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Electromagnetic oscillations in an open resonator formed by two identical circular or rect­
angular spherical mirrors located in vacuum opposite each other are studied theoretically. 
It is shown that natural oscillations with very small radiative losses can occur in such a 
resonator. Each of the oscillations may be interpreted as consisting of a set of rays which 
are alternately reflected by the mirrors and which are restricted by a caustic surface. 
Simple formulas are obtained for the oscillation frequency and field distribution. The evo­
lution of the natural oscillations with change from plane to concentric spherical mirror 
surfaces is followed. It is found that minimum radiative losses occur when the resonator 
consists of confocal mirrors (the curvature radius of the mirrors equals the distance 
between them ) . 

INTRODUCTION 

WE have previously [iJ presented a theory of 
natural oscillations in open resonators with plane 
mirrors. Open resonators with spherical mirrors 
also are of practical importance. The resonators 
most studied in the literature (see [2- 4]) have con­
focal spherical mirrors with a radius of curvature 
equal to the maximum distance between mirrors. 
However, the use of confocal mirrors is in many 
cases inefficient (for example, in lasers), owing 
to the excessively strong competition between dif­
ferent oscillation modes and the excessively low"' 
radial extent of the oscillations with the smallest 
radiation losses. 

We investigate below the natural oscillations of 
an open resonator with spherical mirrors, for an 
arbitrary ratio between the radius of curvature of 
the mirrors and the distance between them. The 
wave field is considered in a curvilinear ( spher­
oidal) reference frame corresponding to the reso­
nator geometry, with the problem reduced approx­
imately to integration of a parabolic equation. This 
approach is called in diffraction theory the "para­
bolic equation method" or the "transverse diffu­
sion method," since the longitudinal diffusion of 
the wave amplitude is not taken into account in the 
parabolic equation. This yields the simplest and 
clearest asymptotic solutions for diffraction prob­
lems if the wavelength is sufficiently small com­
pared with the characteristic dimensions of the 
system. 

1. SPHEROIDAL COORDINATE SYSTEM 

We introduce spheroidal coordinates p, cp, and 
t, related with the cylindrical coordinates r, cp, 
and z by the equations 

r = dchssinp, z = dsh s cosp (1)* 

and having a range of variation 

- 00 < s < 00' (2) 

so that the surface t = ± const is an oblate ellip­
soid, for which the z axis is the axis of revolution 
and the distance between foci is 2d, while the sur­
face p = const is a single-sheet hyperboloid of 
revolution, which approaches asymptotically as 
t - ± oo a cone whose generators pass through the 
origin and make an angle p with the z axis. 

We specify the reflecting mirror surfaces with 
the aid of the relations 

s = ±~. (3) 

If the condition 

(4) 

is satisfied, then the radius of curvature of such 
mirrors can be regarded as constant and equal to 

(5) 

so that relations (3) specify in practice spherical 
mirrors of circular form (along with such mirrors, 
we shall consider in Sec. 3 also spherical mirrors 

*ch =cosh, sh =sinh 
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of rectangular form ) . The phase relations for 
spherical mirrors of radius r 0 and for the spher­
oidal mirrors (3) practically coincide, subject to 
the additional condition 

1 - -
8 kd sin4 p ch ~ ~ 1, (6) 

which we also assumed to be satisfied. 
The maximum distance between mirrors is 2Z, 

where 

l = d sh ~. 

and the mirror diameter is 2a, where 

a = d ch ~ sin p. 

(7) 

(8) 

If we specify the geometrical parameters r 0, l, and 
a, then for r 0 > l we can find d, t, and p such that 
the open resonator is "inscribed" in the corre­
sponding spheroidal system of coordinates, which 
makes it possible to investigate in simplest fashion 
the field distribution in the resonator. 

The Lame coefficients are equal to 

hp = hr. = h = d V ch2 ~ - sin2 p, h~ = d ch ~sin p, (9) 

and therefore the wave equation is of the form 

1 a ( . a<D ) ( 1 1 ) a•<TJ 
sin p ap Sill p ap + sin2 p - ch• (; aq>• 

+ c~(; :\; (ch~aa~)+r2 (ch2 ~-sin2 p)<D=0. (10) 

Here k = w/ c is the wave number in free space, 
corresponding to the complex circular frequency 
w of one of the natural oscillations of the reso­
nator (time dependence e-iwt ), y = kd is a pa­
rameter, and .P is a scalar function, the connec­
tion of which with the electromagnetic field will 
be considered in Sec. 5. For the time being we 
seek for (10) an asymptotic solution satisfying the 
boundary condition .P = 0 on the mirrors (3) in the 
form 

<D = W (p, cp, ~) eiyshr.- (- 1)q W (p, cp,- ~) e-hshr.,(ll) 

i.e., in the form of two waves propagating in the 
directions ± t and which go over into each other 
when t is replaced by - t (apart from the fac­
tor - ( - 1 )q, where q is an integer). The func­
tion W determines the complex amplitude of these 
waves and satisfies the equation 

1 a ( . aw) ( 1 1 ) a•w 
sin p dp Sill P Tp + sin2 p - ch2 (; iJq>2 

+ 1 a ( h r aw \ 2 . aw 
ch \; a[ c , as J + ty ch ~ ar 

+ (2ir sh \;- r• sin2 p) W = 0, (12) 

which we shall solve approximately under the fol­
lowing conditions 

r ~ 1, sin2 p ~ 1, (13) 

which are compatible with the condition (6). 
The first condition of (13) is satisfied so long 

as all the dimensions of the open resonator are 
large compared with the wavelength (see, inci­
dentally, Sec. 4). The second condition amplifies 
condition (4) and signifies that when 0 < p < p the 
t axis makes between the mirrors small angles 
with the z axis, so that the factors exp(±iy sinh t) 
in formula (11) correspond to propagation along the 
z axis with velocity close to c. The first condition 
of (13) enables us to neglect in (12) the term 
cosh-1 ta(cosh t8W/8t) at, since it is small com­
pared with the terms that follow, while the second 
condition of (13) makes it possible to replace in 
(12) sin p by p and neglect the term 
-cosh-2 t82W/8cp 2• As a result we obtain a 
parabolic equation of rather simple form 

1 a ( aw) 1 a2W 
p iJ,J p ap + [)2 iJq>2 

+ 2iy ch ~ aa~ + (2ir sh ~- y2p2 ) w = o, 

whereas Eqs. (9), (10), and (12) are elliptic. 
Making the substitution 

1 
W = ch \; '¥ (T, cp, a), 

r. 
a=~ c~~ = arc sin (th ~), 

0 

we transform (14) to a still simpler form 

(14) 

(15)* 

(16) 

The last equation coincides formally with the 
Schrodinger temporal equation for an isotropic 
two-dimensional harmonic oscillator. lt"makes 
it possible to analyze the natural oscillations be­
tween spherical mirrors of circular form. 

2. SPHERICAL MIRRORS OF CIRCULAR FORM 

For mirrors of circular form, the function >IF 

should satisfy the boundary condition 

'¥ (T, <p, -a) = e1 <2kt-nq) '¥ (T, <p, a) (for 0 < T < -t), (17) 

which follows from the condition .P = 0 on the mir­
rors. The parameters a and 7 in (17) are defined 
as 

a = arc sin (th ~) = arc sin vur;;; 
:t = V2r p = Vka21 1 sin 2a, 

*th =tanh 

(18) 
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with 

sin a= vvr;;-, cosa=V1-llr0 ; 

sin 2a = 2 V lr~1 (1 - ti0J. (19) 

The condition that must be satisfied on the geo­
metrical continuation of the lower mirror is 

'I' (-r, !p, -a) = 0 (for-r > -r), (20) 

signifying the absence of a wave propagating up­
ward and excited by the currents on the lower mir­
ror (the latter, according to Sec. 5, are propor­
tional to 'II ( T, cp, - a ) and are not present on the 
geometrical continuation of the mirror). 

The presence of two boundary conditions (17) 
and (20) is connected with the diffraction and the 
edges of the mirrors when T = T. It is relatively 
easy to take account of diffraction (see Sec. 4) 
only in the case of plane mirrors (a= 0, r 0 = oo) 
and concentric mirrors (a= rr/2, r 0 = Z), for 
which it is of decisive significance, since oscilla­
tions with low radiation losses can exist between 
such mirrors only because of the influence of the 
edges. In order to calculate the diffraction phe­
nomena in the general case, it becomes necessary 
to solve numerically the integral equation for the 
current density of the mirrors (see [2•3J). It turns 
out, however, that for oscillations with rather low 
radiation losses because of the formation of an ex­
ternal caustic surface (see below), the calculation 
of these losses is not of great practical significance 
since they are known to be exceeded by the Joule 
and other losses. We therefore investigate first 
the oscillations in an open resonator, disregarding 
diffraction and condition (20), i.e., assuming 7- = oo, 
and only then (in Sec. 4) will we consider the re­
sults of diffraction at finite 7". 

By virtue of the symmetry of the problem we 
put 

'Y = '¥ m (-r, cr) cos m!p (m = 0, 1, 2, ... ) 

field must not have any singularities on the z axis, 
and the second from the fact that the function (23) 
should yield the approximate solution of the prob­
lem at finite albeit large values of 7-. Indeed, we 
now solve the problem without taking condition (20) 
into account, but if the function 1/J is sufficiently 
small when T > T, where the parameter 'T is suf­
ficiently large, then condition (20) is essentially 
satisfied approximately, and increased accuracy 
is only tantamount to a small perturbation of the 
function (23). 

It is easy to show that (24) admits of a solution 
satisfying the foregoing requirements only if 

x = Xm, n = m + 2n + 1 (n = 0, 1, 2, ... ). (25) 

This solution has the form 

,;m L~m) (-r:•/2) -~'/4 
'IJl = 'IJlm. n (-r) = zm;2 V n! (m + n)! e , (26) 

where L~m l ( x) are Laguerre polynomials, defined 
by the following formulas (see [5]) 

L~m) (x) = (- l)n x-mexdn (xm+ne-x)Jdxn, 

L~m) (x) = 1, Lim) (x) = X - (m + 1) (27) 

and satisfying the orthonormalization relation 

00 

~ 'IJlm,n (-r) 'IJlm. n' (-r) 't'd't' = bnn'· (28) 

Substituting (23) in (17) and taking account of 
(21) and (26), we find that the function (23) corre­
sponds to a natural oscillation, the frequency of 
which is given by the formula 

2kl = nq + 2 (m + 2n + 1) a, (29) 

where q is a large integer (since we assume that 
kl » 1 ). 

An idea of the behavior of the function 1/Jm,n ( T) 
can be obtained directly from (24). We put 

(30) 

for 1¥ = '¥ m (-r, a) sin mcp (m = I • 2, · · .). (21) and then we obtain for J/ the differential equation 
The function '11m satisfies the equation 

a particular solution of which has the form 

'¥ m = e-ixa '¢ (t), (23) 

where K is a constant and 1/J is the solution of the 
ordinary differential equation 

1 d ( d1jJ ) ( ,;2 m• ) 
-- 1'- +X---- '¢=0 ,; dr: dr: 4 r:2 ' (24) 

a solution finite as T -- 0 and vanishing as T -- oo • 
The first requirement follows from the fact that the 

d2\ji/dT2 + [x- Um(T)J:¢ = 0, 

Um (T) = 1'2/4 + (m2 - 1/ 4)/t2• (31) 

The function U 0 ( T) is shown for symmetric os­
cillations in Fig. 1. The horizontal lines corre­
spond to Ko,n; their intersections with the curve 
U 0 ( T) determines the values of T o,n for which the 
difference K o,n- U0 ( T) reverses sign. Therefore 
the function 1/Jo,n oscillates in the interval 0 < T 

< To,n and decreases monotonically when T > To,n· 
Since T is essentially a dimensionless radius vec­
tor on the surface !:; = const, the function !::o,n ( T) 
can be schematically represented on the T, cp plane 
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FIG. 1 
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FIG. 2 

in the form of a radial pencil of rays that experi­
ence total reflection from the circle T = To,n. At 
T = 0, these rays are focused. The field in the 
sp~ce between the mirrors can be represented in 
the form of rays that cross the z axis at a small 
angle and are then alternately reflected from each 
mirror. Owing to the concavity of the mirrors, the 
rays cannot penetrate beyond the hyperboloid 
T = r 0,n: this is the caustic surface, behind which 
the field decreases exponentially. 

Figure 2 shows the function U 1 ( T) and the val­
ues of K1 n (n = 0, 1, 2). Since Um(T)- oo as 
r- 0 a.n'd m= 1,2, ... , the equation Um(T), 
= Km,n has for m > 0 two roots: rfn,n and Tm,n 
> rfn,n· The functions 1/Jm,n(T) cos mT or 
1/Jm,n ( T) sin m T correspond on the T, cp plane to 
rays which fill the annular region rfn,n < T < Tm,n· 
In the space between the mirrors, the field is rep­
resented in the form of rays between the hyperbo­
loid T = rfn,n (the internal caustic surface that 
prevents the rays from coming too close to the 
axis of revolution) and the hyperboloid T = Tm,n 
(the external caustic surface). The internal 
caustic surface is characteristic of asymmetrical 
wave fields in systems that have rotational sym­
metry (for example, for two dimensional fields 
of the form Jm(kr) cos mcp, where Jm is a 
Bessel function), while the external caustic sur­
face is due to the concavity of the mirrors. 

If T > Tm,n• then, owing to the external caustic 
surface, the field of a given mode is weak near the 
edge of the mirror, and the eigenfunction defined 
by (23), (25), and (26) is changed insignificantly 
by diffraction on the edge. On the other hand, if 
T < Tm,n• then the function (26) "does not fit" in 
the given resonator and the corresponding oscilla­
tion is formed by diffraction on the edge, similar 
to oscillations in a resonator with flat mirrors. 

It is seen from Figs. 1 and 2 that symmetrical 
oscillations ( m = 0) have smaller radiation losses 
than asymmetrical oscillations (m = 1, 2, ... ) with 
the same index n, because the latter have an in-

ternal caustic surface, owing to which the external 
caustic surface is situated farther away from the 
axis of revolution ( To,n < r 1,n < r 2,n < •.. ). If on 
the other hand we take an open resonator with 
spherical mirrors of annular form (the projection 
of the mirror on the plane z = 0 is a ring defined 
by the inequalities b < r < a), then the situation 
changes: the symmetrical oscillations begin to ra­
diate strongly, and the smallest radiation losses 
will be for the asymmetrical oscillations satisfy­
ing the conditions v'kb2 Z 1 sin 20' < r~,n and 
Tm,n < v'ka2Z 1 sin 2a. 

3. SPHERICAL MffiRORS OF RECTANGULAR 
FORM 

Let us consider now spherical mirrors whose 
projections on the plane z = 0 are rectangles with 
sides 2a and 2b. The surface of such a mirror is 
defined by the relations 

- a < d ch ~ sin p cos cp <a,- b < d ch ~ sin p sin cp < b, 

~ = ± ~. (32) 

We denote by p the maximum value of the coordi­
nate p on the mirrors and assume that conditions 
(13) are satisfied. Introducing "quasi-Cartesian" 
coordinates 

S = p COS(jl, fJ = p sin cp, 

we can rewrite (14) in the form 

82W/8;2 + 82 W/ofJ2 + 2iy ch ~ aW!a~ 

+ [2iy sh~- y2 (£2 + fJ2)] W = 0, 

(33) 

(34) 

assuming W to be a function of ~, TJ, and t. The 
substitution 

W = 'I' (<x, 'ty, a)/ch ~. 

• = V2r£. "'u = V2n. a = arc sin (th ~) (35) 

yields the equation 

821¥/8•~ + o2'I'!a-r:~ + ia'¥/aa- + (•; + ·~) 'I' = o, (36) 

which must be solved with account of the boundary 
conditions 

(37) 

'I' ("ix, "ig, -a) = 0 for ITA i > "ia, I 'u I> "ib. (38) 

We denote by 21, as before, the distance between 
the mirrors along the z axis, while r 0 is the 
radius of curvature of the mirrors; the parameter 
a is determined from (18) and (19), while the pa­
rameters T a and Tb are equal to, respectively, 

"ia = V ka2Z- 1 sin 2a, 'tb = V kb2l 1 sin 2a (39) 
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Equation (36) has a solution 

1¥ ='¥a (-rx. cr) Wb (-ry, cr), (40) 

where the functions >l!a and l¥b satisfy the equa­
tions 

a2'¥ala-r! + ia'¥ alaa- f -r!W a = 0, 

a2'¥b!a-r~ + iao/Jaa -+ -r~wb = o. (41) 

Conditions (37) and (38) are satisfied if the func­
tions >l!a and >¥b are subjected to the conditions 

Wa (-r ,-a)= eiXa1JFa(1'x, a) for 1-rxl<-ra. 

Wb (-ry, -a) = /xb Wb(-ry, a) for J-ru I< -rb; (42) 

'¥a (-rx,- a) = 0 for 1-rx I> 1'a, 

(43) 

The natural frequency is determined by the formula 

2kl = nq + 'Xa + 'X.b· (44) 

The functions >l!a and >l!b correspond to two­
dimensional natural oscillations of an open reso­
nator with cylindrical mirrors (of infinite length 
and of finite width 2a and 2b, see [GJ). If we neg­
lect diffraction on the edges, we have 

o/ b = e-i (n+'f,) cr "¢n (-ry}, 

'Xa = (2m + l) a, 'X.b = (2n + I) a, 

'Xa + 'X.b = 2 (m + n + I) a, m, n = 0, I, 2, . . . (45) 

where 

(46) 

and Hm is the Hermite polynomial (see, for ex­
ample, [5]): 

H 0 (-r) = I, H1 (-r) = -r. (47) 

The functions (46) satisfy the differential equation 

d2.¢m!d-t2 + (m + 1j 2 - -r2/4) "¢m = 0 (48) 

and the orthonormality condition 
00 

~ "¢m (-r) "¢n (-r) d-r = bmn· 
(49) 

-00 

The oscillation defined by formulas (40) and (45) 
can be interpreted as an assembly of rays filling 
the region 

-2 V m + 1/2<-rx<2llm+ 1/2, 

- 21/ n + 1/2 < l'y < 2 V n + 1/2. (50) 

the boundaries of which are caustic surfaces. If 
this region is completely contained between the 
mirrors without projecting beyond their edges, 

then the eigenfunctions and the eigenvalues of (45) 
are only weakly perturbed by the edges, otherwise 
the perturbation is strong. 

We note that 

"¢o, o (-r) = V2n"¢o (-rx) "¢o (-ry). (51) 

In the general case the function 1/Jm,n ( T) cos mcp 
or 1/Jm,n ( T) sin mcp is a linear combination of the 
products 1/Jm' ( Tx) 1/Jn' ( Ty ), corresponding to the 
same frequency (29). The point is that the natural 
frequencies defined by (29), (44), and (45) are de­
generate when m > 0 and n > 0, so that the eigen­
functions, which do not take into account the influ­
ence of the edges, can be chosen in different ways. 
The perturbing action of the edges eliminates the 
arbitrariness in the choice of the unperturbed sys­
tem of functions and makes it necessary to use the 
functions (26) for mirrors of round form and func­
tions (46) for mirrors of rectangular form. 

4. DIFFRACTION PHENOMENA 

We have taken diffraction into consideration 
only to the extent that the behavior of the wave 
field in the presence of caustic surfaces is essen­
tially a diffraction phenomenon. Diffraction on the 
edges of the mirrors becomes important in open 
resonators, and diffraction at the focus in the case 
of concentric mirrors (see below). 

To take account of diffraction on the edges, we 
rewrite (29) in the form 

2kl = nq + 2 (m + 2n- 1) a + 2np 

(m = 0, I, 2, ... ; n = I, 2, ... ), 

and (44) and (45) in the form 

(52) 

2kl = nq + 2 (m + n- I) a+ 2np (m, n = I, 2, ... ), (53) 

where p = p' - ip" is the diffraction correction, 
which depends on the indices m and n and which 
takes into account the influence of the edges on the 
oscillation frequency and on the attenuation of the 
oscillations with time. 

The effect of diffraction on oscillations with 
caustic surfaces can be understood as follows: the 
unperturbed field at the edge of round spherical 
mirrors is proportional, in accordance with (26), 
to exp(- 72/4) (we disregard the pre-exponential 
factor which depends on m and n). If we calcu­
late the deviation from the resonator by using the 
unperturbed field (as is frequently done for ap­
proximate estimates ) , then the complex param­
eter p will obviously be proportional to 
exp(- 72/2 ), so that oscillations with small in­
dices m and n will have quite small radiation 
losses at moderate values of 7. This conclusion 
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is confirmed by the numerical results of Fox and 
Li [ 2] for confocal mirrors ( r 0 = 2l), but it turns 
out that p decreases more rapidly, almost like 
exp(- 7'2 ). Therefore diffraction on the edges leads 
to a decrease in the radiation losses. In the ab­
sence of caustic surfaces, diffraction on the edges 
ensures in itself small radiation losses (see [i]), 

although these losses exceed greatly the losses for 
the formation of caustics in open resonators with 
the same dimensions. 

The curvature of the mirrors is taken into ac­
count by the term T 2'1tl4 in (22) and by the term 
(T~ + T~)'ltl4 in (36). If the parameter 7 is small, 
this term can be neglected and the influence of the 
curvature is slight; in particular, the caustics can­
not be formed so that the diffraction on the edges 
occurs in the same way as on the edges of plane 
mirrors, which is considered in [lJ. It is seen 
from (18) and (19) that small r can be obtained 
when sin 2a ~ 0, and sin 2a vanishes either when 
r 01l = oo or when r 01l = 1. The first case corre­
sponds to plane mirrors and the second to concen­
tric spherical mirrors. 

A simple connection exists between the distri­
bution of the currents on plane and concentric 
mirrors (see C4J). This connection does not ex­
tend to the field distribution between the mirrors, 
and can be readily established with the aid of an 
integral equation for the current on the mirrors. 
We introduce, for a >a', the function 

-i 
= 4:rt sin (a-a') 

2(Tx<+TyT~) 
sin (c;-a') 

satisfying Eq. (36) and the limiting relation 

]}. 
(54)* 

lim G (-rx, ,;~, 'Ly, ,;~, a -a') = 0 (-rx - ,;~) 0 (-r:y - 1:~). 
a--a'+o 

(55) 

This is the Green's function for the parabolic equa­
tion (36). It allows us to write for the function 'It 

with a > - a the expression 

'¥ ( 'Lx, 'Ly, a) 

= ~~ G ( 'Lx, 1:~, 'Ly, 1:~, a +a)'¥ (-r:~, 1:~, -a) d-r::d-r:~, (56) 
s 

which satisfies automatically Eq. (36) and condition 
(20) or (38); S is chosen to be a region in the Tx, 
Ty plane corresponding to the surface of the mir­
ror (i.e., a circle or rectangle). The boundary 
conditions (17) or (37) lead to the integral equation 

*tg =tan 

'¥ (-rx, 'Ly, -a) 

= e'x ~\ G (-rx, -r~, 'l"y, -r~, 2a) '¥ (-r:, -r~,- a) d-r:d-r~, (57) 
s 

from which we obtain the eigenfunctions 
'It( Tx, Ty, -a), the eigenvalues eiX, and the 
natural frequencies of the oscillations defined 
by the formula 

2kl = nq +X· (58) 

We now consider two "conjugate" resonators, 
with curvature radii ro and ro satisfying the re­
lation 

llr0 + I/r0 = Ill, 
(59) 

while the dimensions of the mirrors (a or a and 
b) and the distance between mirrors 2l are the 
same in both. It is seen from (19) that the param­
eters a and & of the conjugate resonators are re­
lated by the equations 

r{ = n/2- a, tg 2~ = - tg 2a, sin 2a h= sin 2a, (60) 

from which we have (the asterisk denotes the com­
plex conjugate) 

G (-rx, -r~, -ry, -r~. 2<'t) =- G* (- -rx, -r:, --ry, -r~, 2a). (61) 

By virtue of the symmetry of the region S, the 
eigenfunctions satisfy the relation 

'¥ ('Lx, 'l"y, -a) = ± '¥ (- 'l"x, - 'l"y, -a), (62) 

so that the function 'It* is the solution of the inte­
gral equation 

'¥* (-rx, 'l"y, -a) 

= =F e-iX* ~~ G (-rx, -r:, 'l"y, -r~. 2<'t) w· (-r~. -r~. -a) d-r~d-r~. 
s (63) 

which must be satisfied by the function 
'It( Tx, Ty, -a) for the COnjugate resonator. It 
follows therefore that 

eix = =F e-ix*. (64) 

The latter relations together with formula (52) en­
ables us to find the connection between x and x for 
mirrors of circular form 

x = (m + 2n - I) n - x·. (65) 

For rectangular mirrors we have 

X= (m + n- I) n- x· (m, n = I, 2, ... ). (66) 

For the conjugate resonators the diffraction cor­
rections in formulas (52) and (53) are related by 

p=-p*. (67) 

Thus, a resonator with confocal mirrors ( r 0 
= 2l, a= 7TI4) is self-conjugate: its eigenfunctions 
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w ( Tx, Ty, -a) are real and the diffraction cor­
rections p = -i I pI are pure imaginary. A reso­
nator with concentric spherical mirrors is conju­
gate with respect to a resonator with plane paral­
lel mirrors of the same form, so that the expres­
sions given in Sees. 4 and 5 of [iJ for the current 
density on the surface of plane mirrors (rectangu­
lar and round) enable us to obtain without difficulty 
the current density on concentric mirrors. The dif­
fraction correction for round concentric mirrors is 

P =- v;,nln (M + ~- i~)2, 

M = V2ka2/l, ~ = 0.824, (68) 

where Vmn is the n-th zero of the Bessel function 
Jm. For rectangular concentric mirrors 

nm2 nn2 

p =- 4(Ma+i3-ii3)•- 4(Mb+i3-iJ3)•' 

Ma= v 2k;• ' Mb= v 2~b• . (69) 

It must be noted for plane and concentric mir­
rors the variables T, Tx, and Ty are not suitable; 
in addition, d = 0 and y = 0 for concentric mir­
rors. Since we have assumed y » 1 in Sec. 1, the 
concentric mirrors must be considered separately. 
We introduce spherical coordinates R, p, and cp 
such that the angle p varies in the range 0 < p 

< rr/2, but the radius vector R assumes both posi­
tive and negative values; as will be seen below, 
such coordinates are convenient in the analysis of 
diffraction at the focus. 

We seek the solution of the wave equation in the 
form 

¢ = W (p, <p, R) eikR. - (- l)q W (p, <p, - R) e-ikR. (70) 

and obtain from W the equation 

1 a ( . aw) 1 azw 
sinp ap smp ap + sin2 p ~ 

+ :R ( R2 ~;) + 2ikR -fR (RW) = 0. (71) 

Specifying the surface of the mirrors by means of 
the relations 

R = ± t (72) 

and assmuing that sin2 p « 1, we can replace sin p 
in (71) by p. Neglecting, in addition, the term 
a ( R2 aw jaR) aR, we obtain the parabolic equation 

_!__ _il_ 1 aw) + _!__ a•w -f-- 2ikR _il_ (RW) = o (73) 
P ap \ P ap p2 af!l• a R • 

which assumes in the coordinates (33) the form 

azw azw I • a ( 
a~· + arJ2, 2tkR aR (RW) = o 74) 

The Green's function for this equation has the form 
(R > R') 

r(£-£', '1]-TJ',R,R') 

_ _ ikR' {ikRR' (~- ;')•+ ('t'J- 't'J')•} 
- 2n(R-R') exp -2-· R-R' ' (75) 

with 

lim r (£ - £', TJ- TJ', R, R') = R1' I'J (£ - £') I'J (TJ - TJ'). 
R.~R.'+o 

(76) 

It is easy to see that for k IR' I » 1 and arbitrary 
kR the discarded term a ( R2 ar /oR )/oR is actu­
ally small compared with the remaining terms. 

In place of (54) we now have 

W (£, TJ, R) =- l ~~ r (£- £', TJ- TJ', R,- l) 
s 

w (£', '1] 1
, -/) d£'d1]', (77) 

where S is the region in the ~, TJ plane corre­
sponding to the surface of the mirror (circle for 
the mirror (72), or rectangle). From (77) we usu­
ally obtain an integral equation for the function W 
( ~. ry, -l). It has the same form as for plane mir­
rors, confirming the already formulated connection 
between resonators with concentric and plane mir­
rors. 

At the same time, expression (77) shows that 
the field is concentrated near the focus R = 0. If, 
for example, put W = 1 on the lower mirror (72), 
then we get the formula 

p 

W =-~ \ eiv(p'+P'')f2 J (vpp') p'dp' V = _}!B!:_ 
R + l J 0 ' R + l ' (78) 

0 

which agrees with the classical expression for the 
field at the focus (see C7J). The asymptotic jump 
in the phase at the focus follows from the identity 

00 

~~ r (£- £', TJ- TJ', R,- Z) a£'dYJ' = ~ , (79) 
-co 

since R < 0 prior to the passage of the wave WeikR 
through the focus and R > 0 following passage 
through the focus. The field distribution of the 
natural oscillations near the focus is more com­
plicated than that given by (78), since the function 
W is not constant in amplitude or phase on the 
mirror. 

If we start with plane mirrors and gradually in­
crease the curvature, leaving their dimensions and 
the distance between them constant, then the most 
favorable conditions for the formation of the caus­
tic surfaces will occur when r 0 = 21 -in the case 
of confocal mirrors. This is seen from (18) and 
(39), since sin 2a reaches a maximum when a 
= rr/4; for confocal mirrors the radiative damping 
of the oscillations with caustics is minimal, since 
the field turns out to be weakest at the edge of the 
resonator. 
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a b c d 

FIG. 3 

With further increase in the curvature, the 
caustic surfaces near the mirrors move towards 
the edges, so that the radiative damping of the 
oscillations increases. At the same time, the 
concentration of the field near the center of the 
resonator increases; this is seen from the fact 
that in the plane z = 0 we have 

r = T Y (l/2 k) ctg a, (80) * 

so that as a increases the caustic surfaces move 
here towards the z axis and enclose an ever de­
creasing area. Finally, as a- rr/2, the caustic 
surfaces disappear and a focus is formed at the 
place where they contract. Further increase in 
the curvature is not rational, for we arrive then 
at resonators that are conjugates to the resonators 
with convex mirrors (see [SJ) and have therefore 
large radiative losses. 

If we consider open resonators from the point 
of view of geometrical optics, then we can con­
struct for plane and concentric mirrors sets of 
parallel (Fig. 3a) and radial rays (Fig. 3c), which 
go over into each other upon reflection and which 
correspond to a certain degree to the wave fields 
in the resonators. For confocal mirrors we can 
construct (Fig. 3b) parallel rays which pass 
through the center of the resonator after one re­
flection, and which become parallel again after 
the second reflection. Such rays, however, have 
no relation whatever with the natural oscillations. 
If the oscillation has an external caustic surface, 
then it can be represented (see Sees. 2 and 3 ), as 
shown in Fig. 3d, by rays that are alternately re­
flected from the mirrors and do not reach the 
edges. 

5. ELECTROMAGNETIC FIELDS 

So far we have solved the scalar wave equation 
with boundary condition <I>= 0 on the mirrors. We 
are interested, however, in the electromagnetic 
oscillations, so that we must solve Maxwell's 
equations 

*ctg =cot 

rot H = -ikE, rot E = ikH (81)* 

together with the auxiliary equations 

divE= 0, divH = 0 (82) 

and the boundary conditions on the perfectly con­
ducting mirrors 

E~= £ 11 = Hr.=O (83) 

Since we are seeking an approximate ( asym­
ptotic) solution, we can express the electromag­
netic field of the linearly polarized natural oscilla­
tions in terms of the scalar function <I> in the fol­
lowing manner. We put 

E = ik-1 rot rot A, H =rotA, (84) 

and then the first equation of (81) and both equa­
tions of (82) are satisfied. If the vector potential 
A satisfies a vector wave equation, then the second 
equation of (81) is also satisfied and the electric 
field is represented in the form 

E = ik-1 (grad div A + k2A). (85) 

We now put <I>= A~ or <I>= A 11 and assume that 
the other two components of the vector potential 
are equal to zero. We stipulate here, for example, 
that the component A~ satisfy the equation ob­
tained if the values obtained for the components 
E~ from (84) and (85) are equated. By calculating 
the components E 11 and E~ from (84) and (85) we 
readily verify that these formulas give practically 
equivalent result-the terms which do not coincide 
are smaller than those which do by a factor y. 

The frame ~. fl, and t, defined by (1), (9), and 
(33), is orthogonal only approximately, to the ex­
tent to which we can put hcp = hp. We shall use 
such an approximation, assuming that h 
= d v' cosh2 t - p2 , and then h~ = h71 = ht = h. For 
the functions A~ and A71 we obtain equations that 
differ from the scalar wave equation. However, 
if we solve them in the form (11) and neglect fac­
tors analogous to those neglected in Sec. 1, then 
we obtain for the function W the previous para­
bolic equations (14) and (34). If furthermore A~ 
= 0 and A71 = 0 on the mi:rrors, then the fields 
(84) will satisfy the boundary conditions (83) ex­
actly. 

For mirrors of rectangular form we can put, 
in accordance with Sec. 3, 

'I' = e-i(m+n-1 )0 'i'm-1 (Tx) 'i'n-1 (Ty) (m, n = I, 2, ... ), (86) 

and then we can easily calculate from (84) the elec­
tromagnetic fields of the oscillations, which can be 
naturally called E(x) and E(Y) modes in a res-mnq mnq 

*rot= curl 
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onator with spherical mirrors of rectangular 
form; the frequency of these oscillations is de­
termined by (53). 

For mirrors of circular form we assume in 
accordance with Sec. 2 

(m = 0, 1, 2, ... ; n = 1, 2, ... ) (87) 

and we obtain the Eghq and E~hq modes in such 
a resonator, with the frequency given by (52). 

The current surface density on the mirrors has 
for Eghq modes a single component along the ~ 
axis, and for the E~hq modes a single component 
along the TJ axis. This component is equal to 

iroe'kl _ iroe-i<kl-rtq) _ 

f = 2n ch ~ 'Y (£, fl, ~) = 2n ch (; 'Y (£, fl,- ~) (88) 

on the upper mirror and to - (- 1 )qf on the lower 
mirror. In the Eghq and E~hq modes the current 
distribution on the mirror surfaces is qualitatively 
the same as for the like oscillations in a resonator 
with plane mirrors of rectangular and circular 
form ( [1], Figs. 10 and 11 ), but then the points are 
limited not by the dimensions of the mirror but by 
the dimensions of the caustic surface, beyond which 
the currents are insignificant. 

CONCLUSION 

We have developed a theory for natural oscilla­
tions in open resonators with spherical mirrors. 

The most interesting from the theoretical and 
practical points of view are oscillations with very 
small radiation losses. These oscillations can be 
represented in the form of two waves or two beams 
propagating towards each other and protected by 
the caustic surfaces against losses due to lateral 
radiation. In some cases these beams may be 
hollow because of the presence of an internal 
caustic surface. 

Such waves are of interest not only for open 
resonators, but also for systems which transmit 
or guide electromagnetic radiation energy. 
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