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The effect of the rrrr interaction in the T = J = 0 state on the rrN scattering partial waves is 
investigated by the dispersion relations method. In the final expressions the static limit is taken 
and compared with experimental data. The most probable form of the o~ rrrr scattering phase 
shift is discussed. Relations are obtained connecting the contributions of the rrrr interaction 
to the s and p rrN-scattering waves. The implications of these relations for the static limit 
are considered. 

INTRODUCTION 

THIS work is devoted to a study of the effect of the 
rrrr interaction in the T = J = 0 state on the rrN 
scattering partial waves and follows the previous 
work of the authors.CtJ The analogous problem is 
dealt with in a number of papers.C 2- 4J In the work 
of Takahashi[ 2J the study is based on the one di­
mensional Cini-Fubini representation. The method 
used by that author to obtain the equations for the 
partial waves has been criticized by Efremov et 
al.[s] The small value of the rrrr scattering length 
a 0 obtained in that paper is probably related to 
this last difficulty. 

In the work of Hamilton et al.C3J the analysis of 
the rrrr interaction in the state with T = J = 0 is 
based on a study of the so called "differences" 

~~~l. i.e., the sums of the contributions from the 

cuts -oo < s < 0 and is I= M2 -JJ- 2 in the s plane. 
The simultaneous analysis of the "differences" is 
simplified by the introduction of separate param­
eters for each, to take into account the effect of 
the distant singularities. The contribution of near 
singularities (the leading front of the circumfer­
ence Is I = M2 - JJ. 2) is interpreted as the rrrr inter­
action. In the present paper a number of relations 

is obtained (Sec. 4) which the rrrr contributions to 
the rrN scattering must satisfy. Based on these 
relations we may assert that in [ 3] the rrrr contri­
bution is extracted from the "differences" unsuc­
cessfully. 

Atkinson[ 4J makes use of dispersion relations 
for backward scattering in the variable v = q 2• In 
such an approach the differences are connected 

1lUzhgorod University. 

only with the rrrr interaction, as follows from the 
work of Efremov et al.[s,sJ The rrrr scattering 
phase shifts are determined by analytic continua­
tion of the "differences" from the region v > 0 to 
the cut - oo < v :S -1. The analytic continuation is 
accomplished with the help of a conformal mapping 
[see [ 4], Eq. (3.3)] which maps the 11 plane with 
the cut - oo < 11 :S -1 into a 2n + 1 sheeted Rie­
mann surface. Therefore for the values n = 1, 2 
the Atkinson approach is not valid. 

The method used in this paper for taking into 
account the rrrr interaction allows one to choose 
between various forms for the energy dependence 
of the phase shift o~. It is shown that the s-wave 
dominant solution of Chew, Mandelstam, and 
Noyes C7J does not describe the energy dependence 
of the partial waves in rrN scattering. We also 
discuss the approximations for the scattering 
length and the resonant behavior of the phase shift 
o ~. taken from the work of Serebryakov and Shirkov 
on the solution of the set of equations for rrrr scat­
tering partial waves.Ca] The conclusion is arrived 
at that the version with a resonant 6~ phase shift 
is to be preferred. 

1. UNITARITY CONDITION FOR THE rrrr- NN 
PROCESS 

The unitarity condition for the rrrr - NN process 
is written with the help of the states with definite 
helicity J++• J+-> which are decomposed into partial 
waves as follows: 
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-v z + 1/• ( )z-r1z p· ( e ) 
= q3LJVl(l+1) P3q3 - l cos 3' 

l 

(1.1) 

where p3, q3 and 03 are the momentum of the nu­
cleon, the momentum of the pion and the scattering 
angle in the c.m. system of the reaction nn- NN; 
{3 = B+ I ( s - s ) . 

For the isotopic index ( +) the summation is 
over even l. 

In the two-particle approximation the unitarity 
condition determines the phases of the partial am­
plitudes fl in terms of the s, d, etc., phase shifts 

± 

for nn scattering with T = 0. Since we shall be 
interested only in the region of small q3 values 
we make the natural assumption that 

6~ = 0 for l;;;;. 2 (1.2) 

It follows from Eq. (1.1) that {3 is a real func­
tion on the interval - oo < v ::s -1. 

Approximating the higher partial waves by pole 
terms,Cs] we obtain for A<+> and {3 the expressions 

A<+>= 4Mtfa~ cos2 83 + r exp (i6g) 

- 4M cos2 83q~~t> + 2Mq~ (~t>h, 

~ = ~1 exp (i6~) + [ ~t>- 5~ {(~t>)r - (~t>M ]Yf; 
+r 

(~t>)z = ~ x~13 (x) P1 (x) dx, (1.3) 
-1 

where t.{3 is the pole term of the function {3; {31 and 
y are unknown real functions. On comparing Eq. 
(1.3) with the analogous expressions for a and 
{3<-l from [1] [see Eq. (1.4) in [1]] we note in the 
first place that the lower terms in A<+l and a con­
tain s and d waves, and in the second place that 
the assumption (1.2) gives rise to the appearance 
in A<+> of the unknown real function {31. Conse­
quently, the method for taking into account the 7r7r 

interaction as proposed in [s] must be modified. 

2. DISPERSION RELATIONS FOR A+ AND {3, 
PARTIAL WAVE EQUATIONS 

Below we shall obtain equations for nN scat­
tering partial waves at low energies by making use 
of combinations of dispersion relations for the 
functions A<+> and {3 at c = cos 0 = ± 1. For for­
ward scattering it is convenient[!] to consider 
dispersion relations in the variable s, i.e., in the 
conventional form: 

00 

1 ~ lD(v, +I)=- ImiD(v', +I) 
n . 

(M+l}' 

X [s (v') ~s (v) + s (v') ~s (v) ]ds (v'). 
(2.1) 

At that the number of subtractions for the functions 
A<+> and {3 is different. Assuming, as is usual, 
the constancy of the total cross section at large 
energies we see easily that two subtractions are 
sufficient for A(+l, whereas for {3 none are needed. 
If we take into account that the usual assumption 
Im <I> ~ Im f~ will be made in what follows, we can 
limit ourselves to one subtraction. At that the con­
vergence of the integrals will be assured. The 
second subtraction will not give rise to the ap­
pearance of an additional constant because of the 
symmetry properties of the function A<+>. The 
comparison of the final expressions with the exper­
imental data will serve as the criterion for choosing 
the number of necessary subtractions. 

For backward scattering it is convenient to 
write the dispersion relations in the variable v 
= q2• The sole nearby singularity is the cut - oo 

< v ::s -1 from the reaction 1r1r - NN. In view of 
the assumption (1.2) the dispersion relation for 
{3 ( v, -1) has the form 

00 

" (v - I) = _!__ \' Im ~ (v', -1) dv' + ~ . 
t--' ' n J v'- v 13 ' 

0 

Im ~ (v < 0, - I) = 0. (2.2) 

Let us consider the function - 8np0J++/p3 
= A<+> - 4Mq~{3 cos 2 03• According to Eq. (1.3) this 
function has a simple structure on the cut - oo 

< v ::s -1: the first term is the s-wave amplitude 
f2, the second term is the sum of all higher partial 
waves in the pole approximation. Therefore the 
unphysical cut may be taken into account in a 
manner analogous to that used in [1], i.e., by con­
sidering instead of - 81rp0J++ /p3 the function 
-87Tp0J++/P3F0 (v). The function F 0 (v) has no 
zeros in the complex v plane; On the cut -oo < v 
::s -1 the phase of F 0 ( v) coincides with 6~. 

In that case the dispersion relation for A<+> 
may be written in the form 

A<+> (v,- I)= A<+l (0,- I) F 0 (v) + 4M~ (0, -I) 

X [F (v) - I J + v [1 - Fo (v)] 
o v0 (v- vo) Fo (vo) 

00 

2 v ~ Im 4<+l (v' -1) 
X Resv,=-r+r;4 M• 4Mw ~!3 +- · ' dv' 

n v' (v'- v) 
0 

+~ r {1m [A <+l (v', -I)+ 4Mw'2~ (v', -I)] [~"(~~i- I J} 
dv' 

xv'(v'-v)' (2.3) 

The quantity A<+>(o, -1) is expressible in 
terms of the scattering lengths: 
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A<+> (0,- l)/4Jt =(2M+ I) a+!2M- 2M (a;- a;).(2.4) 

The function F 0 ( v) is defined as follows: 

An arbitrary polynomial may be added into Eq. 
(2.5), however such a polynomial would not be de­
termined by the phase o~. The function F 0 ( v) is 
the only function whose behavior for v 2: 0 is fully 
determined by the value of the phase shift o~ on 
the physical (for rrrr scattering) cut - oo < v :::: -1. 
At that it is of small importance whether or not 
the phase shift o~ satisfies crossing symmetry 
relations for rrrr scattering: in Eq. (2.3) Fo ( v) is 
needed for v > 0 only, therefore the details of the 
behavior of o~ for v < 0 are unimportant. If o~ 
approximates well the true function o~ then this is 
fully sufficient for a determination of F 0 ( v) in 
the region v > 0. The true form of o~ is not known 
and therefore we assume below several concrete 
forms for the function tan o~. 

The transition to dispersion relations for par­
tial waves is accomplished with the help of the re­
lations: 

f~±> (v) = i [f~±) (v, + I)+ f~±> (v,- !)], 

f~:> (v) = ~ [f~±) (v, + I)- f~±> (v,- !)], ,, 

l±)- f<±> = 2. rt<±> (v, + I)+ t<±> (v,- !)]. 
P,1, P,/, 2 2 2 (2.6) 

The connection between the functions fi:~ and A<+>, 
j3 is given by 

fi+> (v, c) = r;:w M [A<+> (v, c) 

+ 2 (W- M) ~ (v, c) [2p0q0 + v (I + c)Jl, 

f~+) (v, c) = P~;WM [- A<+> (v, c) 

+ 2 (W + M) ~ (v, c) [2p0qo + v (I +c)]). (2.7 

The functions Im A<+> and Im j3 that appear in 
the integrands are expressible in terms of the am­
plitude Im f<+> as follows: 

P312 

Im A<+>(v, c) = jW + M 3 W -M}I t<+> 
4n lr" + M c + p" - M m P,, ' 

lm 13 (v, c) 1 [ 1 1 J 
4a = 4p"w + 2v (1 +c) p" + M 3c- r" _ M Im ~~:: •. 

(2.8) 
The set of relations (2 .1) -(2. 8) makes it possi ~ 

ble to express the real parts of the partial waves 
s (+), Pi~\ P~~> in terms of the coupling constant, 
sin2 a 33 -subtraction constants and the function 

F 0 ( v ). We note that so far no use was made of 
expanding in powers of 1/M. 

3. THE STATIC LIMIT (1/M- 0) 

Performing in the expressions (2.1)-(2.8) an 
expansion in powers of 1/M we obtain 

+ oo Im t<+) (v') 
Ret<+>(v) =~[! +F (v)]-~P\ P,;, [fo(v) -l]dv' 

s 2 o n J v' (v'- v) fo (v') ' 
0 

oo Im t<+> (v') 
Re (f<+> - t<+>) = - 2 ~ f2- vw p \ r,;, _!!:!__ 

P•;. Pa;, w 3t J v'w' v'- v' 
0 

+ oo Im f~+) (v') 

Re (f(+) + 2t<+>) = ~ [l-F0 (v)] + 2" P \ , ,'1• dv' 
P,1, P,1, 2 n J v (v - v) 

0 

oo Im t<+l (v') 
~ \ P,;, dv' [fo (v) -I J + n ~ v' (v'- v) fo(v') · 

0 

(3.1) 

The relations (3.1) contain one parameter-the 
scattering length a+. They satisfy the conditions 
of crossing symmetry: [1 J 

/~+l (w) - f~+) (- w) = 0, 

[f~+) (w)- t(+) (w)l + u<+) (-w)- t(+) (- w)] = 0, 
•fs Pa/* plft p3ft 

u(+) (w) + 2f(+) (w)l- [f(+) (- w) + 2f(+) (- w)l = 0. 
P1/ P,/ P,/ P,/ ' ' • • (3.2) 

We note that the 7r7r and rrN terms of the Eqs. (3.1) 
separately satisfy the Eqs. (3.2). 

It is an interesting peculiarity of the dispersion 
relations (3 .1) that the expression for 
Re [ fp1+> - fp<+> ] does not involve rrrr terms The 

1/l 3/l . 

same is true for the difference Re [ f<-> - f<-> ] 
P1;2 P3;'.! ' 

as follows from Eqs. (5.4) - (5.6) of [1]. This 
property is a manifestation of a certain symmetry 
of the contribution of the 7r'Tf interaction to rrN 
scattering. 

4. SYMMETRY PROPERTIES OF THE 'Tf'Tf TERMS 
IN rrN SCATTERING 

Let us denote by a1~) ( W) the contribution of 

the rrrr terms to the rrN scattering partial wave 
with given values of l, J and isotopic index ( ±). 
Since the rrrr terms enter only into the dispersion 
relations for backward scattering it follows from 
Eq. (2.6) that 

G~±l (W) = - 30~~: (W). (4.1) 

The relation ( 4.1) is valid in s and p approxima­
tion, i.e., in the low energy region. For backward 
scattering the replacement s - s corresponds to 
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replacing the variable W = p0 + w by the variable 
W' = p0 - w, so that 

WW' = M 2 -1. 

At that v(W) = v(W') and A<+> [ v(W)] 
=A<+>[v(W')]. 

(4.2) 

In the approximation (1.2) the terms responsible 
for the rr7f contributions to the functions ~ (+) and 
{3 have the form 

-1 0 
(+) 1 ~ r sin 60 A,, (v) = -- -,- dv', ~ (v) = 0, 

Jt " - v n:n: 
(4.3) 

-oo 

which gives rise to the additional relation 

a<+> (W)- a<+J (W) = Po- M a<+J (W). (4.4) 
Pa;, P,;, Po + M s 

Making use of (4.3), (2.6), and (2.7) we easily find 
that 

W [a~+l (W)- 3a~::. (W)l = W' [a~+l (W')- 3a~::. (W')], 

W ra<+l (W) - a<+l (W)J = W' [G<+l (W') - a<+l (W')l. 
P1/ P,1 P1/ P,, 

I 
0 0 

lo ( 4, 5) 

The relations (4.1) and (4.5) give rise to the 
symmetry properties of the function a<+) first es­
tablished by Lovelace (private communication to 
Hamilton, see [3] ) : 

wa<+l (W) = W'a<+l (W') wa<+l (W)= W'a<+l (W') 
s s ' Pt;1 Plj., ' 

wa<+l (W)= W'a<+l (W'). (4 6) 
Pala Pa/a • 

They are a direct consequence of crossing sym­
metry and the second of Eqs. (4.3). 

The analogous relations for the functions 
G ~7 ( W) are considerably more complicated since 

in this case A<-> and B<-> are different from zero. rrrr rrrr 
They reflect only the crossing symmetry proper­
ties of these functions. Since these properties for 
the partial waves are simplest in the static approx­
imation we go to the limit M- oo. 

Let 

gjj=l (w) = lim ajj=l (W). 
M-+OO 

(4.7) 

For the functions g(±) ( w) it is easy to show that 
ZJ 

g)jl (w) = ±gjj=l (- w). (4.8) 

A comparison of Eq. (4.8) with the crossing sym­
metry relations (5.1) from [1] shows that one and 

the same function g(±) ( w) - g(±) ( w r must be 
P112 P3/2 

both symmetric and antisymmetric in w, i.e. it 
must vanish identically, or 

(4. 9) 

The Eqs. (3.1) satisfy the conditions (4.1), (4.8) 
and (4.9). The Eqs. (4.1), (4.4), (4.6), (4.8), and 
(4. 9) are convenient for checking the consistency 
of the rrrr contributions to different partial waves 
if the latter are evaluated independently. In the 
paper of Hamilton et al. [ 3] the relations (4.6) are 
satisfied. However the equality (4.1) is valid for 
the "differences" ~ (±) themselves, which in addi­
tion to the rrrr contributions contain, for example, 
also integrals from the crossed reaction to rrN 
scattering. If the proposed decomposition of ~ <+> 
into rrrr terms and contributions due to distant 
singularities is accepted, then Eq. (4.1) is valid 
for the rrrr contributions neither in magnitude nor 
in sign. Therefore the extraction of the rr7f terms 
from the differences ~ (±) must be viewed as un-
successful. ZJ 

Within statistical error limits the Eq. (4.9) is 
satisfied for ~f!} 312 • For the quantities ~i7 none 

of the above mentioned relations is satisfied, 
which cannot be blamed on the neglect of the d 
waves since the ~~7 are calculated only up to 

energies of 100 MeV. While the failure of relations 
(4.9) and (4.8) could be blamed on terms of order 
1/M, the equality (4.1) should nevertheless be 
satisfied. 

5. COMPARISON WITH EXPERIMENTAL DATA 

The system of equations (3.1) contains one sub­
traction parameter a+. Its numerical value is 
small (a+ = - 0. 005) and we therefore set in the 
calculations a+= 0. Since the subtraction param­
eters take into account the high energy behavior of 
the functions, it follows that in this case the low 
energy region is little influenced by the behavior 
of the scattering amplitude at high energies. 

In order to obtain the energy dependence of 
Re f(Z±) it is necessary to know the functional form 

,J 
of 6~. Below we consider the following versions: 

_.o aok 
b) tg uo = l-'- k";;>,' 

I I 

_.o aok 1 
C) tg Uo = 1+ k2j31- bok2 • (5.1)* 

Making use of the method described in [1 J for 
the calculation of the function F 0 ( v) we obtain 
the general formula: 

iw- k.i + k. 
Fo(v) = II~k~~k'. 

lffi i it- j 

Im k, > 0, Im kj < 0, lu = Y v + 1, 

*tg = Um. 
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0.1 

0,05 

0 

FIG. 1 
where ki,j are the roots of the equation 1 + i tan 
6~ = 0. The versions a) and b) differ in the asymp­
totic behavior for k- co. Calculation shows that 
for values 1 < a 0 < 3 and 1 < w < 3 the ratio 
F(a)jF(b) lies in the interval (1; 0.75). The same 
cJn be 0said of the rrrr contribution: in the low 
energy region ( w s 3) it varies by less than 20%. 
Consequently the assumptions about the asymptotic 
behavior of 6~ have little effect on the low energy 
region w < 3. 

Version b) is more realistic than version a) 
since in the scattering length approximation tan 6~ 
== a0k/..J 1 + k2. The presence of the root -f1+k2 
makes the calculation of F 0 ( v) more difficult and 
we therefore approximate it by 1 + k2/3 in the re­
gion k2 :S 10. In version b) it is necessary that a 0 

> 3 in order to explain the energy dependence of 
Re f~+l. Since such large values for the scattering 
length are improbable we consider below the ver­
sion c). 

It follows from a comparison of the solutions of 
the rrrr scattering equations with the experimental 
data that the parameters a 0 and b0 lie in the in­
tervals 0.5 :S a0 :S 1 and 0.05 :S b0.[s] We have 
therefore taken the extreme values of the scat­
tering length and determined from them the param­
eter b0• The following intervals are not in contra­
diction with experimental data on rrN scattering: 

scattering data. Up to values k2 == 9 the phase 
shift 6~ may be approximated to a high accuracy 
by the expressions 

tg /)~ = 0.63 k/(1 + 0.7 k2) (/.., =- 0.1), (5.2) 

tg bg = 4,2 k/(1 + 3.08 k2) (/.., = - 0.3) 

(Fig. 1, curves 2, 3 ). The corresponding curves 
for Re £S lie below all experimental points (see 
Fig. 1). Let us note that after the assumption a+ 
== 0 is made the quantity Re f~+l is determined by 
the rrrr contribution only. Therefore the s+ wave 
is most sensitive to the rrrr interaction parameters. 

The experimental data on the p;12 wave are 
known with large errors. Consideration of this 
wave adds nothing new to our knowledge of the 
parameters a 0 and b0, although it does indicate 
agreement with experiment in the low energy re­
gion. The behavior of the p~/2 wave is determined 

in essence by the resonant f~ wave; the role played 
by the rrrr terms is small. 

The relations (4.1) and (4.9) connect the contri­
butions into the s and p rrN -scattering waves due 
to the rrrr interaction. Given the rrrr terms in the 
s waves these relations may be used to calculate 
the quantity g~~ ( w). Its magnitude, as was to be 
expected, is small: 

3f2 
gar2 Ref::-;~ 

0,5 +0.00025 0.05 
1.0 -O.OOOR U.23 
1.5 -0.0054 0.~4 
~.0 -0.0120 -0.24 
•) " 
~ • .J -0.021fl -0.18 
3.0 -0.043 -0.095 

Thus the low energy data on rrN scattering is 
not in contradiction with the chosen values of the 
parameters a 0 == 1 and b0 == 0.05 (t~ == 1250 MeV). 
The value of the scattering length a 0 = 1 is in 
agreement with the results of Hamilton et al.[ 3J 

Go = 0.5; 0.04 <:;; b0 <:;; 0.08 (1030 MeV <;; t'/• <:;; 1430 MeV); CONCLUSIONS 

Go = 1; 0,07 <:;; b0 < 0.11 (890 MeV <:;; t><;;; 1095 MeV). The Mandelstam double dispersion representa-

The version a 0 = 1, b0 == 0. 05 ( Fig. 1, curve 1) 
should be considered as best.2l 

It is interesting to analyze the s-wave dominant 
solution of Chew, Mandelstam and Noyes [ 7] from 
the point of view of its correspondence to the rrN 

2lNote added in proof (July 1, 1963). An analysis based on 
the x 2 test allowed the extraction of regions of two minima for 
b0 < 0.09. The first has borders 0.05 < b0 < 0.07, 0. 7 < ~ < 1.3 
and corresponds to a resonant form for the phase shift. Borders 
of the second region are much broader (b0 < 0.05, a0 > 1.4) and 
it corresponds to version b) with ~ "' 3 and b0 == 0. The param­
eters ~ and b0 are strongly correlated. For b0 = 0.07 we 
have ~ = 1 ± 0. 12. 

tion connects the rrN scattering problem to that of 
the rrrr interaction. Equations (3.1) and (5.6) from 
[ 1 J explicitly display this connection. They have 
been obtained by one and the same method, which 
was proposed by Efremov et al.[ 5J The same 
method has been used by Serebryakov and Shirkov[S] 
to analyze 1rrr scattering. The manner in which 
Eqs. (3.1) are deduced from Eq. (5.6) of [1] allows 
the use of various assumptions for the form of the 
rrrr scattering phase shifts in order to explain rrN 
scattering. At that it turns out that the best de­
scription of rrN scattering in s and p waves at 
low energies is obtained by using the solutions 
from [s]. The s-wave dominant solution of Chew, 
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FIG. 2 

Mandelstam and Noyes [7] does not correspond to 
the experimental data on 1rN scattering. From 
our point of view the result obtained proves the 
selfconsistency of the method for describing 
phenomena in the low energy region. 

A comparison with the experimental data is 
carried out in the static approximation. The fol­
lowing conclusions are obtained: 

1) For a correct description of the scattering 
of pions on nucleons the 1r1r interaction must be 
taken into account (Fig. 2 ). 

2) The 1r1r contributions to 1rN scattering sa­
tisfy the conditions (4.1), (4.4), (4.6), (4.8), and 
(4. 9). 

3) s and p 1r1r scattering waves were taken into 
account independently. The assumption that these 
phase shifts have a resonant character leads to a 
satisfactory description of the experimental data 
on 1rN scattering. 

The authors are grateful to D. V. Shirkov for 
useful advice. One of us ( V. I. L.) is grateful to 

the directorship of the Laboratory for Theoretical 
Physics of the Joint Institute for Nuclear Research 
for the hospitality extended to him. 

1 P. S. Isaev and V. A. Meshcheryakov, JETP 
43, 1339 (1962), Soviet Phys. JETP 16, 951 (1963); 
preprint Joint Inst. Nuc. Res. R-938 (1962). 

2 A. Takahashi, Progr. Theor. Phys. 27, 665 
(1962). 

3 J. Hamilton and T. D. Spearman, Ann. Phys. 
12, 172 (1961). Hamilton, Menotti, Spearman, and 
Woolcock, Nuovo cimento 20, 519 (1961). Hamilton, 
Spearman, and Woolcock, Ann. Phys. 17, 1 (1962). 
Hamilton, Menotti, Oades, and Vick, preprint "Pion­
Nucleon Scattering and Pion-Pion Interactions" 
(1962). 

4 D. Atkinson, preprint "Prediction of Pion 
Phases'' (1962). 

5 Efremov, Meshcheryakov, Shirkov, and Tzu, 
Nucl. Phys. 22, 202 (1961); Proc. of the Rochester 
Conf., 1961, pp. 278-280. 

6 Efremov, Meshcheryakov, and Shirkov, JETP 
39, 439, 1099 (1960), Soviet Phys. JETP 12, 308, 
769 (1961). 

7 Chew, Mandelstam, and Noyes, Phys. Rev. 119, 
478 (1960). See also New Methods in the Theory 
of Strong Interactions, IlL, 1960. 

8 v. v. Serebryakov and D. V. Shirkov, JETP 
42, 610 (1962), Soviet Phys. JETP 15, 425 (1962); 
Nucl. Phys. 34, 500 (1962); Phys. Lett. 1, 195 
(1962). 

91. Pomeranchuk and L. Okun, Nucl. Phys. 10, 
492 (1959). 

Translated by A. M. Bincer 
50 


