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It is shown that electromagnetic excitations (quasi-particles) of various types exist in metals 
located in a strong magnetic field. In metals with unequal electron and "hole" concentrations, 
spiral waves exist with a quadratic spectrum. Magnetohydrodynamic waves exist in metals 
with equal carrier concentrations. The wavelengths of these excitations are large in compar
ison with the Larmor radius, and small in comparison with the mean free path. 

In metals with a single type of carrier, there exist quasi-particles with a discrete spec
trum, the wavelength of the particles being smaller than the Larmor radius. In all cases, the 
dependence of the natural frequency, attenuation, and polarization of the excitations on the mag
netic field strength H, the angle between the wave vector k and H, and on other parameters 
has been investigated. The existence of quasi-particles is not connected with any singularities 
of the electron energy spectrum. 

The existence of a series of new resonance effects due to quasi-particle excitation by an ex
ternal magnetic field or by ultrasound is predicted. Resonance occurs when the frequency of the 
external field coincides with one of the natural frequencies. A slowly decaying electromagnetic 
wave arises in the metal, and the ultrasonic impedance and absorption coefficient experience 
resonance oscillations. The distribution of the electromagnetic field in the volume of the metal, 
and also the dependence of the impedance tensor and the ultrasonic absorption coefficient on the 
magnitude and orientation of the magnetic field are also studied. 

INTRODUCTION 

IN most cases, electromagnetic waves are very 
rapidly damped in metals (at distances of the order 
of the skin depth). The presence of a constant mag
netic field H leads to the appearance of character
istic low-frequency oscillations of the electromag
netic field. Thus, Konstantinov and Perel' [t] have 
shown that a radio wave can penetrate to consid
erable depth in a magnetic field H perpendicular 
to the surface. Buchsbaum and Holt [2] have dis
covered Alfv{m waves in bismuth under similar 
conditions. The propagation of electromagnetic 
waves in metals in these cases is determined by 
the transverse part of the conductivity tensor, for 
which spatial dispersion plays no role. 

According to Azbel', [3] for cyclotron resonance 
at very high frequencies in metals with non -quad
ratio dispersion of the carriers, weakly damped 
spikes of fields and currents must exist. 

In the present work it is shown that electromag
netic waves can propagate in metals at arbitrary 
angles to the direction of the magnetic field when 

the spatial dispersion is significant. The general 
reason for the existence of different electromag
netic waves in metals is that the motion of the 
electrons in a plane perpendicular to the magnetic 
field H is finite. As a consequence of this, the 
antihermitian part of the conductivity tensor is 
large in comparison with the hermitian part. 
Therefore the effective dielectric constant of the 
metal is real and positive, which indicates the ex
istence of characteristic electromagnetic excita
tions (quasi -particles). 

As can be expected from general considerations, 
the dispersion law of the electromagnetic quasi
particles is determined only by the spectrum of the 
electron conductivity. The kinetic characteristics 
of the electrons (relaxation time) do not enter into 
the dispersion law and can affect only the damping 
of the excitations. 

It is shown below that in metals with an unequal 
concentration of electrons and "holes," there are 
spiral waves with a quadratic spectrum. In metals 
with identical concentrations of carriers, magneto
hydrodynamic waves can exist. The wavelength of 
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all these excitations is large in comparison with 
the Larmor radius, and small in comparison with 
the mean free path of the carriers. In metals with 
a single group of carriers, there are excitations 
with discrete wave vectors and frequencies whose 
wavelengths are much smaller than the Larmor 
radius. 

In all cases in which there are weakly damped 
quasi-particles, the metals can possess an anom
alous transparency. In these phenomena, which 
accompany the variable electromagnetic field, an
other type of resonance should be observed. We 
investigated here a number of new resonance ef
fects, associated with the excitation of character
istic electromagnetic waves in metals. 

DISPERSION EQUATION FOR ELECTROMAG
NETIC WAVES IN A METAL AND ITS 
SOLUTION 

1. The propagation of plane monochromatic 
waves in a metal is determined by the Maxwell 
equations 

k2E- k (kE) = 4niwc-2j, 

ja = Oa~ (k, W, H)£~ + j;xt. 

(1.1) 

(1.2) 

Here E is the transverse electric field, is the 
current density, a a{3 the conductivity tensor with 
account of spatial and temporal dispersion and de
pendence on the constant magnetic field H, jext is 
the density of external currents, k and w are the 
wave vector and the wave frequency, E and j 
"' ei<k·r- wt>. We have neglected the displace
ment current, from which it follows from (1.1), 
that 

kj = 0, (1.3) 

which is identical to the condition of quasi-neutral
ity of the metal p' = 0 (p' is the uncompensated 
volume charge density ) . 

We choose the system of coordinates xyz such 
that the z axis is directed along the magnetic field 
H, while the x axis is transverse to k and H. In 
what follows, we shall also use a system of coordi
nates XTJ?;, where ?; II k. The angle between the 
vectors k and H is <I>. 

The spectrum and the damping of the character
istic oscillations of the field are determined from 
the homogeneous set of equations (1.1)-(1.3) for 
jext = 0. Eliminating the longitudinal component 
of the electric field E?; from (1) by means of (1.3), 
we get 

(a, ~ = x, 11), 

(1.4) 

(1.5) 

where 'Uaf3 is the "renormalized" two-dimensional 
conductivity tensor 

(1.6) 

The dispersion equation which determines the 
spectrum and the damping of the electromagnetic 
waves is obtained by setting equal to 0 the deter
minant of the system (1.4) D = det D; 

D := 1 - (4nw/k2c2) 2 det aa.~ - i 4nwk-2c-2 Sp cra.~ = 0. 

(1. 7) 

The elements of the conductivity tensor aaf3• 
with account of the spatial and temporal dispersion 
in the presence of a constant magnetic field H, 
have the form (see, for example, C4J): 

' 
X ~ dr:' v~ (e, p, r:') 

-oo 

X exp { ~ ~, [v- iw + ikv (e, Pz, r:")l dr:"}, (1.8) 

where h is Planck's constant, e is the electron 
charge, E(p) is the energy, p is the quasi
momentum, v = aE:/ap is the velocity, fl = eH/mc 
is the cyclotron frequency, m = ( 27T )-1 as( E, pz )/aE 
is the effective mass of the electron, S( E, Pz) is 
the cross section area of the constant-energy sur
face E(p) = E in the plane pz = const, f0( E- J.L) is 
the Fermi distribution function, J.L is the chemical 
potential of the electrons, T = flt iS the dimension
less period of the electron in orbit in the magnetic 
field, and v is the frequency of collisions of elec
trons with scatterers. 

The dependence of the conductivity tensor (1.8) 
on k, w, and H is very complicated, and the dis
persion equation (1. 7) cannot be solved in general 
form. We shall investigate Eq. (1. 7) by using 
asymptotic expressions for the conductivity tensor 
(1.8) in different limiting cases. By using the spec
trum of electromagnetic excitations in a metal, we 
obtain those regions of values of w and H in which 
the corresponding asymptotic expressions of the 
tensor a a{3 are valid. 

2. Let us first consider the simplest limiting 
case, in which the electromagnetic wavelength is 
large in comparison with the radius of the orbit 
of the electron in the magnetic field; 

kR. < 1, (2.1) 

where R = CPF /eH; PF is the characteristic mo-
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mentum on the Fermi surface. Here we shall as
sume a strong spatial inhomogeneity along H: 

I kzt I~ 1, (2.2) 

where kz = k cos <II, while 

l* = v/(v- iw) (2.3) 

plays the role of the effective path length of the 
electron in the variable field, v is the maximum 
Fermi velocity in the direction H. We note that 

(2.1) and (2.2) assume the inequality !J » lv- iw I 
to be satisfied. 

For closed electron trajectories, all the con
clusions remain valid for arbitrary form of the 
Fermi surface. Therefore, we shall consider a 
quadratic and isotropic dispersion law for elec
trons, E(p) = p2/2m. 

In the case of a single group of carriers, the 
asymptotic character of the tensor a a{3 has in 
the set of coordinates xyz the form 

-1; 
( 

(v- iw) Q-l + f n I kz I R tg2 <D; 
nee· 

Cla.f3=7T 1; (v-iw)jQ; 
tg <D; 0; 

-tg <D ) 

0 ' 
3 (v- iw) jQ (kz R)2 

(2.4) * 

where n is the electron concentration. 
The two-dimensional tensor aa{3 (1.6) in the axes X1J is equal to 

~ __ nee ((v- iw) Q-1 1 cos <D I+ f nkR sin2<D; -1 ) 
Cia.(3- HI ""I . cosw 1; (v-iw)jQjcos<D 1 

(2.5) 

Substituting the expression for aa{3 in (1. 7), and 
neglecting small terms, we represent the disper
sion equation in the form 

1 - (k2cH cos <D/4:rtw ne)2 + i (o~x + ?f~.,.)l [ axn I = 0, (2. 6) 

where a' = Re a. 
Equation (2. 6) determines the spectrum and 

damping of the elementary electromagnetic exci
tations in metals in the case under consideration. 
The excitation spectrum is determined by the anti
hermitian part of the tensor aaf3· while the damp
ing is determined by the hermitian part (a5a_ and 
ary11 ). The smallness of the hermitian part in com
parison with the antihermitian guarantees the rela
tively small damping. These excitations have evi
dently Bose statistics and a quadratic spectrum: 1> 

w == w'- iw" 

= k2v;Q-1 [ cos <D I [1- i (v/Q + -!rJ:rrkR sin2 <D)], (2.7) 

where 

(2.8) 

is the Alfvem velocity. 
By substituting (2. 7) and (2.8) in (1.4) and (1.5), 

it is not difficult to show that the electric field of 
the wave rotates in the xy plane: 

*tg =tan. 

l)As a curious fact, we note that the contribution to the 
heat capacity from thermal excitations of this type is equal 
to AyeT, where YeT is the electron heat capacity, 

Ev = iExfcos <D, Ez = 0. (2.9) 

Elementary excitations of the same type for kZ 
« 1 are very well known in magnetoactive plasma. 
[ 5] For the special case ci> = 0, for which the spa
tial dispersion in metals is also unimportant, they 
were obtained by Konstantinov and Perel'. [iJ The 
difference of the solution of (2. 7) from the corre
sponding expression in the case kZ « 1 lies in the 
presence of an additional damping, proportional to 
kR sin2 <I>, brought about by spatial dispersion 
( Landau damping ) . We note that this damping de
pends essentially on the angle ci> and vanishes for 
k II H. For transverse propagation k 1 H, excita
tions of this type are absent. 

The region of applicability of Eq. (2. 7) is deter
mined by the conditions (2.1) and (2.2). By expres
sing k in terms of w by means of (2. 7), we can 
rewrite it in the form 

(2.10) 

It follows from the first inequality of (2.10) that the 
maximum frequency of excitations of this type is 
proportional to the cube of the magnetic field. 

3. Let us investigate the propagation of electro
magnetic waves in metals with equal concentra
tions of electrons and "holes" (n1 = n2 = n) in the 
case in which, in addition to (2.1), the following 
conditions are satisfied: 

(s = 1, 2), (3.1) 

where the index 1 refers to electrons and the index 
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2 to "holes." In this case, the spatial dispersion 
is small and the asymptotic character of the con
ductivity tensor has the form 

("";: 'Ys a~~; "''' ) xz 
nee ~ (s)· 'Ysa~~; a(s) 

Ga,8 = H ~ 'Ys ayx' yz ' (3.2) 
s=I,2 (s). 

-a~l; a<s) jy -axz' zz s I 

where Ys = ( "s- iw )/Us, while the dimensionless 
matrices a~J depend only on the anisotropy of the 
Fermi surface and the orientation of the magnetic 
field relative to the crystallographic axes of the 
metal. If the magnetic field is directed along the 
three-fold or higher order axis, then all the non
diagonal elements aa(3 are equal to 0. 

The hermitian part of the tensor aa(3 (3.2) de
termines the damping of the excitations due to elec
tron scattering. In the case 

(3.3) 

it is small in comparison with the antihermitian 
part, which determines the spectrum. Neglecting 
the scattering by the carriers, which gives the 
relative damping of the excitations of the order 
of vI w, we rewrite the tensor a a(3 in the form 

(
.- iwa1fQ; - iwa,.;n; a13 ) 

a~il = n;: - iwa12/Q; - iwa.;Q; -:- as2 , 

- a13; as2; zQas/W 

(3.4) 

where Q = eH/ c ( m1 + m2 ), while the quantities 
{a} are connected in obvious fashion with the ele
ments of the matrices a~J. 

The two-dimensional tensor 'Ua(3 in the system 
of coordinates X7J is easily expressed in terms of 
the elements of the matrix (3.4): 

Gail=- i (w/Q) (nee/H) Aafl, 

( 
a,+ ai3!as; (a12 + a,sa32/as) I cos <D I-') 

Aail = 2 2 • 
(a12 + a1sas•/as) I cos <D l-1; (a• + a23/as) cos- <D . 

(3.5) 
In the calculation of (i af3• we have assumed that 
I cos <I> I » w/U. 

Solution of the dispersion equation (1. 7), in which 
Cia(3 are determined by the expressions (3.5), gives 
the spectrum of electromagnetic excitations in the 
case under consideration. These excitations have 
a linear dispersion law and represent magnetohy
drodynamic waves in the anisotropic metal: 

where va is determined by Eq. (2.8). 
If the spectrum of the carriers is isotropic or 

if the magnetic field is directed along a symmetry 
axis of higher order, then all the nondiagonal ele
ments of the matrix aa(3 are equal to 0. In this 
case, 

a 1 = a2 = a, A~~= a, A~0~ =a cos-2 <D, A.\,0~ = 0 
(3.6a) 

and the phase velocities of the magnetohydrody
namic waves are determined by the formulas: 

(3. 7) 

The wave with the phase velocity v~0 > is similar to 
an Alfv€m wave in a plasma. The electric field in 
it is polarized along the y axis. The wave with 
phase velocity v~0 > is the analog of the fast mag
netoacoustic wave, in which the electric field is 
directed transverse to k and H (the x axis). 

In magnetohydrodynamics, there is also a slow 
magnetoacoustic wave. In the limit of a strong 
magnetic field, when the Alfven velocity is large 
in comparison with the sound velocity, the phase 
velocity of this wave is of the order of the velocity 
of sound. Owing to the Fermi statistics of the cur
rent carriers in the metal, the Fermi velocity must 
play the role of the sound velocity here. Therefore, 
in the limiting case under consideration, I kz lvs 
« w, this wave is absent (the asymptotic conduc
tivity tensor (3.2) cannot be used to obtain the slow 
magnetoacoustic waves ) . 

In the special case k II y (I cos <I> I « w/ Q ) , the 
"renormalized" conductivity tensor ua(3 has the 
form 

The Alfven wave is absent in this case and the 
phase velocity of the fast magnetoacoustic wave, 
v0, is given by the formula 

v0 = Va {a1 + a~1 lai2 + (a13a2 + a 12a23)2 (a2a3 + a~3) - 1)} -'/•. 

(3.9) 

It follows from a comparison of (3.6) with (3.1) 
and (3.3) that the region of applicability of the so
lution (3.6) is determined by the conditions 

v,~w ~ Qs, 

Vs ~ V±· 

(3.10) 

(3.11) 

In ordinary metals (n"' 1022 em - 3 ) the condition 
Vs « va can be satisfied only in very strong mag
netic fields, of the order of several million oer-

V± = Va (2 det Aail(1• [Axx + A 1111 

-±: V(Axx -A 1111) 2 + 4A~11 ]'1•, (3.6) steds. In bismuth, n"' 1017 cm-3 and the condition 
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Vs < va is already satisfied at H > 1 k0e. 2> 

4. We now discuss the question of the possibil
ity of propagation of magnetohydrodynamic waves 
in metals with n1 = n2 in the case of comparatively 
small magnetic fields, in which the following con
ditions are satisfied: 

Va ~ Vs, (4.1) 

Magnetoacoustic waves in a plasma have the follow
ing spectrum for v a « w 0 ( w 0 is the sound veloc
ity): w+ = kw0; w_ = kva, where the plus sign de
notes the fast wave and the minus the slow one. 

Inasmuch as the role of the sound velocity in a 
degenerate electron-hole plasma of a metal is 
played by the Fermi velocity, it is evident that the 
fast magnetoacoustic wave does not satisfy the 
conditions (4.1) (for this wave, w ~ kv ). There
fore, only the Alfven and the slow magnetoacoustic 
waves can be obtained by means of the asymptotic 
expression for aa{3 in the case (4.1). 

The asymptotic expression for the "electron" 
part of the tensor aa{3 in the case (4.1) has the 
form (2.4). The expression for the hole part of 
aa{3 can be obtained from (2.4) by replacement of 
the electron characteristics by the "hole" ones. 
Inasmuch as the nondiagonal elements of the "elec
tron" and "hole" parts differ only in sign, then the 
total tensor a a{3 is seen to be diagonal in the ap
proximation under consideration. We emphasize 
that the equating to zero (smallness) of all the 
nondiagonal elements of a a{3 is a consequence of 
the compensation condition n1 = n2 and the strong 
spatial dispersion I kz lvs » w. The conclusion 
that the tensor a a{3 is diagonal in the case (4.1) 
is valid also for an arbitrary law of dispersion of 
the carriers, if the magnetic field is directed along 
the axis of symmetry of the crystal. 

Because the diagonal character of the conduc
tivity tensor and the condition (1.3) k • j = 0, the 
z component of the electric field in the Alfven 
wave is negligibly small: I Ez /Ey I "' I ayy /azz I 
« 1. Therefore the spectrum of this wave is de
termined by the quantity u1111 = ayy cos-2 <I> and 
has the form 

(i) = I kz I Va - iv/2, v = (m1v1 + m2v2)/(m1 + m2). 

(4.2) 

The spectrum of the second wave is determined 
by the element <Txx the value of which is deter
mined by spatial dispersion for <I> "' 1. The wave 
vector in this wave is imaginary, which leads to a 

2)Evidently the linear increase in the surface impedance 
of bismuth in a magnetic field H > 3 kOe, observed by Aubrey 
and Chambers,[•] is connected with excitation of these waves. 

rapid damping of the excitations. The absolute 
value of the "phase velocity" has the order v~ /v. 
For <I>= 0, the Landau damping is absent and the 
spectrum of the slow magnetoacoustic wave is 
identical with the spectrum of the Alfven wave: 
w = kva. 

For strong anisotropy of the dispersion law of 
the carriers in metals, a situation is possible in 
which the maximal Fermi velocities of the differ
ent carriers in the direction of the magnetic field 
H are quite different: v1 » v2• In this case the 
spatial dispersion can be shown to be significant 
for one group of carriers and unimportant for the 
other: 

J kz I Vz ~ ro ~ I kz I V1 ~ Q 1• (4.3) 

We shall study this case in a simple model in 
which there are two groups of carriers of different 
sign (n1 = n2 = n) with quadratic and isotropic 
spectrum, and the mass of the "holes" is large 
in comparison with the mass of the "electrons": 
m 1 « m2• Of course, this model is not realized 
in existing metals; however, the qualitative con
clusions on the possibility of propagation of elec
tromagnetic waves and their dispersion law re
main valid, even for strong anisotropy of the real 
Fermi surface. 

The asymptotic character of the electron part 
of the conductivity tensor has the form (2.4) upon 
satisfaction of conditions (4.3) and (3.10). The 
asymptotic expression for the "hole" part of 
aa{3 differs from the statistical conductivity ten
sor in a strong magnetic field ( v2 « Q2 ) only in 
that v2 is replaced by v2 - iw. The hermitian part 
of the total conductivity tensor, which determines 
the damping of the excitations, is small in com
parison with the antihermitian part. Taking it into 
account that vtfQ1 = v2 /Q2 in the isotropic model 
we have assumed, the antihermitian part of the 
tensor a a{3 can be written in the form: 

(a) nee . . . (
-iw/Q•; 0; 

o12~ = H 0, - twjQ2, 

tg ID; 0; 

(4.4) 

where w2 = v1v2 /3. The Hall elements axy and 
ayx are equal to zero as a consequence of the com
pensation condition n1 = n2• 

If we do not consider angles <I> close to rr/2, 
then the "renormalized" two-dimensional tensor 
a a{3 is diagonal: 

(j - -l(i) 1- - 1- -- . c• [ ( w )2] [ ( w )2]-1 
xx - 4:rw2 cos2 ID kw kzw ' 

a 

(4.5) 

Because of the diagonal character of the tensor 
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a a{3• the dispersion equation (1. 7) divides into two 
equations: 

(a= x, 1']). (4.6) 

As above, the equation containing a1111 gives the 
Alfven wave with the spectrum (4.2). The equation 
with axx gives two magnetoacoustic waves with 
the phase velocities: 

w!k = w± = H (w2 + v~) ± [ ~ (w2 + v~)- w2 v~ cos2 1D J'f'}'i'. 
(4. 7) 

The dependences of the phase velocities of the 
magnetohydrodynamic waves on the magnetic field 
are given in Fig. 1. 

IJJ=W/k 

FIG. 1. Dependence of the phase velocities of magneto
hydrodynamic waves on the magnetic field: w+ is the velocity 
of the fast magnetoacoustic wave, w_ that of the slow mag
netoacoustic wave, and w3 that of the Alfven wave. 

It follows from Eq. (4. 7) that the quantity w 
plays the role of the sound velocity in an electron
hole plasma of a metal. However, in contrast with 
magnetohydrodynamics, the Alfven and magneto
acoustic waves in the model under consideration 
exist in the region of strong spatial dispersion 
w « I kz lv 1• In conclusion, we note that the con
ditions (4.3) can be rewritten in the form 

(4.8) 

5. Up to now, we have considered electromag
netic waves whose wavelength is large in compari
son with the dimensions of the electron orbits. We 
now study the problem of the possibility of propa
gation in a metal of electromagnetic excitations 
with wavelengths less than the Larmor radius: 
kR » 1. 

In this case the asymptotic character of the con
ductivity tensor aa{3 is such that the diagonal ele
ment of axx transverse to k and H is real and, in 
general, very large in magnitude. Here the nondi
agonal elements are small in comparison with axx, 

and large in comparison with ayy and azz· Weakly 
damped excitations obviously do not exist under 
these conditions. 

However, axx is an oscillating function of the 
magnetic field. The physical nature of these os
cillations is the same as in the case of ''geomet
ric" resonance for absorption of ultrasound in 
metals. [7] The fundamental contribution to axx 
is made by electrons moving in phase with the 
wave, for which the resonance condition is sat
isfied: 

(N = 0, ± 1, ± 2, ... ). (5.1) 

Here the contribution of electrons with different N 
depends primarily on the relation between the di
ameter of their orbit and the wavelength. If an odd 
number of half wavelengths is contained in the di
ameter of the orbit, then such electrons make a 
large contribution to axx· In the case of an even 
number of half wavelengths, the electrons do not 
make a contribution to axx· For values of I cos 4> I 
of the order of unity, the condition (5.1) is satisfied 
for different N and the different groups of elec
trons always include some that make a large con
tribution to axx. Therefore, the relative amplitude 
of the oscillations of axx is small in this case. 
For values of q, close to rr/2, 

JID - n/21 = cp < (kR.t 1 , (5.2) 

the condition (5.1) can be satisfied only for N = 0. 
In this case the oscillations of the geometric reso
nance are not small, [SJ and the value of axx can 
be close to zero, which leads to slowly damped 
spikes of the field in the volume of the metal. [4] 

It will be shown below that electromagnetic exci
tations with a discrete spectrum can exist in the 
metal for axx = 0. 

Small values of cp are of interest for another 
reason. The value of the element azz is propor
tional to sin - 2 cp. Therefore, for sufficiently small 
cp, the value of azz becomes large in comparison 
with axz, and the tensor a a{3 is diagonal. The 
imaginary part of the element is negative in this 
case. Therefore, excitations with a discontinuous 
spectrum exist in a metal in which the electric 
field is polarized along H. 

We investigate the asymptotic nature of the 
tensor a a{3 for large kR in the case 

(5.3) 

We first limit ourselves to the case of an iso
tropic quadratic spectrum of the electrons, inas
much as all the conclusions remain valid for arbi
trary form of the Fermi surface for closed trajec
tories. Direct computation shows that the "renor-
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malization" of the tensor a a{3• which arises upon 
elimination of the longitudinal field E t from Max
well's equations (1.1), leads only to a small cor
rection. Moreover, inasmuch as cp < ( kR) -i, one 
cannot distinguish between the coordinates xyz 
and X1J!;. 

By use of the inequalitie~ (5.3), the tensor con
ductivity (1.8) can be reduced to the following from 
in the case of a single group of carriers: 

1t 

~ 3 ne2 1 sin 6 d6 
CJ"~ =2m~ v+i(k2 vcos6- w) 

0 

( 
J~ (u) sin2 6; 

X - iJo (u) h (u) sin 6 cos 6; 

iJo (u) h (u) sin 6 cos 6 ) 

J~ (u) cos2 6 ' ,(5.4) 

where JN(u) is the Bessel function of order N; 
u = kR sin e. 

It is not difficult to obtain the expressions for 
D-x11 and '0-1111 by taking the asymptote of the corre
sponding Bessel functions and computing the inte
gral over e by the method of stationary phase. 
This gives 

3 ne2 v- iw 
CJ 1111 =2 m(k2 v)2 ~ 

3 ne2 cos (2kR - l't/4) 
Clnx =- Clxn = 2 lfil: m I kz I v (kR)'f, (5.5) 

The asymptotic value of '0-xx depends on the rel
ative rate of change of two rapidly changing func
tions 

Ji(kR sinS) H D (8) = [v + i (kzv cos8 -ffi}r1. 

For value of cos e = w/kzv, the function D( e) has 
a maximum, the width of which is A.e ~ ( kz l) -!. 

The characteristic interval of change in the func
tions is of the order of 1/kR. Therefore, in the 
case 

cp > v/Q, ffi;S;V (5.6) 

one can replace the function D(e) by 7rO(kzv cos e) 
and '0-xx takes the form 

~ 3 ne2 cos2 (kR-3n/4) (5 •7) 
CJ xx = m I kz I v kR 

The inequality (5.6) expresses the condition 
that the scatter of radii A.R of those electrons 
which give a fundamental contribution to axx is 
small in comparison with the length of the elec
tromagnetic wave. Actually, in the case (5.3), the 
fundamental contribution to axx comes from elec
trons close to the central cross section of the 
Fermi surface, for which 

The scatter of radii of these "effective" electrons 

A.R ~ R (A.pz IPF )2• Therefore, for kA.R 
:::::: ( v/Qcpkzl) « 1, all these electrons are under 
the same conditions relative to the wave. The 
most effective interaction with the electromag
netic field occurs on those parts of the orbit in 
which the electrons move along planes of equal 
phase of the wave A and B (Fig. 2). The phase 
difference at the two points A and B is deter
mined by the relation between the diameter of 
the electron orbit and the length of the electro
magnetic wave. Therefore the conductivity axx 
oscillates strongly for change in kR. 

FIG. 2 

It follows from (5. 7) that for the values kR = an 
= 1r ( n + %) the value of axx vanishes ( n is an in
teger). Here the hermitian part of the tensor '0-a{3 
is seen to be small in comparison with the anti
hermitian one, which accounts for the existence of 
excitations with discrete wave vectors and frequen
cies. The dispersion equation D = 0 (1. 7) in this 
case has the form 

1 - (4nwn/k~c2 )2a;11 (an)- i4nwnk~2c-2o1111 (an) = 0. (5.8) 

Substituting Eqs. (5.5) for D-x11 and '0-1111 with kR 
= an in Eq. (5.8), it is not difficult to obtain its 
solution with respect to w: 

ffin =~nv;v-2a~ [Qcp (nan/2)11
'- ivl. (5.9) 

The transverse part of the electric fields in these 
excitations is circularly polarized: E 11 = iEx, Et 
> E1J. 

The region of applicability of the solution (5.9) 
is limited by the conditions 

(5.10) 

which involve the inequalities (5.3) and (5.6). In the 
opposite limiting case, 

cp ~ v/Q (5.11) 

the nondiagonal elements of the tensor a a{3 are 
negligibly small and the dispersion equation (1. 7) 
splits into two equations of the form (4. 7). As a 
consequence of the realness of axx, a wave with 
polarization along the x axis cannot be propagated. 
The second equation yields if conditions (3.10) are 
satisfied a weakly damped wave with a discontinu
ous spectrum: 
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W = (2/a)'/, (kR)'1'1 kz IVa - iv/2. (5.12) 

The electric field in this wave is directed along 
the 17 axis. 

The region of applicability of (5.12) is deter
mined by the conditions (3.10), (5.11), and (5.3). 
Eliminating the wave vector k from (5.3) by 
means of (5.12), one can rewrite it in the form 

(5.13) 

THEORY OF HIGH-FREQUENCY SURF ACE IM
PEDANCE 

6. In the present section we investigate the res
onance excitation of weakly damped waves by an 
external electromagnetic field, and consider their 
effect on the high-frequency characteristics of 
metals. The fundamental quantity characterizing 
the high frequency properties of metals is the 
surface impedance tensor Z a{3 which connects 
the total current in the metal J with the tangential 
components of the field iS a on the surface: 

Zo:fl = ai£"' (0)/aJ fl = 4niwc-2ai8o:(O)/ai£~ (0). (6.1) 

The prime denotes the derivative with respect to 
the inward normal to the surface. 

To find Zaf3• it is necessary to solve Maxwell's 
equations: 

(a= x, 'I]). 

The t axis is directed along the inward normal to 
the surface, while the 1J axis coincides with the 
projection of the constant magnetic field H on the 
surface of the metal t = 0. It is convenient to 
solve Eq. (6.2) in the Fourier representation. Con
tinuing the vector of the electric field iS o: ( t) in 
even fashion in the region outside the metal, t < 0, 
we seek it in the form 

(6.3) 

Equations (6. 2) for the Fourier components E ( k) 
are algebraic 

changes are not essential (account of the electron 
collisions with the surface leads only to the ap
pearance in aa{3 and Za[3 of numerical factors 
of the order of unity (see, for example, [a]). 

After elimination of the longitudinal field E ~; 
from Eqs. (6.4), they take on the form 

Do:flEfl = :____ 2k-2 iS~ (0), (6.5) 

where Da{3 is determined by Eq. (1.4). 
Solution of Eqs. (6.5) with respect to E and its 

subsequent integration over k lead to the following 
expressions for electric field iS in the volume of 
the metal and for the impedance tensor 

00 

To:fl m = - ! ~ ~= D;;~ cos k~. (6.7) 
0 

where DO!p is the inverse of the tensor Daf3· 

In those cases in which the electric field of the 
wave in the metal is circularly polarized in the X1J 
plane, it is natural to introduce the surface imped
ance tensor for circularly polarized waves, along 
with the tensor Z a{3 of (6. 6). The elements of this 
tensor are determined by the formulas 

(6.8) 

and are connected with the elements of the tensor 
Z a{3 by the simple relations 

As was shown in Sec. 2, in the case (2.10), there 
are electromagnetic excitations in a metal with the 
quadratic spectrum (2.7). The transverse part of 
the electric field E in these waves is circularly 
polarized: E17 = iEx. Upon incidence on the surface 
of the metal of an external electromagnetic wave 
with frequency w, resonance excitation takes place 
with the natural oscillations (2. 7). Direct calcula
tion gives the following expressions for the ele
ments of the impedance tensor: 

Z_ = - iZ: = 4nc-1(w01 V w Q sin cp - i ~nwRc-1 cos2 cp), 

(6.10) 

where w0 = ( 47Tne2/m )112 is the plasma frequency. 
2 • 4rtiw 3 

k Eo:(k) + 2{8"' (0) =-----;;.-- ~ O'o:(l (k, w, H) Efl(k) (a = x, 'l'J), Thus the element Z_ is almost real, which cor-
fl=1 responds to the generation of a wave with polari

3 

~ crr,fl (k, w, H) Ell = 0, (6.4) 
fl=l 

where the wave vector k II t. We neglect changes 
in the conductivity operator as a consequence of 
collisions of the electrons with the surface of the 
metal. In all the cases considered below, these 

zation (-) in the interior of the metal. The imag
inary part of z_ for cp "' 7T/2 is brought about by 
the damping of this wave as a consequence of spa
tial dispersion. The wave with polarization ( + ), 

on the other hand, experiences total internal re
flection, as a consequence of which the element Z+, 
in particular, is imaginary. The penetration of the 
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electromagnetic wave into the metal for H perpen
dicular to the surface (cp = rr/2) was first inves
tigated by Konstantinov and Perel'. [i] 

In accord with Eqs. (6.10), Z± are proportional 
to the square root of the frequency of the wave and 
the magnetic field. The value of Z' is proportional 
to the frequency, and inversely proportional to the 
magnetic field. 

7. In Sec. 3, it was shown that in metals with 
different concentrations of electrons and "holes," 
there exist waves with a linear dispersion law (3.6) 
and elliptic polarizations upon satisfaction of the 
conditions (3.10) and (3.11). The relative damping 
of these excitations is of the order of v/w. The 
external electromagnetic wave with frequency w 
excites these natural oscillations in the metal. 

In the calculation of the impedance tensor Zaf3 

of (6.6), the factor 1/D in the integrand can be 
written in the form 

ijD = P(l/D') + nil'J (D'), (7.1) 

Here D = D' + iD"; the small quantity D""' D'v/w 
is neglected on the right hand side of (7 .1); the 
symbol P means that the integral over k is taken 
in the sense of the principal value. 

Substituting (7.1) in (6.6), it is not difficult to 
show that the principal value of the integral is 
equal to zero; therefore the tensor Zaf3 in the 
given approximation is real: 

4:tv~ 1 ( A~~+ V del A,.{J; Ax~ ) 

Za!l = c2 (v++ v_) det A,.fl A · A + v~ ' 
1jX' XX a{3 

(7 .2) 

where Aa{3 and v ± are determined by Eqs. (3.5) 
and (3.6). The imaginary part of the impedance 
tensor Zaf3 is determined by the damping of the 
electromagnetic waves as a consequence of the 
electron scattering and is smaller than (7 .2) by 
a factor w/v. 

It follows from (7 .2) that the reflected and the 
two transmitted waves in the metal are all ellip
tically polarized in the general case. The degree 
of ellipticity is determined by the nondiagonal ele
ments of the tensor Za{3· 

For a magnetic field parallel to the surface 
(cp « w/Q ), the fast magnetoacoustic wave is ex
cited in the metal with the spectrum (3.9). The 
surface impedance corresponding to this wave is 

(7 .3) 

The nondiagonal elements of the tensor Z a{3 are 
smaller than Zxx by the factor n; w. 

In the case of much weaker magnetic fields 
satisfying the conditions (4.1), the external field 

of frequency w excites an Alfven wave (4.2) in the 
metal. The corresponding surface impedance is 

Z~~ = 4nvac-2 sin <p (I - iv/2ro ). (7 .4) 

The nondiagonal elements of the impedance tensor 
are negligibly small in the given approximation, 
while the value of the element Zxx is determined 
by the transverse conductivity axx. For cp ~ rr/2, 
its value is chiefly determined by the spatial dis
persion (Landau damping), as a consequence of 
which the x component of the electric field is 
damped. 

It should be noted that the special features of 
the penetration of &x into the interior of the metal 
can depend materially on the character of the re
flection of the electrons from the surface. It can 
be shown that the surface conductivity plays the 
dominant role in this case, inasmuch as, by virtue 
of the conditions n1 = n2 and w « kvs, the non
diagonal elements of the volume conductivity ten
sor are extraordinarily small. This problem is 
very complicated and deserves special investiga
tion. 

Upon satisfaction of the conditions (4. 8) and 
(3.10), the external electromagnetic field excites 
all three magnetohydrodynamic waves in the 
metal. As a consequence of the diagonal charac
ter of aa{3 in the given case, the tensor Zaf3 is 
also diagonal. The impedance Z 1JTI is chiefly con
nected with the Alfven wave and has the form (7 .4). 
The value of the element Zxx is determined by the 
magnetoacoustic waves. The real part of the im
pedance Zxx is large in comparison with the imag
inary, and has the form 

_ 4nvava+wsincp ~ 4nva{sincp, va~ws~ncp 
Re Zxx- - 2- + ~-.- 1 v ?wsm m • 

c w+ w_ c ' a-?' .,- (7.5) 

The imaginary part of Zxx is connected with the 
damping of the magnetoacoustic waves which, for 
cp ~ Tr/2, is brought about by the spatial dispersion. 

The behavior of the electric fields in the mag
netoacoustic waves close to the surface of the 
metal is determined by the formula 

'ie~+) (0) 

'0~-) (0) 

w!- w2 sin 2cp w_ v { cos• cp, 

w sin•cp- w2_ w+ ~ w si~ (jl v~fw2 , 
va~wsincp 

v"?>wsincp· 

(7.6) 

Finally, for H II t ( cp = 1r I 2 ) , a single magneto
acoustic wave is propagated in the metal, both in 
the case (4.1) and in the case (4.8). The spectrum 
and the damping of this wave are identical with the 
spectrum and damping of the Alfven wave. There
fore, Zxx = z1111 (7 .4) in this case. 

8. We now investigate the excitation of electro-
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magnetic waves whose wavelength is small in com
parison with the dimensions of the electron orbits. 

If the values of w, H, and cp satisfy the inequal
ities (3.10), (5.11), and (5.13), then the external 
field excites a wave (5.10) in the metal, the elec
tric field in which is directed along the TJ axis. 
The component of the electric field t8x experi
ences spikes in the interior of the metal. [4] As 
a consequence of the smallness of the nondiagonal 
elements of O'af3 the impedance tensor Zaf3 is di
agonal. The element Zxx which corresponds to 
the component t8x was computed in the work of 
one of the authors. [4] The expression for the ele
ment ZTITJ' corresponding to a slowly damped wave, 
has the form 

').. = 2n (b~Rv rp2/w)'1', (8.1) 

where A is the length of the weakly damped wave 
in the metal and o0 = ( c2pF /61rne2w )113 is the pen
etration depth of the electromagnetic field for the 
anomalous skin effect and H = 0. The effective 
damping length of the wave is L,... Aw/v. 

We call attention to the possibility of the follow
ing effect. 3> In a plate whose thickness d is large 
in comparison with the wavelength A and small in 
comparison with the damping distance L, the wave 
vector is "quantized": kN = 1rN/d (N =integer). 
Resonant oscillations of the impedance should be 
observed upon a change in the magnetic field or 
frequency; these are brought about by the coinci
dence of the wave vector k with one the eigen
values kN. Here a standing electromagnetic wave 
arises in the plate. 

This effect is possible in principle in all cases 
in which there are weakly damped electromagnetic 
excitations in the metal. By this means, Libchaber 
and Veilex [!OJ discovered spiral waves in crystals 
of InSb, similar to those considered in Sec. 2. The 
experiments were carried out in a magnetic field 
perpendicular to the surface ( k II H) in the ab
sence of spatial dispersion. 

If the magnetic field H satisfies the conditions 
(5.10), then oscillations with the discrete spectrum 
(5.9) can propagate in metals with one group of 
conduction electrons. When the frequency of the 
external field coincides with that of one of the 
natural frequencies Wn (5.9), a weakly damped 
electromagnetic wave is excited in the metal and 
the impedance has a resonance maximum. 

We first consider the region of nonresonant 

3 lBass, Blank, and Kaganov,[•] made a detailed analysis 
of this effect for the case of low frequency spiral waves 
(n, 4 n2) in which the spatial and tempera! dispersions are 
unimportant, kl « 1, w « v. 

values of the magnetic field, when neither of the 
frequencies wn coincides with the frequency of 
the external field w. As was noted above, the 
conductivity O'xx is an oscillating function of kR 
and decreases rapidly in a narrow range of values 
of kR close to an. However, in spite of this fact, 
the fundamental contribution to the field and to the 
impedance in the nonresonant region is made by 
those regions of values of k where axx is large 
in comparison with uxTJ and uTJTJ" Therefore the 
quantity D in this case can be represented ap
proximately in the form 

D = (1 - i4nw'G.u!k2c2) (1 - i4rrwa!~fk2c2 Gxx). (8.2) 

Substituting 0' a{3 from (5. 5) and (5. 7) and D 
from (8.2) in Eqs. (6.6) and (6.7), and carrying out 
the integration over k, one can find the electric 
field in the metal 0 ( t) and the tensor Z a{3 in 
the case under consideration. 

The distribution of the x component of the field 
& in the interior of the metal, and the correspond
ing impedance Zxx, were investigated earlier. [4] 

In accord with [4], &x( t) is a periodic function 
of t with period 2R. At distances which are mul
tiples of the maximum diameter of the electron 
orbit, the field &x has narrow spikes. In the in
tervals between the spikes the field is practically 
absent. The height of the spikes decreases com
paratively slowly with increase in their number. 

One can also study the function &TJ( t) by a 
method entirely analogous to that used in [4] in 
the investigation of &x. Without carrying out the 
complete analysis here, we only show that the com
ponent &TJ also has narrow, high spikes for t 
= 2NR (N = 0, 1, 2, ... ). The height of the spikes 
falls off with number as N-3/2• The schematic 
character of the field distribution & TJ in the vol
ume of the metal is shown in Fig. 3. 

Far from resonance, the elements of the ten
sor of the impedance Zaf3 have the form 

(8.3) 

where 0 = ( o~Rcp )114 • 

Resonance maxima, corresponding to coinci
dence of w with one of the natural frequencies 
wn, are superimposed on this comparatively 
smooth dependence of the elements Z a{3 on the 
magnetic field. For a fixed frequency of the ex
ternal field, the resonance can take place for 
values of the cyclotron frequency 
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. 5 t;f2fl} tr .. 0 r 

FIG. 3 Schematic diagram of the field distribution in a 
metal. 

Q Q - Q ( 1 )-'/, = n = 0 n +4 ' (8.4) 

where 

(8.5) 

is the maximal cyclotron frequency for which res
onance occurs. 

An electromagnetic wave is excited in the metal 
upon satisfaction of the resonance condition (8.4). 
For obtaining this resonance part of the electric 
field, one must replace 1/D in (6.6), (6.7) by 

(8.6) 

The principal value of the integral of 1/D is small 
for large {;. Therefore, 

[gres(~) = _ ~ cos knl;, ( i 1
1
.) /8' (0), (8. 7) 

9 k 11 -1 

kn = :n: (n + ~) Qnfv = :n:Q0v-1 (n + +r'1'. (8.8) 

An elementary calculation of the resonance part 
of the impedance gives the following result: 

•zres ~ ~~" _2 ( + _.!...)'', (1- 3i; - i + O.!l) 
Ll a.,~ ~ 3 UnC n 4 i- 0.9; 1 - 3i ' (8.9) 

where on is the value of o for a resonance value 
of the magnetic field H = Hn; on~ (n + %) 318• 

Inasmuch as the resonance part of the field 
(8. 7) is circularly polarized, it is useful to intro
duce the tensor ~zres for the circularly polar
ized waves (6.8) and (6.9): 
~zres~.- . .l2:n: o c-2 (n _f _ _1_)'.·, + ,...__... l 3 ffi n 1 4 , ~Z~es == 0, 

(8.10) 

The character of the dependence of the reso
nance part of the impedance as a function of the 
inverse magnetic field is shown in Fig. 4. The 
height of the resonance maxima increases upon 
decrease in H as H- 113 ~ n112• This increase is 
brought about by the fact that the wavelength of 
the characteristic electromagnetic oscillations 
increases for an increase in H. The resonance 

<~zres 

FIG. 4. Dependence of the resonant part of the impedance 
on the reciprocal of the magnetic field. 

maxima are not equidistant in the reciprocal of 
the field ( H~ 1 ~ n 312 ) • The width of the maxima 
is determined by the damping of the electromag
netic excitations: ( ~H/H )n ~ n. 

This new resonance effect is significantly dif
ferent from the well known cyclotron resonance 
in a metal. [HJ The cyclotron resonance takes 
place when the frequency of the external field is 
a multiple of the cyclotron frequency. Here a 
sharp increase takes place in the high-frequency 
conductivity, which causes a resonance decrease 
in the impedance of the metal. In contrast to the 
cyclotron resonance, the resonance under consid
eration is possible for much lower frequencies 
(even for w < v ). The physical nature of this 
effect consists in the resonance excitation of the 
characteristic, weakly damped electromagnetic 
oscillations with a discrete spectrum. Here the 
metal becomes relatively transparent for the 
electromagnetic field, and this brings about an 
increase in the impedance. 

RESONANCE EXCITATION OF ELECTROMAG
NETIC WAVES BY ULTRASOUND IN METALS 

9. The interaction of the conduction electrons 
with acoustic lattice vibrations leads to the ap
pearance of a variable electromagnetic field in 
the metal. Therefore, we can use ultrasound to 
excite weakly damped electromagnetic waves. 
This effect is obviously a resonant one, in which 
the phase velocities of the electromagnetic and 
acoustic oscillations coincide. 

For the determination of the absorption coeffi
cient of the sound by the conduction electrons in 
the metal, we write down the kinetic equation for 
the electron distribution function F: 

dFjdt + J (F)= 0, (9.1) 

where d/dt is the total time derivative and I is 
the collision operator. 

The dispersion law for the electrons is given 
in the non-inertial reference frame K', connected 
with the lattice moving under the action of the 
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sound wave. The coordinates of the electron in 
the K' system are connected with the coordinates 
in the laboratory system K by the relation 

r' = r- u (r, t), (9.2) 

where u(r, t) is the displacement vector in the 
sound wave. The energy of the electron in the K' 
system has the form 

e'(P', r', t) = e0 {P' -ec-1 A' (r', t)} + A1kUtk -m0v'u, 
(9.3) 

Here E0(p) is the dispersion law of the electron in 
the absence of external fields; P' is the general
ized momentum; v' = oE' loP' is the velocity of the 
electron, m 0 the mass of the free electron, Uik 
the deformation tensor, Aik the deformation po
tential tensor, which satisfies the condition ( Aik) 
= 0 (the angle brackets indicate averaging over 
the Fermi surface). Repetition of the vector in
dices i and k indicates summation from 1 to 3; 
the dot indicates the partial time derivative. The 
vector potential of the electromagnetic field 
A' ( r', t) is connected with the vector potential 
A ( r, t ) in the K system by the relation 

A; (r', t) = A1 (r, t) +A" (r, t) ouk/ox1• (9.4) 

The scalar potential ((J' in the K' system is set 
equal to zero. Therefore, the potential ((J in the 
K system is equal to u•A/c. The component 
AikUik describes the change in the energy of the 
electron as the result of inhomogeneous deforma
tion of the crystal, and m 0v' • u is brought about 
by the Stewart-Tolman effect. 

The energy of the electron E' in the K' system 
appears in the law of conservation of energy in the 
collision integral. Therefore the collision integral 
is made to vanish by the distribution function 
f0(E'-Jl): 

l Uo (e' - f-t)} = 0. (9.5) 

Solution of the kinetic equation (9.1) will be sought 
in the form 

F (P', r', t) = fo (e' -11) +X (P', r', t) iJfofiJf-t. (9.6) 

From the condition of electrical quasi-neutral
ity, it follows that (X)= 0. The function x satis
fies in the approximation linear in u the equation 

(d!dt + v) X :== oxfot + v' Vx + Q ox/or+ vx = g, (9. 7) 

where 

g = de'/dt = A 1kuik + eE'v' -m0v'u, (9.8) 

E' = E + G (G = c-1 [u HI). (9.9)* 

The component G on the right hand side of (9. 9) 
represents the induction field in the system of co
ordinates moving with the lattice. The appearance 
of the induction field G and the ultrasonic absorp
tion associated with it is due to the fact that the 
conductor deformed by the sound wave intersects 
the lines of force of the constant magnetic field. 
V. Gurevich[12 ] was the first to point outthe pos
sibility of induction absorption of ultrasound in 
metals. 

The density of the electrical current is ex
pressed in terms of the function x in the follow
ing way: 

• 2e \ d3P, 'F (P' , t) _ 2e \ da 8fo ( t) J = fi3 J v , r , - Ji3 J p 8ft vx p, r, . 
(9.10) 

The electric field E can be found from Maxwell's 
equations (1.1) with the total current (9.10) (the 
current j does not change in the transition from 
the K' system to the laboratory system). 

The mean density of sound energy Q absorbed 
by the electrons per unit time is, from [13]: 

2 \ . Q = fi3 Jd3p'F (p', r', t) e' (p', r', t), (9.11) 

where the prime denotes averaging with respect to 
time. For a plane monochromatic sound wave u 
"' exp i ( k • r - wt ) , 

(9 .12) 

Here * denotes the complex conjugate. It follows 
from (9.12) that the quantity Q is identical with 
the dissipation function. 

We now introduce the functions XA and XE• 
which satisfy the equation (9. 7) with gA = Aikuik 
and gE = eE' • v, respectively. Then, neglecting 
the term - m 0vii, associated with the Stewart
Tolman effect, [14] we write (9.12) in the form 

where 
.,. d3p 8fo * 

QA = Re ,; h3"" a;1 gAx."" 

is the purely deformation absorption, 

Q 1 R E'' ' £= 2 ecrafl aEfl 

is the Joule heat and 

Q _ Re (' d3p 8fo ( , , 
I - J fi31J/t gEXA + gAX£) 

(9.13) 

(9.14) 

(9 .15) 

(9.16) 

the electric field E' = - c-1 oA' (r', t )/at is con- is the interference term. The latter can be ex-
nected with the electric field E = - c-1 [ oA(r, t )/at 
+ V'(A • ti )] by the relation *[U.H] = U. x H. 
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pressed in terms of the deformation current 

• _ 2e \ d3 atn X 
]A - fl" J /) (J[.l- V A 

and the electric field E': 

(9.17) 

QI =+Re E'* lh (k, w, H)+ b. (-k, -w, - H)l. 
(9.18) 

10. We now consider absorption of ultrasound in 
metals in a strong magnetic field, in which the wave 
vector of the sound k satisfies the conditions (2.1) 
and (2.2). In this case, the change in the energy of 
the electron under the action of the induction elec
tric field eG • v is 1/kR times larger than the en
ergy change as the result of the deformation inter
action Aikllik· Therefore, in the determination of 
the electric fields, one can neglect the deformation 
current JA and write the current density j in the 
form 

(10.1) 

The solution of Maxwell's equations (1.1) with 
the external induction current jext = aG has the 
form 

E~ = D~~ G~ (a, ~ = x, 'lJ), 

E~ '= - (a~xE~ + a~"E~,)Iar..r.· 
(10.2) 

(10.3) 

By using the circularly polarized fields E~ and G± 
from (6.8), we can rewrite the expression (10.2) in 
the form 

E~ = G± [1 ± 4:rtwk- 2c-2cr,,x- i2:rtwk-2c-2 (axx + aM,)]-1. 

(10.4) 

When the phase velocities of the acoustic and 
electromagnetic waves (2. 7) are identical, reso
nance takes place for the wave E~. For the other 
polarization ( +) there is no resonance. Therefore, 
only circular polarization makes sense for trans
verse sound. For a longitudinal wave, the reso
nance induction absorption takes place only when 
k and H are not parallel. 

In the vicinity of resonance, I E ~ I » I G _ I and 
the Joule losses QE play the dominant role in the 
sound absorption: 

Q Qmax 

- = 1 + (w'- w)2/w"" ' 

where w' and w" are determined by the formula 
(2.7). The resonance condition has the form 

(10. 6) 

where s is the speed of sound. 
Resonance induction sound absorption depends 

primarily on the angle between k and H. Qmax 

is largest for transverse sound vibrations at small 
ci> ( c1> 2 ~ 1/kl ). In the given case, kR « 1 « k2l, 
the deformation absorption is QA - Q0 I cos ci> 1-1 

( Q0 is the absorption at H = 0 [14]) and does not 
play a role close to resonance: 

QA/ Q max ,_., (kR)2 [ 1/kl + f6 :rt sin2 CD J < 1. (10. 7) 

As is well known, the ultrasound absorption co
efficient r is determined by the ratio of the ab
sorbed energy Q to the energy flux W. The latter 
is made up of the acoustic energy flux and the en
ergy flux of the electromagnetic field. As a result 
of the sharp increase in the field E' close to res
onance, the flux of electromagnetic energy can be 
larger than the flux of acoustic energy. Here, an 
electromagnetic wave is propagated in the metal 
while the sound wave is absent. 

11. We now turn to resonance absorption of 
ultrasound in the case of large kR in the region 
of angles cp satisfying the inequalities (5.3). In 
finding the electric field E, one can neglect the 
induction current aG, in comparison with the de
formation current jA- It is seen that the "renor
malization" of the deformation current, which 
arises in the elimination of the longitudinal field 
Et, is unimportant. In the case (5.11), where the 
excitations (5.12) existing in the metal are polar
ized along the axis, the resonant part of the field 
E 71 is determined by the component of the defor
mation current jA7)· Moreover, one can show that 
this same component of the current is responsible 
for the resonance excitation of electromagnetic 
waves with the discrete spectrum (5.9) (at reso
nance, jAx = 0 ). 

The asymptotic value of jA7J (9.17) in the case 
(5.3), and for a square law of dispersion with 
Aik ( p) = const, has the form 

ne2 

d=-. 
mv 

(11.1) 

In the case of closed trajectories, the dispersion 
law and the arbitrary dependence of Aik on p do 
not change the character of the asymptotic value 
of jA· 

The deformation absorption QA was studied 
previously [SJ for large values of kR. Here we 
shall compute the Joule losses QE which are 
brought about by excitation of weakly damped 
electromagnetic waves. 

The resonance excitation of quasiparticles with 
a discrete spectrum takes place when the frequency 
w and the wave vector k of ultrasound coincide 
with the frequency wn and wave vector an /R of 
the electromagnetic wave (5.9). The condition for 
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equality of the wave vectors has the form 

roR./ s = (J,n• (11.2) 

Substituting the value of the magnetic field H found 
from (11.2) in (5.9), we can represent the condition 
for identity of the frequencies in the form 

_ = (~)'/, _!_ ( SWo )2 -'/, 
(jl - (jln - 2:rt3 V CW (J,n • (11.3) 

Thus at a fixed sound frequency w the resonance 
takes place for completely determined values of 
the angle between k and H (the resonance angle). 
Here the value of the magnetic field must satisfy 
the condition (11.2). 

In the vicinity of resonance, uxx = 0, and the 
electric field is 

(11.4) 

The absorption coefficient of the ultrasound has 
the form 

r£ =:= ~ = f mar [I+ (___; s•w~4 )
2 

( 1- ____(£_) 
2 
]-

1
, (11.5) 

n c2wvcr~ !!'n 1 

r max = I h~ [2/2a~~ w ~ c,. I kz I I. (11. 6) 

The coefficient of the purely deformation absorp
tion r A in this case is an oscillatory function of 
the magnetic field. C8J For resonance, cp = cpn the 
single maximum rE coincides with one of the 
maxima r A• and the resonance peak r E is sig
nificantly narrower than the maxima r A· while 
the value of r max is kzl times larger than the 
value of r A· 

Resonance excitation of an electromagnetic 
wave (5.9) by the ultrasound is possible only upon 
satisfaction of the inequalities (5.10). Eliminating 
the magnetic field H and the angle cp from them 
by means of the resonance conditions (11.2) and 
(11.3), we write (5.10) in the form 

(11. 7) 

Here the limitation a~« (v/va)2 is a consequence 
of the first of the inequalities (11.7). Moreover, 
for resonance in this case it is necessary that the 
Fermi surface have only one central cross section 
for a given direction of the magnetic field (the 
necessary condition for causing axx to vanish). 

Analysis of the resonance conditions (11.2) and 
(11.3) and the limitations following from (11. 7) 
show that the resonance must be observed at fre-

quencies of the ultrasound w ~ v ~ 109 sec-1, mag
netic field H ~ 103-104 Oe, and angles cp of the 
order of a degree. For values of the angle cp sat
isfying the conditions (5.11) and (5.13), resonance 
excitation of electromagnetic waves with a con
tinuous spectrum (5.12) is possible. Here the 
ultrasonic frequency and the magnetic field must 
satisfy the inequalities v « w « Q. 

The condition for resonance is obtained from 
(5.12) by substitution of w/s for k, and has the 
form 

(11. 8) 

The ultrasound absorption coefficient in the 
neighborhood of resonance is 

r£ = r max [1 + (w/v)2 (l - Q/Qres)2 J-I, 

where rmax is given by Eq. (11.6). 
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