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The method of spiral amplitudes developed by Wick and Jacob becomes very lucid when 
formulated in a relativistic velocity space having a Lobachevsky metric. In this space the 
relativistic properties of the spiral amplitudes become obvious. As an example we treat 
the problem of transforming spin amplitudes from one channel of a binary reaction to 
another (the crossing transformation of field theory). 

1. INTRODUCTION 

THE formulas of relativistic kinematics simplify 
considerably if reactions are described in a three­
dimensional velocity space whose geometry is 
isomorphic to the Lobachevsky geometry.Ct, 2J 
Such a description is especially convenient for 
studying reactions involving particles with spin. 
The simplicity of the method is related to the fact 
that both velocities and spins are kept as three­
dimensional vectors (and not 4-vectors, as in the 
usual treatments) and that relativistic effects only 
cause a change in the metric of the velocity space, 
i.e., the law of composition of vectors. 

A convenient representation, which has become 
widely used lately, is the picture of Wick and 
Jacob, [3•4] in which the spin of the particle is 
characterized by its projection along the particle 
momentum in its rest frame. At first glance such 
a definition does not seem to be covariant, since 
the scalar product of the 4-spin and 4-momentum 
is zero by definition, while the projection of the 
vector part of the spin on the 3-momentum is not 
an invariant. In order to make the covariance 
manifest it is more convenient to define the spiral­
ity as the projection of the spin 3-vector on the 
direction of the relative velocity of the particle 
and the system of the center of inertia (we call 
this the s-system). Obviously such a projection is 
a relativistic scalar. We note that such a quanti­
zation procedure can be described in terms of a 
bundle of rays emerging from some selected point 
in velocity space (the point 1 in our case). The 
usual quantization method can be described as 
quantization in terms of a parallel beam of rays 
(a beam passing through the point at infinity in 
non-relativistic velocity space). It is obvious that 
giving a point in velocity space and a beam of rays 

corresponding to it completely describes the quan­
tization, and is actually covariant (since the defi­
nition of the beam does not use the theorem of 
parallels and, so to speak, is part of absolute 
geometry). A more detailed discussion of this 
question will be given in another paper. 

Here we shall discuss the transition from the 
system of the center of inertia of the colliding 
particles - the s-system, to the system of the 
center of inertia of the cross reaction- the t-sys­
tem (cf. below). This transformation is easily 
found by using kinematic diagrams. 

2. KINEMATIC DIAGRAMS AND NOTATION 

We consider a reaction of the type (s-channel) 

(2.1) 

(the numbers label the particles). The conserva­
tion law in the s-channel has the form 

(2.2) 

( p1 is the 4-momentum with components Et and 
Pt• etc). 

The velocities of the particles are described by 
points on the upper sheet of a three-dimensional 
hyperboloidal surface.n If we take the plane of the 

1lThe points on the lower sheet of the hyperboloid corres­
pond to antiparticles, which are gotten from the particles by 
the transformation p = -p (change in sign of all components 
of the 4-momentum). The scalar product of the momenta of 
particle and antiparticle is obviously pp = -m2 • Since the 
hyperbolic cosine of the distance between the points p.fm 
and p2/m in Lobachevsky space is equal to the scalar product 
of the two vectors, the arc between the points corresponding 
to particle and antiparticle is cosh"'(-1) = i77. Thus the tran­
sition from particle to antiparticle is described by a hyper­
bolic rotation through angle i 77. 
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FIG. 1. 

paper as a map of this surface, the particle veloci~ 
ties can be marked by points 1 ... 4 on the map 
(cf. Fig. 1). These points can be pictured as the 
ends of vectors drawn from some origin whose 
exact location is of no interest. The fact that our 
arguments are independent of the coordinate 
origin enables us to treat all possible coordinate 
systems on one drawing, just as the geographic 
hemisphere shows all coordinate origins which 
one can choose on the earth. Thus the transition 
from one coordinate system to another is de­
scribed on our map of velocity space as the 
change from projection along one direction to pro­
jection along another. 

Consider Fig. 1. The point of intersection of 
the diagonals (12) and (34) is the velocity of the 
system of the center of inertia. It corresponds to 
a 4-vector with components 

(2.3) 

where in the usual notation 

s = {pl + P2)2 = (el + e2)2 - (PI+ P2)2. (2.4) 

In field theory one usually also introduces the two 
quantities 

where 

u = {pl- Pa)2 = (P2- P4)2, 

t = {pl- P4)2 = (p2- Pa)2, 

s + t + u = m~ + m; + m; + m!. 

(2.5) 

(2.6) 

(2.7) 

We can also associate velocity 4-vectors with these 
quantities: 

(e1 - eaVJit, (PI - Pa)!Vt, 
(e1 - e4)/Yu, (PI - P4)/J/U. 

(2.8) 

(2.9) 

The vectors (2.8) and (2.9) are frequently space­
like. Then the points t and u corresponding to 
them in velocity space may be imaginary, i.e., 
they may lie on the hypersurface of the other hy­
perboloid u~ - u2 = -1. Such points are also 
treated in the Lobachevsky geometry, and we 
shall return to them later. 

Let us determine the sides and diagonals of the 
kinematic quadrilateral (1423). Using the fact that 

(2.10)* 

*ch ~cosh. 

we get, by expanding the parentheses in (2 .4), (2 .5) 
and (2.6); 

ch (14) = (2m1m4t 1 (t- m~- m!), 

ch (23) = (2m2m3f 1 (t- m;- mi), 
ch (42) = (2m4m2t 1 (u - m! - m;), 

ch (31) = (2m3m1f 1 (u- m;- mi), 

ch (1 2) = (2m1m2t 1 (s - m~ - m;), 

ch (34) = (2m3m4f1 (s- mi -m!). (2.11) 

Applying the law of cosines, we can determine 
all the angles in the diagram. For example, for 
the angle (213) we find 

(213) _ ch(3l)+ch(12)-ch(23) (2.12)* 
cos - sh(3l)sh(12) · 

After this has been done, Fig. 1 determines all 
the directions which are usually chosen as the co­
ordinate axes. Consider, for example, nucleon­
nucleon scattering. Then in the center-of-mass 
system one usually chooses the axes Vt + vi and 
v1 - vi, where v1 and v1 are the 3-velocities of 
one of the nucleons before and after the collision. 
In the kinematic diagram there correspond to 
these directions two perpendicular lines bisecting 
the angles formed by the diagonals at the point s. 

3. TRANSFORMATION OF SPIRAL AMPLITUDES 

In the s system the transition matrix element 
for a particle with spin is given by (formula 1 of 
[3]) 

<E'J'M'"Aa"A41 S I EJ M'A1'A2) 

= 6 (E -E') 6JJ,6MM'<"A3"A4jSJ (E)I'Al'A2), (3.1) 

where the spiral amplitude sJ (where J is the 
orbital angular momentum) is related to the ampli­
tude for spins quantized along the direction of the 
incident beam (quantum numbers /Jt> iJ2• p~, /J4): 

<'Aa'A41 SJ I A1A2) = ~ <f.l:if-141 SJ 1- f.11f.12) 
!J-3!-14 

x D~,1-, (-cp, it, cp) D~',1-, (-cp, :rt -it, cp). ( 3.2) 

Formula (3.2) has a simple interpretation. 
The quantum numbers .A1, ••• determine the pro­
jections of the spins along the four segments join­
ing the point s of Fig. 1 to the vertices of the 
quadrilateral. In the same Figure, the direction 
of the incident beam is from s to particle 2. When 
we transform to spiral amplitudes, the sign of the 
projection for particle 1 changes, since the veloc­
ity of particle 1 is directed from s to 1. For par­
ticles 3 and 4 in the final state we can turn the 

*sh ~sinh. 
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axes of quantization from ( s2) to (13) for particle 
3, and from ( s2) to ( s4) for particle 4. The 
angles of rotation are obviously equal to 'the scat­
tering angles J and n-J respectively. The two 
factors D in (3.2) correspond to the rotations of 
the axis of quantization through these angles. 

The angle cp can be taken equal to zero since 
all the directions lie in a plane. The spiral quanti­
zation is usually described in the s-system. One 
can also carry over the quantization axes to any 
other system; as shown earlier, [1] to do this re­
quires one to carry out a parallel displacement 
between the corresponding points in velocity space. 
Thus any transformation of axes will consist of a 
parallel displacement to some other point and an 
ordinary rotation about the new point. 

For quantization along the relative velocity the 
projection obviously remains unchanged if we move 
the spin along the direction of the velocity. Thus 
the spirality .A1 of particle 1 will be the same in 
the s system or in the rest systems of particle 
1 or 2, or in any other system located along the 
non-Euclidean line passing through points 1 and 2. 

Nowhere in our considerations did we use the 
fact that the particles move with a velocity less 
than that of light. Since on the projective Lobachev­
sky plane, the point at infinity is not distinguished, 
all our arguments apply to the photon or neutrino 
also. For these the angle at the corresponding 
vertex will simply go to zero. The spin of the 
photon (its polarization) is also quantized along 
the mutual velocity of the photon and the coordinate 
system. Because the angle at the vertex is zero, 
the axis of quantization does not change when we 
go over to another system. 

Thus we see that the spins can be treated in­
dependently of the coordinate parts of the wave 
functions; they can be abstracted from the parti­
cles, just as in nonrelativistic problems. The only 
difference in our case is that the rotation angles 
are computed using formulas of hyperbolic geom­
etry. In particular we see from this that the 
spirality representation is not distinguished in any 
way in its relativistic properties as compared to 
other quantizations which can be gotten by using 
the kinematic diagram of Fig. 1. 

4. s-AND t-SYSTEMS. CROSSING 
TRANSFORMATION 

Let us consider a somewhat more complicated 
transformation-the transformation to the cross 
reaction. The cross reaction is the reaction ob­
tained from (2.1) by interchanging particles 2 and 
3 together with the corresponding replacement of 

particle by antiparticle. Thus, for example, if the 
reaction (2.1) is 

the cross reaction will be 

The problem arises: how are the spiral ampli­
tudes for the cross reaction related to those for 
the original reaction? 

To answer this question we construct the 
center-of-mass system of the cross reaction, the 
t-system. Since the conservations laws for the 
cross reaction have the form 

(4.1) 

this system will have the four-momentum p1 - p4• 

We have already mentioned that this vector may 
turn out to be spacelike, so that t = (p1 - p4 ) 2 < 1, 
as for example for the elastic scattering of iden­
tical particles. Therefore the velocity of the t­
system may be greater than the velocity of light. 
But this causes no difficulties, since we are in­
terested not in the point t itself but only in the 
direction toward it; the direction toward the point 
which is "at infinity" in the Lobachevsky plane 
corresponds to diverging lines. 

After this remark it is easy to understand that 
just as the s-system is at the intersection of the 
lines joining the pairs of points (1, 2) and (3,4), 
similarly the t-system is at the intersection (real 
or imaginary) of the lines drawn through the pairs 
of points (1, 4) and (2, 3). 

The intersection of the lines (1, 4) and (2, 3) 
should be regarded as their "outer" intersection. 
This means that these lines are regarded as arcs 
on a circle of infinite radius and, for example, 
one of the interesting segments goes from point 4 
to infinity and then comes back "through infinity" 
to point 1. In the same way the other segment 
goes through the points ( 2, 00 , 3) (cf. Fig. 2). 

The transition to the cross reaction is usually 
described by tne transformation 

from t 

FIG. 2 
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FIG. 3 

S-+-t, t-+-S. (4.2) 

Under such a transformation, in Fig. 1 the point t 
moves inside the quadrilateral and the point s 
moves out of it, so that their roles are inter­
changed. 

After this it is clear how one should change to 
new spiral amplitudes. To do this we bring the 
spin of particle 1 to point 1 and turn the axis of 
quantization into the direction (41), i.e., we turn 
it through the angle (412) (cf. Fig. 3). Using for­
mula (2.8), the angle of rotation can be expressed 
in terms of t and s. We then carry out the trans­
formation (4.2). It is clear that then the new am­
plitude is transformed into the normal spiral am­
plitude for the cross reaction. Particle 2 was 
quantized along the direction from s to 2. In 
order for it to be along the direction from t to 2, 
we must turn it through the angle 7r-(321). Similar 
rotations must also be carried out for the other 
two particles, displacing them into their systems 
and turning them. Then all the particles will be 
quantized along the direction from t to the rest 
frames of the particles. 

Thus the transition from the s-channel to the 
t-channel can be formulated as follows: if the 

spinless amplitude for the cross reaction is gotten 
from the initial reaction by the transformation 

scr (s, t) = s (- t, - s), 

the amplitude including spins transforms as 
follows: 

(4.3) 

(J ... 3').,2 I scr I ').,1/.,4) = .2; D~,}..; (0, ttl, 0) D:!;,A; (0, ttz, 0) 
),.'A').' A, 

1 2 :a 4 

(4.4) 

The angles J are determined from Fig. 1: 

cos ttl= -cos (412), cos tt2 =-cos (123), 

cos it3 = -cos (432), cos tt4 = -cos (143), 

( b) _ ch (be) +ch(ab)- ch (ac) 
cos a c - sh (be) sh (ab) · (4.5) 

Formulas (4.4) and (4.5) solve the problem. 
In conclusion I should like to thank A. Popov for 

helpful discussions of the manuscript. 
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