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We consider a weakly turbulent plasma. The turbulence arises by virtue of the characteris
tic instability of an inhomogeneous plasma. [t] The stabilizing effect due to the oscillations 
is analyzed and it is shown that this characteristic instability is important only in a collision
dominated plasma. The nonlinear growth rate is also estimated. The kinetic wave equation [3•4] 

is used to compute the steady-state oscillation spectrum, which is then used to estimate the 
turbulent flow of the plasma across the confining magnetic field. The turbulence diffusion co
efficient is found to be greater than the classical coefficient but small compared with the 
Bohm coefficient. 

l. In recent years a great number of authors have 
investigated stability at the inhomogeneous bound
ary of a plasma contained by a magnetic field. [1] 

We present a brief review of the results of the 
linear theory of stability obtained in the collision
less approximation. 

A plasma layer, whose density and temperature 
depend only on x, is confined by a uniform mag
netic field Hz· The electric field is zero every
where. In a plasma of this kind oscillations occur 
at a frequency w ~ ky( cT/eH)(V'n)/n (drift waves). 
If the plasma pressure satisfies the inequality 
1 > [3 > me/mi. where [3 = 81rnT/H2, the most 
dangerous perturbations are those with phase 
velocities in the range Ui « w/kz :S v A 
(ua = .JT/ma, VA= H/.J47rnmi); we consider os
cillations of the form cp ( x) exp { ikzz + ikyY -iwt }. 
In this case the electric field of the perturbations 
may be regarded as a potential field: E = -V'cp. 
The drift-wave instability is caused by resonance 
electrons which move along the lines of force with 
velocities close to the phase velocity of the wave 
w/kz· 

The effect can be demonstrated if the electrons 
are described by the kinetic equation in the drift 
approximation 

Substituting in this expression fk, the oscillatory 
correction to the zeroth order function f0 found 
from the solution of the linearized equation (1.1), 
we have 

We can now easily formulate the stability cri
terion for drift waves. The wave energy increases 
if the distribution function for the resonance par
ticles satisfies the condition 

For a Maxwellian velocity distribution the fre
quency of the oscillations w ( kyri « 1, where ri 
is the ion Larmor radius) is ky ( cT /eH )( V'n )/n. 
When kyq » 1 the frequency becomes Ui ( V'n )/n 
and the growth rate vanishes. For all values of k 
the energy of the drift wave is of order e 2Cfk2/T. 
Hence, as follows from Eq. (1.2), the growth rate 
'Yk = Wk/2Wk varies from 'Yk ~ "'-'k v'me/mif3 at 
kyri « 1 to 'Yk ~ Wk ,..., Ui ( V'n )/n for kyq 
,..., .J mif3lme. 0 

i!l + V i!l_ c (VqJH] f + .!:._ aqJ ~ - 0 at z az H 2 V m az av - . (1.1) * llAs in earlier papers,[•] we neglect the diamagnetic drift, 
z 

The rate of change of the wave energy Wk is equal 
to the work transferred from the resonance elec
trons to the field per unit time 

*['Vcp H] = 'Vcp X H. 

that is, we assume 

cT H' (x) cT Vn 
00k~kueHH(X)-ku eH nf3. 

Hence, when kyri- Vm;/3/me we obtain a limitation on the 
ratio of plasma pressure to magnetic pressure 

(mefm;)'/• > f3 > mefm1. 
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In an unstable plasma the fluctuation level of 
the electric field can be much greater than the 
thermal background and should cause increased 
plasma flow across the confining magnetic field. 
In order to compute the flow it is necessary to 
take account of nonlinear terms in the original 
equations. 

We first consider the feedback effect on the 
electron distribution function due to oscillations 
associated with the instability. This process has 
been studied earlier for the case of a uniform 
plasma. [2] We use the method developed there for 
solving the problem, applying it to Eq. (1.1). The 
electron distribution function is divided into a 
slowly varying (in time) part f 0 and a small 
rapidly varying part of. This procedure is valid 
if 'Yk « c..:k. The function Of is determined from 
the linearized equation (1.1): 

(1.3) 

The expression for Of is substituted in Eq. (1.1) 
and an average is taken over the rapid oscillations. 
As a result we obtain an equation that describes 
the change in f0: [5, 7] 

The expression in (1.4) is a diffusion-like equa
tion in ( x, Vz) space. An approximate solution 
can be found on the basis of the following consid
erations. The coefficient Dk depends on the wave 
vector k and reaches a peak for some value 
k = k; kz ~ w/VA, kyq ~ Vmi/3/me. 

To estimate the rate of equalization of the 
"plateau" in (x, Vz) space given by Eq. (1.4) 
(cf. Vedenov, Velikhov, Sagdeev [2]) we replace 
Dk by DK· It is also convenient, in the simplified 
equation (1.4), to transform from the variables 
x, vz to the new variables 

where u is the velocity of the resonance electrons 
u ~ '""'k /kz ~ v A- In this case Eq. (1.4) becomes 

ato (~. TJ, I) = J_ D- (!: t) = a{o 
at a11 k "'' 'I'J, a11 • 

Di< (£, fJ, t) = n (e2 I m2v~) WJ<(jl~. (1.4') 

This equation describes the feedback effect of the 

oscillations on the distribution function of the reso
nance particles. 

For the resonance particles the values of the 
variable Tl lie in the range 0 < I Tl I < v A. In this 
range of Tl a plateau is formed on the distribution 
f ( Tl) in a time of order T ~ vi./Di.{ and the oscil
lation growth is terminated, as is evident from 
Eq. (1.2). During the course of this process the 
coordinate x and velocity Vz of the resonance 
electrons are related by the expression v~/2 
+ '""'k WHexlky == const and the velocity increment 
of these electrons in a time T is ov z ~ v z ~ v A, 
while the displacement ox is approximately 

(1.5) 

The mean displacement of the nonresonant parti
cles is zero in the approximation used here. 

Thus, the instability at the boundary of a plasma 
contained by a magnetic field inhibits itself rapidly 
and the change in the initial density in the time 
required for the plasma to reach the stable state 
is small. 

We have shown that in a low-density plasma 
(i.e., when collisions can be neglected) the insta
bility of the boundary does not lead to an appreci
able loss of plasma across the magnetic field. 
However, if the plasma lifetime is large compared 
with an electron mean free time Te, the process 
by which a plateau is established in (x, Vz) space 
must compete with the relaxation of the electron 
distribution function to an unstable local Maxwel
lian velocity distribution fM. 

We now analyze the steady-state problem taking 
account of collisions, assuming that the density 
distribution n ( x) and the temperature distribution 
T(x) are given; we estimate the average (over 
time) plasma flux < nvx) caused by the instability 
in this state. For this purpose, we add a collision 
term to the right side of Eq. (1.4) or (1.4'): 

ato _ ~ ( 1 a . ku a ) D ( 1 a ku a ) 
at - k ~ avz - WkWHe ax k v; avz - WkWHe ax fo 

(1.6) 

Comparing the underscored terms in Eq. (1.6) 
we find that collisions are important when ve 
,G ve*• where v* ~ LL'i{(ue/uA) 2e 2<;0k2/T2• If ve 
« v* we have shown above that the oscillations 
have a strong stabilizing effect. If ve » v* the 
collisions maintain the unstable Maxwellian distri
bution. The qualitative dependence of the nonlinear 
growth rate y 'k on ve is given by the formula 2 
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r~ __, Ti< j(l + v'/v,), (1.7) 

where 'Yk is the growth rate obtained from the 
linear theory for a Maxwellian electron distribu
tion function. [To determine the exact functional 
relation y 'k"( ve) we must solve the system of 
equations (1.2) and (1.6) .] 

We have shown that in the problem considered 
a consequence of the instability is a stationary 
oscillation level; it is natural to ask what the 
ultimate fate of these oscillations is, and to what 
amplitude they can grow. It follows from the 
linear theory that the growth rate Yk is a maxi
mum for waves with phase velocities w/kz ~ v A 
» ui. These waves are weakly absorbed by the 
ions since the number of resonance ions (for which 
v z ~ v A) is exponentially small. These waves 
cannot be directly radiated from the plasma in the 
form of electromagnetic waves since their phase 
velocity is small compared with the velocity of 
light. Hence one expects that the wave energy will 
grow to a level such that different modes can in
teract, causing a net flux of modes to the region of 
the spectrum characterized by smaller phase 
velocities w/kz. The waves with phase velocities 
w/kz :Sui produced as a result of this process 
will be absorbed by the resonance ions. The 
steady-state energy spectrum of the oscillations 
Wk is computed in Section 2. When riky ~ 1 

(1.8) 

The mean particle flux ( nvx) can be found by 
averaging (over time) the y component of the 
equation of motion for the electrons and ions 

(1.9) 

In this expression we must use onj = jOfjdv 
found from the solution of the linearized kinetic 
equation. For the electrons one is determined by 
Eq. (1.3): 

plasma flux is produced (nvx) = -( cn/eH) I:Pky· 
It follows from these considerations that ( nvx) 
is the same for both kinds of particle so that 
plasma neutrality is not violated. 

The "diffusion coefficient" D ( x, t) is deter
mined from the relation (nvx) = -Dvn: 

ecn ~ 'Yk 2 D __,- TH'"' L.J ku- <pk. 
vn k wk 

(1.11) 

We now use Eq. (1.8) and eliminate q{ from Eq. 
( 1.11), thus obtaining 

'2 
D__, _n_~ 'Yk, 

wm Vn k k 
(1.12) 

The nonlinear growth rate Yk can be obtained 
from Eq. (1. 7): 

The quantity 
~ vmi/3/me. 
~ Ui(Yn)/n. 

, 'Yk m, wkmi [ ' 2 ]-1 
r k = r k 1 + v;; m, ~ k2T (1.13) 

y ' 2 /k is a maximum when kri 
?or these values of k, Wk ~ Yk 
Hence, when Ve > WHi ( qn- 1 vn )3 

D __,,. ( m, r· VncT (1.14) 
Y m1 !3 ' n eH' 

When Ve < WHi ( qn-1 vn )3 

D __, V m, fmt !3 v, (n-1Vnr2 ~ VtP- •;, (n-1Vnt2 • (1.15) 

We note that this result can be obtained from 
Eq. (1.11) for any energy spectrum2) cp~ so long 
as ve > wk ( mi/me) {3e2 «Pf/T2• The calculated 
diffusion coefficient is greater than the classical 
diffusion coefficient Dc ~ ( me/mi) r~ ve (it is 
only for this condition that the estimates we have 
given apply) but is relatively small. Thus, it is 
small compared with the Bohm diffusion coeffi
cient DB ~ cT/eH. 

2. In this section we consider in detail the non
linear mode interaction. [3•4] We shall also obtain 
the mode spectrum w ( k). 

We write the potential cp as a sum of potentials 
for the electric fields of the individual modes with 
amplitudes Ck ( t, x) that vary slowly in time and 
space: 

(1.10) <p = ~ Ck(t, x) ;pk exp {i (kr- rokt)} 

In making this estimate we have used Eq. (1.2). 
The relation in (1.10) has a simple meaning. 

The resonance electrons lose a certain momentum 
per unit time in exciting the oscillations: 

This momentum flux is absorbed by the ions. It 
can be shown that a frictional force acts between 
the electrons and ions. By virtue of this force a 

k 

+ ~ ck_ (t' x) q,k_ exp {- i (kr - Ulkt)}' 
k 

In the same way we write expressions for the 
oscillating corrections to the fj: 

2lThis has been pointed out to us by R. Z. Sagdeev. 

(2.1) 
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lJfi = l]Ck (t, x) hiexp {i (kr- wkt)} 
k 

+ 2] ck_ (t, x) fkj_ exp {- i (kr -wkt)}. 
k 

As in [5], we do not use the rigorous quasiclassical 
(\VKB) characteristic functions for the linear 
stability problem: 

X 

<pk = (j)kCk exp {i ~ kx (x, w) dx + ikyy + ikzz- iwt}, 
x, 

but approximate them by plane waves exp{ ik · r 
- iwt} assuming that kx ~ ky· 

The nonlinear mode interaction leads to a slow 
change in mode amplitude in time by virtue of the 
transfer of energy through the spectrum. A cor
rect description of this process can be given only 
when the mode coupling (and the wave-particle 
interaction) is weak so that perturbation theory 
can be used; the small parameter is the ratio of 
the energy of interaction between modes to the 
total mode energy. [3] As a consequence of the 
weak coupling between modes the mode phases 
can be assumed to be random and averages over 
phase can be taken. 

We first obtain the dynamic equation describing 
the time variation of the amplitudes Ck ( t). For 
this purpose we write the Fourier component of 
the rapidly varying part of the distribution function 
fkj in the form of an integral over the unperturbed 
particle trajectories, taking account of nonlinear 
terms:[s] 

t 
ack \ -

-at J hi(r,v,t)dt 
-oo 

making use of the neutrality condition 

~ei~hi(r, v, t) dv = 0. 
I 

(2.2) 

(2.3) 

In this section we assume that collisions are 
successful in re-establishing a local Maxwellian 
velocity distribution for the electrons and ions. 
From Eq. (2.2), in the linear approximation we 
obtain an expression that relates the distribution 
function fkj and the potential (jk: 

where k}_ = k~ + k~, v = {v1, cp, vz}. 
In Eq. (2.4) we retain the term with l = 0 thus 

obtaining an expression for the growth rate from 
Eq. (2.3) 

__ -. / n ~ (w k cT Vn) 
- V 2 I kz I uz k + Y eH n 

and the oscillation frequency 

Wk = - ku :; V: F (k}_)/12- F (k}_)l, 

F (k}_) = e-k}_r~ I 0 (k}_r~). 

(2.5) 

(2.6) 

where I0 is a Bessel function of zero order and 
imaginary argument. The details of the calculation 
for the linear approximation can be found in [t]. 

We now substitute the first approximation for 
fkj in the right side of Eq. (2.2). Keeping only the 
main terms in the nonlinear part we obtain an 
equation for the correction to the distribution func
tion that takes account of the modes interaction: 

where ~k = j""6 ~kj ( ej/ \ e \) dv; 
j 

at;k j e~ [k'·k"]z 
-a -Vkk'k" = 2-----

ruk miTi wHi 

( ruk- k~ (cTjleiHn) Vn _ ruk'- k~ (cTjleiHn) Vn) 
X " ' 

ffik"-kzvz wk'-kzvz 

X J0 (kv .1./ruHi) J0 (k'v i.fwHi) J0 (k"v .1./ruHi) <~'k•<!'k" 

wk' + wk" + (k~ + k) vz <~'k 

The dynamic equation for the amplitudes 
Ck ( t) is 

(2.7) 
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If we normalize the state vector 1/k, in accord
ance with the relation 

- a (coke (cok,k)) k2(ji~ - e2(p~ 
Wk = awk 8lt = --w- no (2- Fk) = wk, (2.9) 

where 

is the dielectric constant of the plasma, the square 
of the modulus of the mode amplitude can be 
treated as the number of modes 11k = I Ck ( t) 12 

with energy Wk. In this normalization the matrix 
element vkk'k"' that characterized the interaction 
possesses the necessary symmetry properties 
(cf [4]); the change in the number of modes in 
time is described by the kinetic equation 

ank dcok ank ' (0) • 
Tt + dkx ax = 2r knk + St {nk·nk"}, 

st<o> {nk·nk"} = 2n: ~ {J V kk'k" 12 (nk'nk"- nknk·- nknk") 
k'+k"=k 

x b (wk- Wk" -Wk•) + 2J V kk~k" [2 

This equation and the quasilinear equation (1.4) 
form a complete system for determining the 
kinetics of a turbulent plasma in the case of weak 
mode coupling ( Yk• Cj~1 9 Ck/at « Wk). However, 
the largest contribution to the diffusion coefficient 
is that of the short-wave oscillations kri 
~ v'mi,B/me for which Yk ~ Wk. Equation (1.4) 
applies in this case since the condition of weak 
coupling between the waves and electrons 
'Yk.lkzue « 1 is satisfied; Eq. (2.10) is only quali
tatively correct, but can be used for an order-of
magnitude estimate of the wave energy. (This 
estimate will be obtained as a limiting case for 
oscillations characterized by kq « v' mi.B/me.) 

Under conditions of quasi-stationary equilibrium 
in which the conversion of energy into turbulent 
fluctuations caused by the instability is compen
sated by absorption and the loss of energy because 
of the nonlinear transfer through the spectrum 

When kri ::, 1, an estimate of the matrix element 
gives 

x (nk'nk" + nk"nk- nknk•) b (wk"- wk'- wk)}. (2.10) Hence 

The collision term in this equation takes ac
count only of the nonlinear transfer of energy 
over the spectrum of characteristic oscillations, 
i.e., the conversion of two modes into one (and 
vice versa) resulting from elastic collisions. 
However, interference between modes can lead to 
driven oscillations as well. The amplitude of a 
driven oscillation is given by 

t 

C(l) Yk"f \' v c c 
k" = e .\ k"k.:_k k' k 

0 

X exp {- i (Wk- Wk•- Wk") t- yk.(} dt 

- V C C exp{-i (cok- cok'- wk .. ) t}- exp (rk"t) 
- kk:_k k~ k - i (wk- cok'- cok") + rk" 

The absorption of these driven oscillations gives 
an additional channel for the outflow of energy 
from a given fluctuation scale and these processes 
must be included in the total collision term: 

St {nknk·} = st<o>{nknk·} + 2Vkk'k"Vk"k~k 
Irk" I nknk, 

X 2 
(cok -wk .. - (i)k,)2 + rk" 

2v V Irk" I nknk' + kk' k" k"k'k 2 • 
- (cok"- cok'- cok)2 +rk• 

(2.11) 

(2 .12) 

In principle, Eq. (2.10) can be used to estimate the 
wave energy numerically. We obtain the following 
value for Wk: 

If this numerical estimate is used in place of the 
symbolic expression (1.14) for D we find 

Ve > fo- WHi (r;n-1Vn}3 , D ~ 1~ Y m.lm;~ (r;n-1Vn) cT!eH. 

In conclusion the authors wish to thank R. Z. 
Sagdeev for valuable discussions and remarks. 
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