PHASE SHIFTS OF COULOMB pp SCATTERING

N. P. KLEPIKOV

Institute of Nuclear Physics, Moscow State University

Submitted to JETP editor February 20, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 376-377 (August, 1963)

The importance of accounting for relativistic and form-factor corrections to the phase shifts of Coulomb proton-proton scattering is pointed out.

FOR a sufficiently accurate analysis of protonproton interaction it is necessary to know the amplitude and phase shifts of the Coulomb scattering. In the energy region in which $e^2 \ll \hbar V \sqrt{1 - V^2/c^2}$, where V is the proton laboratory velocity, it is necessary to include in the Coulomb scattering phase shifts only the terms proportional to η = $e^2/\hbar V$. It is necessary, however, to take into account with the same accuracy the relativistic corrections to the matrix elements obtained by Garren,^[1] and the form factors of the charge and magnetic moment of the proton, determined experimentally by Hofstadter^[2].

By using the general formulas (see [3]) for the connection between the elements of the F and S matrices, we obtain for the phase shifts, rather cumbersome expressions, which we shall not cite

here. We present merely a table of the phase shifts $\overline{\delta}$ and mixing parameters $\overline{\epsilon}$ (in Stapp's parametrization^[4]) for a proton kinetic energy of 660 MeV. In this table $\delta_{\rm NR}$ denotes the nonrelativistic phase shift, $\Delta R \overline{\delta}$ the relativistic correction to it, $\Delta F \overline{\delta}$ the form-factor correction to the preceding quantities, and $\overline{\delta}$ the total phase shift (mixing parameter $\bar{\epsilon}$). We see that at this energy for the lower momenta neither correction is small compared with the nonrelativistic phase shifts, although each is small compared with a radian. For larger momenta, the nonrelativistic phase shifts increase logarithmically, and all the corrections decrease to insignificant values. At higher energies both corrections increase and the δ_{NR} decrease, so that an account of the corrections becomes even more important.

State	δ _{NR}	$\Delta_R \bar{\delta}$	$\Delta F \overline{\delta}$	δ	State	δ _{NR}	$\Delta_R \overline{\delta}$	$\Delta_F \overline{\delta}$	δ
${}^{1}S_{0}$ ${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$ $\overline{\epsilon}_{2}$ ${}^{1}D_{2}$ ${}^{3}F_{2}$ ${}^{3}F_{3}$	-17'.2 13'.1 13'.1 13'.1 0 28'.6 38'.8 38'.8	$ \begin{vmatrix} -35'3 \\ -52'.1 \\ -3'.3 \\ 14'.3 \\ 3'.0 \\ 0 \\ -14'.5 \\ 0'.1 \end{vmatrix} $	1°23'.5 1°8'.9 17'.9 13'.8 6'.5 6'.9 10'.5 4'.4	31'.0 29'.9 27'.7 41'.2 3'.5 35'.5 34'.8 43'.3	$\begin{array}{c} {}^3F_4\\ {\overline \epsilon}_4\\ {}^1G_4\\ {}^3H_4\\ {}^3H_5\\ {}^3H_6\\ {\overline \epsilon}_6\\ {}^1I_6\end{array}$	38'.8 0 46'.6 52'.9 52'.9 52'.9 52'.9 0 58'.0	8'.3 1'9" 0 -8',2 0 5'.7 26" 0	3'.5 -23" 1'.5 2'.5 1'.0 0'.9 -6" 0'.3	50'.6 46" 48'.1 47'.2 53'.9 59'.5 20" 58'.3

¹A. Garren, Phys. Rev. **101**, 419 (1956).

² R. Hofstadter, Phys. Rev. Lett. 8, 381 (1962).
³ A. S. Davydov, Teoriya atomnogo yadra

⁴ Stapp, Ypsilantis, and Metropolis, Phys. Rev. **105**, 302 (1957).

Translated by J. G. Adashko 63

⁽Theory of the Atomic Nucleus), Gostekhizdat, 1-58, p. 308.