TRAJECTORIES OF REGGE VACUUM POLES

B. V. GESHKENBEIN AND B. L. IOFFE

Institute of Theoretical and Experimental Physics.

Submitted to JETP editor February 15, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 346-348 (August, 1963)

Restrictions on the behavior of a vacuum pole $l_0(t)$ are imposed on the basis of the following properties of $l_0(t)$: 1) $l_0(t) = 1$; 2) $l_0(t)$ is an analytic function of t in the complex plane of t with a cut along the real axis from $4 \mu_{\pi}^2$ to infinity.

In order to describe elastic scattering at high energies, the hypothesis was advanced by Gribov^[1,2] that the singularity of the partial-wave amplitude $f_l(t)$ in the annihilation channel farthest to the right in the complex *l*-plane is a simple pole (called sometimes the vacuum pole or the Pomeranchuk pole). The position of this pole is a function $l_0(t)$ of the momentum transfer t and at high energies the elastic scattering amplitude is proportional to $sl_0(t)$. Inasmuch as the function $l_0(t)$, the vacuum trajectory, plays a fundamental role in the explanation of processes at high energies, it is extremely important to find its properties and to determine its behavior as a function of t.

The function l_0 (t) possesses the following properties:

I. From the constancy of the total cross sections at high energies it follows [3,1] that $l_0(t) = 1$.

II. Gribov and Pomeranchuk^[4] have shown that l_0 (t) is an analytic function of t in the complex t-plane with a cut on the real axis from $4\mu^2$ (μ is the pion mass) to infinity. On the real axis to the left of t = $4\mu^2$ the function l_0 (t) is real.

III. In the same paper [4] it is shown that $l_0'(t) > 0$ in the interval $0 < t < 4\mu^2$.

IV. If it is assumed (Mandelstam^[5], Froissart^[6]) that the amplitude f(s, t) does not grow faster than a finite power $s^N t^M$ as $s \to \infty$ and (or) as $t \to \infty$, then Re $l_0(t)$ is bounded, Re $l_0(t) \leq N$.

In the present work we establish certain restrictions on the behavior of the function $l_0(t)$ on the basis of properties I and II (in some cases we also use properties III and IV). We introduce the quantity $x = t/4\mu^2$ and make the conformal transformation

$$z = -(\sqrt{x-1}-i)/(\sqrt{x-1}+i)$$
 (1)

of the two sides of the cut along the real axis from 1 to ∞ into the unit circle. This transforms the whole cut x-plane into the interior of the unit circle

and the point x = 0 into the point z = 0. It follows that the function $l_0(z)$ will be analytic for |z| < 1.

1. Let us assume that condition IV is fulfilled, i.e., Re $l_0(z) \le N$. We consider the function $f(z) = l_0(z) - 1$ and use Carathéodory's theorem (cf. for example, $[^{\lceil 7 \rceil})$). According to this theorem a function f(z), analytic inside the unit circle, possessing inside the circle a bounded real part Re $f(z) \le A$ equal to zero at the point z = 0, obeys the inequality

$$|f(z)| \leq 2A |z|/(1-|z|).$$
 (2)

Using (2) and expressing f(z) in terms of $l_0(z)$ and z in terms of x by means of (1), we obtain for real x < 0

$$l_0(x) - 1 | \leq (N - 1) (\sqrt{1 - x} - 1).$$
(3)

While N is unknown, it is expedient to use this inequality not as a restriction on the behavior of $l_0(x)$, but for the determination of a lower bound for N with the help of experimental data. From experiment it is well known that $l_0(t)$ vanishes for $t \approx -1 \text{ BeV}^2$ (x = x₀ ≈ -13). Substituting these values in (3) we find N > 1.4, i.e., max Re $l_0(t) > 1.4$.

2. Let us find lower bounds on the mean value of $|l_0(x)|^2$ on the cut

$$\overline{|l_0(x)|^2} = \int_1^\infty w(x) |l_0(x)|^2 dx, \qquad (4)$$

where w(x) is some weight function, satisfying the conditions w(x) > 0 for x > 1, and $\int_{-\infty}^{\infty} w(x) dx = 1$. The conformal transformation (1) transforms integral (4) to

$$\overline{|l_0(x)|^2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) |l_0(z)|^2 d\theta, \qquad z = e^{i\theta},$$
 (5)

where

 $f(\theta) = \pi \omega(x) x \sqrt{x-1}, \quad x = 1 + \tan^2 \theta/2.$ (6)

The solution to the problem of finding the mini-

mum of the integral (5) on the class of functions $l_0(z)$, analytic inside the unit circle and satisfying the condition $l_0(0) = 1$, is very well known in mathematics (cf., for example, [9,10,11]). The minimum can be shown to be ¹⁾

$$|l_0(x)|_{min}^2 = D^2(0), \tag{7}$$

where the function D(x) is expressed in terms of $f(\theta)$ as

$$D(z) = \exp\left\{\frac{1}{4\pi} \int_{-\pi}^{\pi} \ln f(\theta) \frac{1 + ze^{-i\theta}}{1 - ze^{-i\theta}} d\theta\right\}.$$
 (8)

The minimizing function is

$$l_{0min}(z) = D(0)/D(z).$$
(9)

If some other conditions, known to us from experiment, on $l_0(x)$ for x < 0 are imposed besides the condition $l_0(0) = 1$, then evidently this will lead to an increase in the minimum mean value $|I_0(x)|^2$. For example, let $l_0(x_0) = a$. The minimum of integral (5), under the conditions $l_0(0) = 1$ and $l_0(z_0) = a$, is easy to find by expanding the function $l_0(z)$ into a complete system of orthogonal polynomials with weight function $f(\theta)$

$$l_0(z) = \sum c_n p_n(z).$$
 (10)

(An analogous extremal problem was <u>solved</u> by us elsewhere [12]). For the minimum of $|l_0(\mathbf{x})|^2$ we obtain

$$\overline{|l_0(x)|_{min}^2} = \frac{1}{z_0^2} \{D^2(0) + a (1 - z_0^2) D(z_0) [aD(z_0) - 2D(0)]\},$$
(11)

and the minimizing function is determined as

$$l_{0min}(z) = \frac{1}{z_0^2 D(z)} \left\{ [D(0) - aD(z_0) (1 - z_0^2)] + \frac{1 - z_0^2}{1 - zz_0} [D(z_0) a - D(0)] \right\}.$$
(12)

Let us consider some examples.

Let w(x) = $1/\pi x \sqrt{x-1}$. From (7) - (9) we have $|l_0(x)|_{\min}^2 = 1$ and $l_{0\min} = 1$. We now take into consideration the experimental fact that $l_0(x)$ reaches zero at $x = x_0 \approx -13$ ($z_0 \approx -0.57$). From (11) we get $|l_0(x)|_{\min}^2 = 1/z_0^2 \approx 3.1$. The minimizing function is then given by

$$l_{0min}(z) = (z_0 - z)/z_0 (1 - zz_0).$$
(13)

¹⁾Notice that conditions III and IV are not used here.

It is not difficult to confirm that for this function $l'_{0 \min}(x) > 0$ when 0 < x < 1, i.e., the minimum found by us is in both cases a minimum defined on the class of functions satisfying condition III.

Although condition IV has not been used in our results, it is meaningless to consider functions $l_0(x)$ growing as $x^{1/4}$ or faster as $x \to \infty$ [the integral (4) diverges] if the weight function chosen above is employed. In order to obtain bounds on the mean value $|l_0(x)|^2$ for a faster growth of $l_0(x)$, we take a weight function $w(x) = 16 \sqrt{x-1}/\pi x^4$, which decreases more rapidly as $x \to \infty$. For this case we find $|l_0(x)|^2_{\min} = 1/2$ and $l_{0}_{\min}(z) = (1+z)^{-2}(1-z)^{-1}$. If we also take into account the vanishing of $l_0(x)$ when $x = x_0$, we have

$$|l_0(x)|_{min}^2 = \frac{1}{4} z_0^2 \approx 0.75,$$

$$l_{0min}(z) = (z_0 - z)/z_0 (1 + z)^2 (1 - z).$$
(14)

By direct differentiation we can verify that the function $l_{0\min}(x)$ given by (14) satisfies the condition $l'_{0\min}(x) > 0$ when 0 < x < 1. The authors thank I. Ya Pomeranchuk for useful

The authors thank I. Ya Pomeranchuk for useful discussions.

¹V. N. Gribov, JETP 41, 667 (1961), Soviet Phys. JETP 14, 478 (1962).

²V. N. Gribov, JETP **41**, 1962 (1961), Soviet Phys. JETP **14**, 1395 (1962).

³G. Chew and S. Frautschi, Phys. Rev. **123**, 1478 (1961).

⁴ V. N. Gribov and I. Ya Pomeranchuk, JETP 43, 308 (1962), Soviet Phys. JETP 16, 220 (1963).

⁵S. Mandelstam, Phys. Rev. **112**, 1344 (1958).

⁶ M. Froissart, Phys. Rev. **123**, 1053 (1961).

⁷S. Stoilow, Theory of Functions of a Complex Variable, (Russ. Transl.) IIL, 1962.

⁸Diddens, Lillethun, Manning, Taylor, Walker, and Wetherell, Phys. Rev. Lett. 9, 111 (1962).

⁹ V. I. Smirnov, Izv. AN SSSR ser. Fiz. 7, 337 (1932).

¹⁰G. Szego (Orthogonal Polynomials), Am. Math. Soc. N. Y., 1939.

¹¹ N. N. Meĭman, JETP 44, 1228, (1963), Soviet Phys. JETP 17.

 12 B. V. Geshkenbeĭ n and B. L. Ioffe, JETP 45, No. 9 (1963) (in press).

Translated by N. Dombey 59