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The scattering of photons on spin 1/ 2 particles for large values of s and finite u is investi
gated on the basis of the Regge pole hypothesis. The expression for the scattering amplitude 
is reduced to an explicitly factorized form. The main qualitative results are the same as 
those of Gribov for 1rN scattering.Cto] Asymptotic expressions for the differential cross sec
tion and some polarization effects are calculated for large angle scattering. 

RECENTLY, a number of papers appeared in All particles in the Feynman graph are considered 
which the Regge pole hypothesis was extended to incoming; the following notation is used: 
quantum electrodynamics. [t- 3] This is a very ' ' 

P~'- = P~'-- K~'- (P'K) K-2 , P~'- = 1/2 (Pl[J.- P2~'-), 
natural development of the theory, since quantum K 1; (k- k ) N · p K Q Q k + k [J.= 2 l[J.- 2[J. ' [J. = tB[J.VPO Y P "' [J. = l[J. 2[J.• 
electrodynamics has been well confirmed by ex-
periment and a comparison with it might allow one 
to test the validity of the very idea of the moving 
poles. Gell-Mann and Goldberger [3] have consid
ered the asymptotic behavior (large s and finite 
u) of the amplitude for the Compton effect on par
ticles with spin 0 and t;2, calculated in second 
order perturbation theory. In the scalar case the 
results of perturbation theory are not in disagree
ment with the Regge pole hypothesis. 

In the present paper we consider the Compton 
effect on a spinor particle for large s and finite 
u on the basis of the idea of moving poles. As
suming the existence of dominant isolated Regge 
poles, we determine the asymptotic behavior of 
the cross section and other experimentally ob
servable quantities for large angle scattering. 

1. FERMION REGGE POLES 

As is known, the most general expression for 
the scattering of a photon by a spin 1/ 2 particle has 
the form [4] 

F = e;.,u2 (- P2) F ~'-"ul (pl) el[J.; 

i=l 

(1) 

The Mandelstam variables s, t, and u are in this 
notation equal to 

s = - (pl + k1)2, t = - (pl + P2)2, U = - (pl + k2)2• 

We are interested in the asymptotic behavior in 
the s channel for large positive s and finite nega
tive u. To find the asymptotic amplitude we must 
follow the usual procedure and go over to the u 
channel ( u > 0, s < 0), where s has the meaning 
of a momentum transfer. Using the Legendre ex
pansion of the amplitude, we can obtain the value 
of the amplitude in the unphysical region of large 
positive s. We then find the required asymptotic 
expression by analytic continuation of the ampli
tude into the region u < 0. 

The transition to the u channel is most easily 
accomplished by applying crossing symmetry to 
formula (1). However, it is convenient to make a 
partial wave expansion of an amplitude with defi
nite helicity:[s] 

(A,,Ay, IF I "A,,"Ay,). 

Following the work of Hearn and Leader, [6] we 
consider the six helicity amplitudes which com
pletely determine the Compton effect: 

<D1 = <+l!FI-i-1>, «»2= <-+-IIF!+I>, 
«»a=<-i--IIFI~l), <D4=<-fiiFI+l>, 
<D5 = <--i-IIfl--i-1>, ID6 =<+-I IFI-fl>.(2) 
The partial wave expansion of the amplitudes 4>i 
has the form [6] 
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(A.' IF I A) = ip 2; (2j + I) CDL.-dL: (8). ( 3) 
I 

Here j is the total angular momentum, p and e 
are the momentum and scattering angle in the 
c.m.s., A.= A.et - :\'Y2; A.' = A.e 2 - A.y1; t~e proper
ties of the reduced rotation matrices dlA.,(8) are 
discussed in detail in the paper of Jacob and 
Wick.[s] 

To determine the contribution of the dominant 
Regge poles we must express the amplitude as a 
superposition of partial amplitudes <1>~:\' corre
sponding to transitions between states with defi
nite parity. Here it is convenient to introduce the 
following combinations of the amplitudes <Pi, using 
the explicit form of d~:\,(8): 

rf = IDJcos {8/2) ± IDJsin (8/2); 

fi = IDJcos (8/2) ± IDJsin (8/2); 

f"t = <D5 cos (8/2) ± ID6 sin (8/2). 

. Using (3) and the explicit expressions for 
dh,(8), we find 

± 1 ' j i ' ' i !1 = P 2; {Pi+';,(<Dl± ID2)- P( .. •;,(IDl =f ID2)}. 
I 

fi = ~ 2; {(i +it (i-} r;, (<D' =f ID~) P; .. •;, 
I 

- (i -} )';, (i + ft1' {<D' ± IDj P;+'l•} , 

r 1 ~ 1 
s =2jJ ~ (j _lfa) (j + 312) 

I 

X {[ (i-}) (i + ~) p;+'l•- z (i +fYP; ... ;,](<D' =f ID!) 

(4) 

+ w -}r zP;+'/,- (i +f) (i- f)P;_~1.] (CD~± <D~)t. 
( 5) 

Here Pz are the derivatives of the Legendre poly
nomials with respect to their argument, 

z = cos 8 = I + 2ut (u- m2t 2• 

It can be shown that the combinations of partial 
waves entering in (5) correspond to transitions 
between states with definite total angular momen
tum, total spin, and parity P, viz., 

CD{± <D,, 

CD'± <DL 
CD~± CD£, 

lj2->- lf2, 

lf2 ~ a;2, 

a;2 -> a;2, 

p = ± (- l)i-'1·, 

p = ± (- l)i-'h, 

p = ± (- I)·-'1•. 

Using dispersion relations in the momentum 
transfer t forfixed u we can, inanalogyto[7,BJ, 

introduc~ analytic functions of j, denoted by 
( il>k ± <Pk_ )±, _which coincide with the physical par
tial amplitudes for even and odd values of j - %. 

respectively. The superscripts ± denote the so
called signature. If we assume that the singulari
ties in j are poles, we have thus two systems of 
poles for definite signature, corresponding to pos
itive and negative parity. Each of these systems 
describes in turn three types of transitions. 

Before going into a detailed discussion of these 
poles, we note a few results which are independent 
of the character of the singularities in j. To this 
end, we use the formulas of (s] for the transforma
tion from the helicity amplitudes <Pi ( 2) to the in
variants Ai ( 1 ) , keeping only the leading terms in 
z, and express the f{ in terms of the Ai: 

+ + -_ .!!_ [ 'ZmA1 _ A J . 
IP1 IP1 - :rt m• ~ u 4 • 

+ - p [(m2 + u) A1 l 
IP1- 1P1 = ----:;;:=- 2 - mA4J; :rtyu m-u 

+- :A'V-1Pa - IPa ~c p aJlt u; 

+ _ p [ 2mA 2 J 
IPz + <pz = n A5- m•- u ; 

+ - _ p [(m2 + u) A2 A J 
IP2- IP2 - lt Yu m•- u - m 5 • 

For reasons of economy we have here introduced 
the notation 

<pf = tf- 2/i + 2N!z; 

(6) 

<pf = rf + 2tf + 2/Nz; <p{ = / 1 - 2/flz. (7) 

The invariant amplitudes Ai have no singulari
ties at u = 0, [s] in particular, none of the square 
root type. We see therefore, that, for arbitrary j, 
the partial waves corresponding to cp{ - cpf go to 
infinity or zero for u - 0, whereas the partial 
waves corresponding to cp{ + cpf remain finite. 
This is possible only if the singularities of the 
partial waves cp{ and cpf, as functions of j, co
incide for u = 0. Moreover, it follows from the 
expressions for cp{ and <pf, which we shall not 
write down, that they transform one into the other 
under the interchange -fU- - ..JU.. Both of these 
results have been obtained by Gribov for the case 
of pion-nucleon scattering. [to] 

If we assume that the closest singularities for 
large j are poles we can, in the usual way, L7J re
place the sum in ( 5) by an integral, extend the in
tegration contour along the imaginary axis, and 
take only into account the contribution from the 
dominant pole in the sum over residues. Let us, 
for ~xample, consider a pole with parity 
(-1)]-i/ 2• This pole receives contributions from 
the partial amplitudes ( <~>i + il>~ )± whose residues 

we shall denote by rf1, rf3, and r~3 , in correspond-
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ence with the transitions to which they refer. How
ever, these residues are not independent. It can 
be shown that the unitarity condition in the u 
channel leads to the following relation :1 l 

( 8) 

Calculating the contribution from the dominant 
pole to fi± and finding the corresponding contribu
tions to the invariant amplitudes Ai with the help 
of (6) and (7), we obtain the following expression 
for the total amplitude (1): 

i=l. 

r = u (u- m2t2. 
(9) 

The quantities Ai have the following values: 

Al = - (m + Jfu) r~, A2 = (m- Vu) r~, 
A 3 =- Vur±r~, A 6 = mr±r~, 

A4 = -mr~, As= mr'!; 

r ± = (m - Vu> •;, <m + Vu> -•;, 
x {(riD';,+ [(j- 1/ 2) rfal(j + %)1'1'}, 

, ~ = <m + Jlu) .~, <m - Vu> -•;, 

A1 = -2-ft (m2 - u)lm2 + ~ [l - ft2 (m2 - u)/4m2], 
A2 = ft (ft + 2) (m2 - u)/2m2 + ~ [1 - ft2 (m2 - u)l4m2], 
A3 = - (1 - ~) [1 + ft + ft2 (m2 - u)/4m2], 
A6 = I + ft +- ft2 (m2 - u)/4m2, 
A4 = - 1 + ft2 (m2 - u)l4m2 - ~ft (ft + 2)/2, 
As = 1 + ft (ft + 2) - ft2 (m2- u)/4m2 - ~ft (ft + 2)12.(12) 

Comparing (12) with (10), we obtain a system of 
six equations for the three unknown quantities D, 
(3, and f.l· The solution of this system is therefore 
at the same time a verification of the ansatz (11). 

It turns out that the system of equations is con
sistent and has the following solution: 

~ = (m- Vu)lm, 

ft = 2m (r±- r~) ((m- Vii) r~- (m + V-u) r±r1 , 

D = [(m + Yu) '±- (m- Vii) r~] 2 / 4u. (13) 

. Combining C and D into a single factor G and 
taking account of the poles with both pari ties, we 
obtain finally 

F [J-V = a(l>r~l) (i/-Yu) r~l) ri·-'1• ± (- s)j,-•;,1 I cos Jtjl 

+- a<2>r~2> (if+ Vu) r~2> (si·-'1• ± (- s)i:r---'1•1 I cos Jtj2· (14) 

The quantities with the superscript (2) are obtained 
from those with the superscript (1) by the replace-

X{- (riD •;, + [(j- 112) r?:/(j + 3/ 2)]'1'}. 

The ~ontribution from the pole with parity 
-(-)J- 112 differs from (9) by the replacement 
.fU- -.fU. 

(10) ment .fU- - ru. It is seen from (14) that the 
spinor structure of the amplitudes of the Compton 
effect derived on the basis of the Regge pole hy
pothesis is similar to the one obtained by Gell
Mann and Goldberger by perturbation theory. 

2. FACTORIZATION 

Formula (9) solves our problem and permits 
the calculation of experimentally observable quan
tities. However, it becomes much more lucid if 
we reduce it to an explicitly factorized form, i.e., 
express it as a product of two similar expressions 
with some propagation function in between. It is 
rather natural to make the following ansatz for 
this factorization: 

i=l 

fv = Yv + (i~-tl4m) (yJil - k1rv), 

rl'- =II"+ Ci~-t/4m) (y[l-k2- kzrp.), 

f =PI+- k2. (11) 

Here f.l ( u) is the anomalous magnetic moment of 
the fermion. 

Expanding the right-hand side of (11) in terms 
of the tensors F~v· we find 

1lWe are grateful to V. B. Berestetski1 for explanations on 
this point. 

3. ASYMPTOTIC FORM FOR LARGE ANGLE 
SCATTERING 

Let us consider the scattering for large values 
of s and finite u in the channel where s is the 
energy. In this case u is negative. It can be 
shown that for u < 0 the poles of amplitudes with 
opposite parity as well as the residues in these 
poles are complex conjugates of one another. To 
this end it suffices to determine the absorptive 
parts of the expressions standing on the right-hand 
side of (6) and repeat word for word the argumen
tation of the paper of Gribov. [1 oJ For u < 0 we 
must therefore include the contribution from both 
poles. 

The coefficients in formulas (10) for Ai contain 
only m and .fU. Therefore, the expression for the 
amplitude will be composed of combinations of the 
type 
H = m {r~ [si-'i• ± (- s)1-'1'1 I cos Jtj 

+ rf_ (s~*-'1• ± (- s)r-•;,1 I cos Jtj'}, 

B = Yu {r'=t- [s;~•;, ± (- s)1-'1'1 I cos Jtj 

- r"f_ (si'-'1• ± (- s{-''] I cos Jtj'}. (15) 
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Writing the residues in the poles r with parity 
±(-1)j-il2 as 2-112pe±i<p, we obtain for the imagi
nary parts of expressions of the type H and B 

H~·> (u, s) = ± mR'f (u) si'-'J, cos (j"6 + 1Jl), 

Bi'> (u, s) = ± Y- u Rf (u) si'-'l• sin (j"S + 1Jl), (16) 

where ~ = ln s; j' and j" are the real and imagi
nary parts of the function j ( u) defining the posi
tion of the pole; 

Rt = P2 , R2 = pp', Ra = p'2; 
'Pt = 2cp, 1JJ2 = <p + cp', 'Pa = 2cp'. 

The real parts of the expressions H and B 
have the form 

Re H<'> (u, s) = m:x±Rf (u) si'-'J, cos U"6 + 'P, =t ~), 

ReB<'> (u, s) = Y- u a±Rf (u) si'-'J, sin (j"6 + 1JJ, =t ~); 

a~= (ch nj" =t sin nj') I (ch nj" ± sin nj'), 

tg ~ = sh nj" I cos nj'. (17)* 

Using the formulas of [HJ, one can now determine 
the asymptotic behavior of the differential cross 
section for the Compton effect and of various 
polarization coefficients in the region of large 
angles. We have 

da I dQ = - u (p~ + p'2.)2 (1 + a~) s2i'-t, 
+ + -

C3 = - U (p~ - p~) (1 + a~) s2i'-I, 

b .. = ± 4N .. a+ (p~- p'!) Y- u sin(±~) s2i'-2 , 
r r - + + 

hu = o, haa = _ u (p~ _ p'2.)2 (1 + a~) s2/'-1, 
+ + -

h22 = - 4up~p'2. [a~ cos 2 (j"6 + <p + cp' =t ~) 
+ + -

+cos 2 (j"6 + cp + cp')l s2i'-t. (18) 

*ch = cosh, sh = sinh, tg = tan. 

The constant factors are included in the residues; 
the notation is taken from [ii]. 

It is seen from (18) that the cross section and 
certain simple polarization coefficients depend on 
the energy monotonically, despite the oscillatory 
character of the energy dependence of the scatter
ing amplitude. On the other hand, the polarization 
coefficient h22 , which describes the change of the 
circular polarization of the photon in the scatter
ing process, oscillates as the energy varies. 

In conclusion we express our deep gratitude to 
A. I. Akhiezer, D. V. Volkov, and V. N. Gribov for 
numerous useful discussions. 
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