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Restrictions on the behavior of a vacuum pole l 0 (t) are imposed on the basis of the following 
properties of l 0 (t): 1) l 0 (t) = 1; 2) l 0 (t) is an analytic function oft in the complex plane oft 
with a cut along the real axis from 4 J.J.~ to infinity. 

IN order to describe elastic scattering at high en
ergies, the hypothesis was advanced by Gribov [1•2] 

that the singularity of the partial-wave amplitude 
fz(t) in the annihilation channel farthest to the right 
in the complex Z-plane is a simple pole (called 
sometimes the vacuum pole or the Pomeranchuk 
pole). The position of this pole is a function Z0 (t) 
of the momentum transfer t and at high energies the 
elastic scattering amplitude is proportional to sZo(t). 
Inasmuch as the function Z0 (t), the vacuum traj ec
tory, plays a fundamental role in the explanation of 
processes at high energies, it is extremely impor
tant to find its properties and to determine its be
havior as a function oft. 

The function Z0 (t) possesses the following prop
erties: 

I. From the constancy of the total cross sections 
at high energies it follows [3• 1] that Z0 (t) = 1. 

II. Gribov and Pomeranchuk [4] have shown that 
l 0 (t) is an analytic function of t in the complex 
t-plane with a cut on the real axis from 4J.J.2 (jJ. is 
the pion mass) to infinity. On the real axis to the 
left oft = 4J.J. 2 the function l 0 (t) is real. 

III. In the same paper [4] it is shown that 
l 0'(t) > 0 in the interval 0 < t < 4!-! 2 • 

IV. If it is assumed (Mandelstam [5], Froissart 
CsJ) that the amplitude f (s, t) does not grow faster 
than a finite power sNtM as s - oo and (or) as 
t- 00 , then Re Z0 (t) is bounded, Re l 0 (t) sN. 

In the present work we establish certain restric
tions on the behavior of the function Z0 (t) on the 
basis of properties I and II (in some cases we also 
use properties III and IV). We introduce the quan
tity x = t/4J.J. 2 and make the conformal transforma
tion 

and the point x = 0 into the point z = 0. It follows 
that the function 10 (z) will be analytic for lz I < 1. 

1. Let us assume that condition IV is fulfilled, 
i.e., Re l 0 (z) s N. We consider the function f (z) 
= 10 (z) - 1 and use Caratheodory's theorem (cf. for 
example, [?]). According to this theorem a function 
f(z), analytic inside the unit circle, possessing in
side the circle a bounded real part Re f(z) ~ A 
equal to zero at the point z = 0, obeys the inequality 

If (z) I< 2A I Z!/(1 -I z J). (2) 

Using (2) and expressing f (z) in terms of Z0 (z) and 
z in terms of x by means of (1), we obtain for real 
x<O 

Jl0 (x)-11<(N -1)(V1-x-1). (3) 

While N is unknown, it is expedient to use this 
inequality not as a restriction on the behavior of 
l 0 (x), but for the determination of a lower bound 
for N with the help of experimental data. From 
experiment it is well known that l 0 (t) vanishes for 
t ~ -1 Be V2 (x = x 0 ~ -13). Substituting these values 
in (3) we find N > 1.4, i.e., max Re l 0 (t) > 1.4. 

2. Let us find lower bounds on the mean value 
of ll 0 (x) 12 on the cut 

00 

it~x) !2 = ~ w (x) l/0 (x) [2 dx, (4) 

where w (x) is some weight function, satisfying the 
00 

conditions w (x) > 0 for x > 1, and j w (x) dx = 1. 

The conformal transformation (1) t~ansforms in
tegral (4) to 

" 
! lo (x) I~ - :!.~ ~ f (0) llo (z) [2 d0, (5) 

z ==- (Vx- f- i)/(Vx- 1 + i) (I) where 

of the two sides of the cut along the real axis from 
1 to co into the unit circle. This transforms the 
whole cut x-plane into the interior of the unit circle 

240 

f (8) :tw (x) X y:;;__::__ l. x = 1 + tan2 0/2. (6) 

The solution to the problem of finding the mini-
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mum of the integral (5) on the class of functions 
Z0 (z), analytic inside the unit circle and satisfying 
the condition 10 (0) = 1, is very well known in mathe
matics (cf., for example, [9• 10 • 11 ]). The minimum 
can be shown to be 0 

llo (x) (~un = D 2 (0), (7) 

where the function D(x) is expressed in terms of 
f(O) as 

f 1 { 1 + ze-10 l 
D(z) =~ exp (tm- ~ lnf(e) 1 _ 2e_10 de 1. (8) 

The minimizing function is 

lomin (z) = D (0)/D (z). (9) 

If some other conditions, known to us from ex
periment, on 10 (x) for x < 0 are imposed besides 
the condition 10 (0) = 1, then evidently this will lead 
to an increase in the minimum mean value /1 0 (x) 1 2 • 

For example, let 10 (x 0) = a. The minimum of in
tegral (5), under the conditions 10(0) = 1 and 
l 0 (z 0) = a, is easy to find by expanding the function 
l 0 (z) into a complete system of orthogonal poly
nomials with weight function f(O) 

!0 (z) = ~ CnPn (z). (10) 

(An analogous extremal problem was solved by us 
elsewhere [12 ]). For the minimum of /1 0 (x) 12 we ob
tain 

+ a (l - z~) D (z0) [aD(z0) -- 2D(O)l}, 

and the minimizing function is determined as 

lomin (z) = -?-
1-! lD(O) -- aD(z0) (1 - zg)J 

z;;D (z) \ 

I- zg \ 
-t-- ---- lD(z0) a - D(O) 1 . 

I -- zzo j 

Let us consider some examples. 
Let w(x) = 1/nx.Jx-1. From (7) - (9) we have 

(11) 

( 12) 

/lo (x) I inin = 1 and 10 min = 1. We now take into 
consideration the experimental fact that Z0 (x) 
reaches zero at x =x0 ~ -13 (z 0 ~ -0.57). From (11) 
we get /l 0 (x) l~in = 1/z 02 ~3.1. The minimizing 
function is then given by 

fomin (z) = (zo- z)/zo (! -- ZZo). (13) 

It is not difficult to confirm that for this function 
l 0 min (x) > 0 when 0 < x < 1, i.e., the minimum 
found by us is in both cases a minimum defined on 
the class of functions satisfying condition III. 

Although condition IV has not been used in our 
results, it is meaningless to consider functions 
Z0 (x) growing as x 114 or faster as x- oo [the in
tegral (4) diverges] if the weight function chosen 
above is employed. In order to obtain bounds on the 
mean value IZ 0 (x) 12 for a faster growth of l 0 (x), 
we take a weight function w (x) = 16 -/x-1 / 'ITX4 , 

which decreases more rapidly as x _.... oo. For this 
case we find 11 0 (x) I in in = 1/2 and l 0 min (z) 
= (1 +zr2 (1- z)-1 • If we also take into account the 
vanishing of Z0 (x) when x = x 0 , we have 

llo (x) l;,tn = 1/ 4 z~ ::::::: 0, 75, 

lomin (z) = (z0 -z)lz0 (1 + z)2 (1-z). (14) 

By direct differentiation we can verify that the 
function lomin (x) given by (14) satisfies the con
dition Z0 (x) > 0 when 0 < x < 1. 

mm 
The authors thank I. Ya Pomeranchuk for useful 

discussions. 

1 V. N. Gribov, JETP 41, 667 (1961), Soviet Phys. 
JETP 14, 478 (1962). 

2 V. N. Gribov, JETP 41, 1962 (1961 1 , Soviet 
Phys. JETP 14, 1395 (1962). 

3 G. Chew and S. Frautschi, Phys. Rev. 123, 1478 
(1961). 

4 V. N. Gribov and I. Ya Pomeranchuk, JETP 43, 
308 (1962), Soviet Phys. JETP 16, 220 (1963). 

5 s. Mandelstam, Phys. Rev. 112, 1J44 (1958). 
6 M. Froissart, Phys. Rev. 123, 1053 (1961). 
7 S. Stoilow, Theory of Functions of a Complex 

Variable, (Russ. Transl.) IlL, 1962. 
8 Diddens, Lillethun, Manning, Taylor, Walker, 

and Wetherell, Phys. Rev. Lett. 9, 111 (1962). 
9 V. I. Smirnov, Izv. AN SSSR ser. Fiz. ':, 337 

(1~32). 
10 G. Szego (Orthogonal Polynomials), Am. Math. 

Soc. N. Y., 19~9. 
11 N. N. Me'lman, JETP 44, 1228, (1963), Soviet 

Phys. JETP 17. 
12 B. V. Geshkenbe'l n and B. L. Ioffe, JETP 45, 

No. 9 (1963' (in press). 

Translated by N. Dombey 
!)Notice that conditions III and IV are not used here. 59 


