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Simple expressions are obtained for the mean square of the number of particles in electron
photon showers produced by high energy f.L mesons. The pattern of the fluctuations can be 
studied with these formulas. 

As is well known, information on muon generation 
and interaction with matter can be gained from the 
muon spectrum. At the present time the spectrum 
of muons with energy "'1012 eV is studied in ex
periments on bursts in ionization chambers [1, 2]. 

It has been shownC3J that owing to fluctuations in 
the number of particles in an electron-photon 
shower produced by a muon and giving rise to 
bursts in an ionization chamber, the muon spec
trum determined from the burst spectrum is not 
unique. 

The fluctuations have been studied hitherto by 
using some model (Poisson, Furry, etc). The 
burst spectra determined on the basis of these 
models differ greatly from one another [ 4]. We 
solve the problem here, using a method developed 
by one of the authors [5J, on the basis of the cross 
sections for the real processes that participate in 
the production of the shower. We assume that the 
electron-photon shower results from the emission 
of protons when the muon is slowed down and from 
direct production of pairs by the muon. 

Following an earlier paper [6], we write the 
equation for the function '11 f.L ( Ep, E, t, N ) , defined 
as the probability that a particle with index f.L (in 
our case, a muon) and energy Ep produces N par
ticles with energy larger than E after traversing 
a depth t: 

Ef' Ef'-E+ 

='¥1,.(Ef',E,t,N)[l-dt ~dE+ ~ dE_ 
0 0 

EfL 

x W~ (E~>-, E+, E_)- dt ~ dEy W~ (ElL, Ey)] 
0 

EfL 

+ dt 2; f>N 1+N,, N ~ dEy 
N1, Na o 

x W~ (E~>-, Ey) 'P'y {Ey, E, t, N1) 'ffL (ElL-Ey, E, t, N2) 
Ef' Ef'-E+ 

+ dt 2; f>N.+N,+N,. N ~ dE+ ~ dE_ w~ (Ef', E+, EJ 
N 1 , N •• N 3 0 0 

(1) 

Summation over each index is from 0 to oo • 

Wb ( EJ.t, Ey )dEy is the probability that a y quantum 
with energy Ey will be produced by bremsstrahl
ung from a muon with energy Ep; W~(Ep. E+, E_) x 
dE+ dE_ is the probability that an electron-positron 
pair with energies E_ and E+ will be produced by 
a muon with energy Ew 

From (1) we obtain, in analogy with [6], an 
equation for the average number Nf.L (EwE, t) of 
electrons with energy E generated by a muon with 
energy Ep, at a depth t, and the corresponding 
mean square number of particles N~(Ep,E,t): 

EfL 

= - ) [JV[L (E~>-, E, t)- N~>- (E1,- Ey, E, t)l 
0 

X w~ (Ef', Ey) dEy- ~fL dE+ E[Lr+ dE_ [NfL (EfL, E, t) 
0 0 

Ef' 

+ ~ dEy w~ (E~", Ey) NY (Ey, E, t) 
0 

+ 2 ~~"dE+ E~'-r+ dE_ W~ (E~'-, E+, E_) Ne (E+, E, t), (2) 
0 
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Ep. 

:, N~ (E~'-, E, t) =- ~ dEyWh (E~'-, Ey) [N~ (E~'-, E, t) 
0 

Ei'- EIJ.-E+ 

- ~ dE+ ~ dE_ W~ (E~'-, E+, E_) [N~ (E~'-, E, t) 

Ei'-

-N~(Ep. -E_,E,t)l+ ~ dEyW~(E~'-,Ey)N;(Ey,E,t) 
0 

Ei'- EIJ.-E+ 

+ 2 ~ dE+ ~ dE_ W~ (E~'-, E+, E_) N~ (E+, E, t) 
0 

Ei'-
+ 2 ~ dEyW~ (EIJ., Ey) NIJ. (Ep. -Ey, E, t) NY (Ey, E, t) 

0 

Ei'- Ei'--E+ 

+ 2 ~ dE+ ~ dE_ W~ (E~'-, E+, E_) 
0 0 

EIJ. 

:, N~'- (E~'-, E, t) = ~ dEJVY (En E, t) W~ (E~'-, Ey) 
0 

+ 2 ~-1'-dE+ Ep.CE+ 
.) ~ dE_Ne (E+, E, t) W~ (Ep., E+, E_). 
0 (2') 

The terms remaining in the right half of (2) con
tain known quantities and represent the contribution 
made to NJ..t by the showers due to y quanta and 
electron pairs. We shall agree to measure t in 
electron radiation units te. Calculation of the first 
term yields 
Ei'-
~ dEyW~(E~'-,Ey)Ny(Ey,E,t)= :: c'(s1)Ny(E~'-,E,t), 
0 (4) 

where s 1 is determined from 

, ( ) 1 + 1.33 + b 
c s = s + 2 s (s + 1) ' 

b = 1 
9ln (180mz-'1•) 

(5) 

(6) 

m is the ratio of muon and electron masses, equal 
to 209, and teltJ..t is the ratio of the electron and 
muon radiation length, equal to In ( 180mz-113 )/ 

m 2 In (lsoz-113 ). 

X Ne(E+, E, f) Ne (E_, E, f); Since we shall be interested in muons of high 
energy, EJ..t ~ 1012 eV, we can use here the expres

(3) sion for the cross section in the case of total 

We shall use for Ne and Ny (the mean numbers 
of shower particles from the primary electron and 
the photon, respectively) the expressions derived 
[T] for light substances with allowance for the ion
ization losses; for the corresponding mean square 
values N~ and N~ we shall use the expressions 
obtained under the same assumptions in our earlier 
paper [GJ. The electron spectrum in a shower pro
duced by a muon ( NJ..t) was already determined by 
one of the authors [8] in the usual formulation 
(source in the right-hand part of the cascade equa
tions). We begin, however, with a solution of our 
equation (2) for NJ..t, since it is possible to illus
trate here in a simpler and physically more lucid 
form the character of the approximations also used 
in the calculation of N~. 

Equation (2) can be readily simplified by rec
ognizing that the muon loss in one radiation unit 
lengthC4J is very small; the total muon loss to 
bremsstrahlung and pair production is ~ 4 x 10-6 

Ew Inasmuch as the absorbers used in real instal
lations do not exceed several dozen t-units [1], we 
neglect the change in muon energy after penetra
tion through matter. We can then leave out the 
first two integrals in the right half of (2), which 
is rewritten 

screening, which is valid within several percent 
for energies EJ..t > 137 m 2mec2 [ 9]: 

In the integ~tion with respect to dEy we assume 
that E~ in Ny(Ey. E, t) has only a power-law de
pendence. The remaining factors which depend 
little on the energy (via s) have been taken out
side the integral sign at the point s 1 ( EJ..t ), since 

EJ..t 
the main integration region of J E~,Wb(Ew Ey)dEy 

0 

is at Ey r::::J Ew An estimate of the next terms in 
the expansion near EJ..t shows that this procedure 
introduces no additional error compared with the 
inaccuracy in the Ny (~ t-1, see [7J). Finally, s 
is also assumed equal to its value at the point EJ..t. 
Since s enters as an exponent in the integrand, 
small deviations of s could result in appreciable 
errors. It is easy to verify, however, that this is 
prevented by condition (5). 

We now turn to the calculation of the second in
tegral in the equation for Nw We use the follow-
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ing expression from [to]· 

2 [ £2 + £2 J + (E+ + E_) C (x) +2 + - D (x) 
£2 £2 

!J. p. 

tegration will be from 0 to oo with respect to y 
and from 0 to y2 I 4 with respect to x, or, what is 
the same, from 0 to oo with respect to x and from 
2 fX to oo with respect to y. Then 

Ep. Ep.-E+ 

2 ~ dE+ ~ dE_ W~ (Ep., E+, E_) J1. (E+, E, t) 
0 0 

(12) 

A' (s) = { futs-1 cosec~ ~ 2<4-s>fz [ B <f. 1 -i) 
()() 

(8) - r ( 1 + f) k~t/~:k~s~~)]}[ I + s~ ( 1- f)] 

where 

(9) 

A(x) = (1 + 2x)ln(l + ±)-2, B (x) 

=(1 + x)ln(1+±)-1. (10) 

C(x) and D(x) have a similar structure, and L 
= ln [l v'1+X I aZ t/3 ] with l ~ 1. 

This cross section has been obtained with loga
rithmic accuracy. In the henceforth significant 
region of x this results in an error ~ 20%. 

The function W~( Et-1, E+, E_) has a sharp max
imum at E+, E_ ~ Et.tlm. Therefore, as in (5), we 
take all the factors with weak energy dependence 
outside the integral sign at the point s 2 ( E tL lm). 
The equation for s 2 is of the form 

(11) 

In addition, we simplify (8) by using the fact that 
the main contribution to the integral is made by 
the region E+, E_ ~ Etllm. We put in the first 
square bracket 1 + [ 1- (E+ + E_ )IEt-~] 2 r::o 2, we 
neglect the second term in the curly bracket which 
is ~ 1lm2-s2 as large as the first in the principal 
region of integration, we set x equal to m2E+E- I 
E~, and we put ln (...{l+X lzt/3 a) r::o In (E/azt/3 ). 

We also introduce the notation 

This simplification of the cross section enables us 
to integrate with respect to E+ and E_ from 0 to 
oo. (As E+> E_ ---. oo the contribution to the inte
gral from the asymptotic values of the simplified 
expressions for W~ is ~ 1lm2-s2 as large as the 
principal term. As will be shown below, the max
imum value is s 2 = 1. ) If we now change over to 
the variables x and y, then the corresponding in-

1 { 2 ( S ) ( S ) 2lt Slt + - - r I + - r I - -.. -- cosec-
3 3 2 ~2 s 2 

00 

, 2-s/2 [B (~ I _ !__) _ r ( l + ~) ~ r (2k- s/2) ]} 
--r- 2 • 2 2 ..::..~ r (2k + 2) 

k=l 

X [1 + + (s + I) (s + 2) + + (s + 2) s (s- 2) ~ (2- s/2)] , 

d= 2a2Z2r;nLt.l3nA. (13) 

We can now readily integrate with respect to t. 
The t-dependence of the right half of (13) is deter
mined by exp [At ( St )t + St ln (Et.tlf3 )] in the first 
term and by exp [ A1( s 2 )t + s 2 ln ( E tL lmf3 ) ] in the 
second. Each of these exponentials increases with 
t for all St < 1 and s 2 < 1. We can therefore ex
pand them about the upper limit in the integral with 
respect to t. Then the integration with respect to 
t for the regions t < ln ( Et.tlf3) for the first term 
and t < ln ( Et.t lmf3) for the second term reduces 
to a corresponding additional multiplication by 
A1t(s1 ) and A1t(s2 ). Fort 2: ln(Et.tlf3) in the 
case of the first term and t > ln ( Et.tlmf3) in the 
case of the second, the integrals 

t 

~ exp [A1 (s,,z) t' + y,,zS1,2l dt' 
0 

are calculated by the saddle point method, since 
the integrand has a resonant character for these 
values of t (maximum at At ( St,2) = 0). The mutual 
relations between these conditions give three vari
ants of the solutions for different regions of t: 

- te c' (s1) --: dA' (s2) - (EP. ) 
Np. (Ep., E, t) = t; A.t(s,) Ny (Ep., E, t) + A.l(s.) N. m, E, t 

for t < In (Ep./m~); (14a) 

[ E ]'!•- ( E Ep.) +dA'(I) 3.12nlnm~ Nemax m~, E, lnmfl (14b) 
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N~'-(E..,.,E,t) 

= t.t~1c'(l) [3, 12n:ln(EI'-/~)]'1•Nymax(EI'-, E, ln(EI'-/~)) 

+ dA'(l) N. max (E1jm, E, In (E~'-/m~)) V 3.12n: In (E)m~) 
for t >In (E..,.m). (14c) 

It is easy to verify by calculation that in the in
tegral with respect to dt the next higher terms of 
the expansion of the exponential in t are propor
tional to 1/t, i.e., (14) is obtained with the same 
accuracy as the initial Ne and Ny. The total error 
due to integration over the energy and over the 
depth does not exceed 10 per cent for t ~ 10. 

Let us explain the meaning of the transition 
from t < tmax to t > tmax· This situation has al
ready been encountered in the solution of the prob
lem of the mean square number of particles [SJ in 
showers due to photons and electrons. The solu
tion of Eq. (2) is no longer determined by the free 
terms in the right halves, and goes over into the 
solution corresponding to the damping of the muon. 
In our approximation, where the terms that account 
for the muon energy loss are neglected, we have in 
this region BNJ..I( EJ..I, E, t )/at = 0, i.e., the solution 
yields a constant. Figure 1 shows the depth devel
opment of cascades due to muons with energies 
1012, 1013, and 1014 eV in the ground and EJ..I = 1013 

eV in iron and lead. (Strictly speaking, the ap
proximation used is not suitable for heavy sub
stances, for no account is taken of particle scat
tering and of the energy dependence of the photon 
absorption coefficient. It is clear, however, that 
the character of the dependence of N J..l on t re
mains the same even when these factors are taken 
into account. We have therefore presented for il
lustration the curves for heavy substances, too.) 1 l 

Figure 2 shows the separate contribution made 
to N J..l by s~owers generated by y quanta ( N'b) and 
by pairs (Nil) (the first and second terms in (14), 
respectively). The figure is drawn for the ground: 
EJ..I = 1014 eV ( Z = 10 ). It is seen from Fig. 2 that 
the cascades produced by pairs essentially with 
energies "'EJ..I/m, which therefore have a smaller 
range than cascades from y-quanta with energy 
"'EJ..I, develop more rapidly and already are in 
equilibrium with the muon when t >In ( EJ..I/m/3 ), 
whereas the cascades due to the y-quanta reach 
equilibrium when t"' ln(EJ..I/{3). For large t, the 
contribution of both parts is approximately the 
same, for although the number of particles in 
showers due to pairs is two orders of magni-

1lin the calculation we used the critical energy calculated 
by Dovzhenko and Pomanskii.T11 ] ({3 = 50.6 x 106 eV for ground, 
20.7 x 106 e V for iron, and 7.4 x 106 e V for lead). 

logN" to"e'l 
ro'3 -------------
to" -----------------

0 

tO 15 zo t 

FIG. 1. Development of muon cascades with depth: solid 
line- in ground, dashed- in iron, dash-dot- in lead. 

tude smaller at the maximum, the probability of 
pair production in one t-unit is larger than the 
probability of emission of a y quantum by approx
imately the same factor. The energy dependence 
at equilibrium is "'EJ..IG( 1, E )/{3, where E 

=Ef(A.1 )/{3 (see [ 7J). 
It must be noted that formulas (14) were ob

tained for E :S {3. However, formulas (14) can be 
used also when E » {3, provided {3 is replaced 
everywhere by E and we put D( s) G( s, E) ~ 1. 
This can be easily verified by substituting in (2) 
the expressions for Ne and Ny according to ap
proximation A. 

We now proceed to solve Eq. (3) for NL. Since 
it is assumed that the muon does not lose energy, 
we can neglect the first two terms of (3), too. We 
note further that the remaining terms are not of 
equal value. The integrals 

El'-

2 ~dEy W~ (E~'-' Ey}N~'- (E~'- -Ey, E, t}Ny (Ey, E, t}, 
0 

El'- EI'--E+ 

4 ~ dE+ ~ dE_ W~ (E~'-, E+, EJ N~'- (E~'- -E+ -E_, E, t) 
0 0 

are approximately two orders of magnitude smaller 
than the other terms. We can therefore neglect 

75 

50 

25 

15 201 

FIG. 2 
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them, too. Equation (3) is then rewritten as 

El'-
8 2 (' 1'- 2 

TIN'" (E~'-, E, t) = .\ dEy W b (E~'-, Ey)Ny (Ey, E, t) 
0 

El'- EI'--E+ 

+ 2 ~ dE+ ~ dE_ W~ (E~'-, E+, EJ [N; (E+, E, t) 
0 0 

+N,(E+, E, t)Ne(E_, E, t)]. (3') 

Let us calculate the right half of (3). We use 
for N~ and N~ the expressions obtained in [s] for 
s < 1.4. It will be clear from what follows that the 
region of large s is not needed. As in the calcu
lation of (4) and (2), we consider only a power-law 
dependence on the energy, "'E2s. For the first 
term in the right half of (3) we obtain in analogy 
with (4) 

El'-

\ dEyN~ (Ey, E, t) W~ (E~'-, Ey) = fc' (2s1)N~ (E~'-, E, t). 
0 1'- (15) 

In the calculation of the second term in the right 
half of (3) we can use the simplified expression for 
the pair production probability only if s < 1, and 
obtain an expression analogous to (12). As in (12), 
the main contribution to the integral is made by 
the region E+> E_ "' EJ.L/m. However, this no 
longer holds for s ~ 1. The integral is logarith
mic and the essential region of integration for it 
will be E+> E_ "' Ew We can therefore use for 
s ~ 1 the asymptotic pair production cross sec
tion [!OJ for high-energy secondary electrons and 
photons: 

+ 4£+£- ( 1-E++E-) l dE dE 
(£++£_)2 E~'- j + _, 

L1 =In (m/aZ'I,). 

We calculate first the second term in (3) for 
s < 1. The calculation of the first integral 

El'- E!J.-E+ 

2 ~ dE+ ~ dE_'i/; (E+, E, t) W~(E~'-, E+, EJ 
0 0 

is analogous to (12). We obtain 

Er El'--,E+ 

2 ~ dE+ ~ dE_ W~ (E~'-, E+, EJ N! (E+, E, t) 
0 0 

(9') 

In the calculation of the second integral 

El'- EI'--E+ 

2 ~ dE+ ~ dE_ W~(E~'-, E+, EJ N, (E+, E, t) N. (E_, E, t) 
0 0 

we note that, like in (12), the integrand has a max
imum E+, E_ "' EJ.t/m. We therefore use the sim
plified expression for the cross section and take 
all the weakly-varying functions outside the inte
gral sign at the point E+, E_ "' EJ.t/m. We obtain 

Er El'--E+ 

2 ~dE+ ~ dE_W~(E~'-,E+,EJN,(E+,E,t)N,(E_,E,t) 
0 0 

(17) 

F (2s) = ~ r; cosec SJt -21-ss[ B (s, 1- s) 

00 

1 ~ r (2k - s)J )} - 3 r ( 1 + s) L.J r (2k + 2) + 2B (s, 1 - s . 
k~I 

(18) 

The integration with respect to t for s < 1 de
termines, as in (14), the contribution from the first 
term up to t ~ ln ( E J.L I {3 ) , and from the second 
term up to t ~ ln (EJ.t/m{3 ). However, as already 
noted, when s ~ 1 the essential region of integra
tion for the second term of (3), which is due to pair 
production, is E+, E_ "' Ew Therefore in order to 
join together smoothly the solutions for t 
< ln(EJ.L/{3) and t ~ ln(EJ.t/m{3), we introduce in· 
Eq. (11) for s 2 and in the logarithm L a param
eter x in the following manner: 

'A~ (s~) t +In (E~'-~/~m) = 0, L' =In (yJaZ'f,). (19) 

By stipulating that x vary linearly with sf from 
1 to m as sf varies from 0 to 1, we ensure smooth 
approximation in the region fro~t = ln ( EJ.t /m{3) 
to t = ln ( EJ.t/{3) of that part of N~ for which pair 
production is responsible. As will be verified 
later on, the additional inaccuracy introduced by 
this approximation is inessential, for N~ is deter
mined primarily, accurate to "' 10 per cent, by the 
muon bremsstrahlung. In addition, the approxima
tion does not influence the solution for t 
> ln (EJ.L/{3 ). After an integration with respect 
to t analogous to that in (14a), we obtain for the 
region t < ln (EJ.L/{3): 

x [A' (2s~) N~ ( Ep.X• E, t) + F' (2s~) N~ (E~'-x, E, t) J . 
\ m m (20) 

The functions A' ( 2s) and F' ( 2s) are shown in 
(16) Fig. 3. Before we proceed to calculate the second 
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150 

tOO 

FIG. 3 

term in (3) for s 2:: 1, we note that integration with 
respect to t is perfectly similar here to that for 
NJ.L, the only difference being that the integrand is 
no longer exp [ ..\1 ( s )t + ys 1 but exp 2[ ..\1 ( s )t + ys 1. 
Therefore the solution for t > In ( E J.L I {3 ) is also 
determined by the saddle point at the point s = 1. 
It follows therefore that we can put directly s = 1 
in the integration of the second term in (3) with 
respect to the energy. Finally, we obtain with log
arithmic accuracy for t 2:: In (EJ.Lif3 ): 

-2 + d"A" (2) Ne max(£!'-, E, In(£!'-/~)] 

_ G2(1. e) [(teltl'-)c' (2) +d"A"(2)] (E~'- )2 
- 2 [1.56n In (E~'-/[3)]''· f3 ' 

(21) 

A" (2) = 2 ln(m/cxZ'/,) }n2 m , 
m2 ln(2(cxZ 1•) 

d" = ex In(m/cxZ'1•) • (22) 
6n In (1802 '1•) 

We thus obtain in our approximation, without 
account of the muon energy losses, a solution for 
the mean square that does not depend on t in the 
region of large t, i.e., the mean-square deviations 
are also constant. It must be noted, however, that 
for very large depths-on the order of or larger 
than the muon range-the muon losses and conse
quently the extinction of the entire cascade turn 
out to be significant. An account of this circum
stance causes the mean square, and consequently 
also the variance, to increase with depth, i.e., the 
same pattern will be observed as in the extinction 
of a shower produced by an electron or a photon.CSJ 
_!i~re 4 shows the depth dependence of .6. 2 

= N~ IN~ for a shower due to a muon with energy 
EJ.L = 1014 eV in ground ( Z = 10) and for two show
ers due to muons with energy EJ.L = 1014 and 1013 
eV, in iron (Z = 26). 

At large depths [ t ~ In ( E J.L I {3 ) 1 the mean 
square deviations ...; .0,.2 -1 NJ.L of the num~er of 
particles turn out to be very large ( .... 10NJ.L) . 
...; .0,.2 - 1 depends little on the energy and on the 

ro'3 to'' 

100 

5 10 15 

FIG. 4. Depth dependence of !'!.2 for a muon shower: solid 
line- for iron, Z = 26; dashed- for ground, Z = 10. 

substance ["'In - 114(EJ.Lif3 )1. Large fluctuations 
are due essentially to the fact that the range of 
the photon- and pair-induced cascades generated 
by the muon up to their maximum, are of the same 
order as (in the case of pairs ) or much smaller 
than (in the case of photons) the range of the muon 
with respect to the corresponding interactions. 
Thus, for EJ.L = 1014 eV, the range is "'10te for 
pair production by a muon and "'103te for a pho
ton. At the same time, the corresponding ranges 
of the cascade due to pairs and photons are re
spectively of order 10 te and 15 te up to the max
ima. 

Figures 5a and b illustrate the possible .6.2 for 
a muon with energy EJ.L = 1014 eV in ground (Z 
= 10) if the multiplication of the cascade is (a) due 
only to the showers produced by bremsstrahlung 
photons emitted by the muon ( .6.i, Fig. 5a) or 
(b) due only to showers produced by the pairs gen
erated by the muon (.6.h, Fig. 5b). 

We see that .6.i is two orders of magnitude 
larger than .6.iJ in the region of large t 
[ t "' In ( E J.L I {3) 1. This is the consequence of the 
considerably larger bremsstrahlung range com
pared to the pair production range. The increase 

i[~_ 
S tO 15 20 t 

~l~ 
5 10 f!i zo t 

FIG. 5 
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in ~i towards smaller t signifies that there are 
large fluctuations at the start of the development 
of cascades due to bremsstrahlung photons (see[5J). 

At the same time, ~h has a minimum in the re
gion t ~ ln ( EJ.L/m{3 ). The presence of a minimum 
in the fluctuations of the cascades produced by the 
pairs is connected with the fact that the muon gen
erates electrons which have essentially an energy 
~ EJ.L/m. The showers produced by these electrons 
already reach their maximum number of particles, 
in the mean, when t ~ ln (EJ.L/m{3) whereas the 
mean square of the number of particles increases 
more slowly and has a maximum at t ~ ln (EJ.L/{3 ); 
the maximum fluctuations are due to showers from 
electrons with energy "' E Ji.' the number of which, 
however, is negligibly small. 

This explains also the decrease in ~ 2 for t 
< ln ( E J.L I {3), for at small depths the main contri
bution to the average number of electrons is made 
by showers due to pairs. Therefore the best way 
to determine the muon energy is to register small 
bursts under a thin absorber, not thicker than 
t f'=l ln (EJ.L/m{3). 

The authors are grateful to I. L. Rozental' and 
G. E. Chikovani for discussions. 
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