y in
creases because of the increase in the intensity of 
the interaction between the excitons and the pho
nons, and because of violation of the selection 
rules in k3 (11) when the excitons and phonons in
teract. Under these conditions, the discreteness of 
the levels of the exciton band disappears. At 77°K 
and at room temperature, no oscillations are ob
served in Brodin's experiments. 

The author is grateful to M. S. Brodin for sup
plying the experimental data and to V. M. Agrano
vich for a discussion of the results. 
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