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Solution of collision problems by expanding the wave function of the system in a set of eigen
functions of the Hamiltonian of the unperturbed atom is not optimal with respect to rapid con
vergence of the series. A set of equation is obtained for the optimal basis and for the coeffi
cients of the expansion of the '11-function in terms of the basis. Specific calculations of phase 
shifts are made for the elastic scattering of low-energy electrons by a hydrogen atom. 

1. INTRODUCTION 

LET an electron with energy k2 (in Hartree 
units ) collide with an arbitrary atom. The wave 
function of such a system is customarily sought 
in the form of an expansion in a complete set of 
functions ui, describing all possible states of the 
unperturbed atom [1- 3] 

'¥ = ~ F;U;. (1.1) 

This method leads to an infinite system of integro
differential equations, solution of which determines, 
in principle, the exact solution of the problem. In 
practical calculations it is necessary to use the 
first terms of the sought expansion. In view of the 
slow convergence of the series, such a cutoff is 
unsatisfactory, and calculations based on it are for 
the most part estimates. This is clear from sev
eral papersC4- 6J in which account is taken of the 
virtual 2s and 3s states in the calculation of elas
tic scattering of electrons by a hydrogen atom. 
The approximate scattering lengths obtained there
by exaggerate the maximum estimates given in the 
article by Rosenberg, Spruch, and 0' Malley [7]. An 
account of the 2p level greatly improves the situa
tion,[a] but the computation accuracy, particularly 
for inelastic processes [9•10], is still far from 
satisfactory. 

Thus, the calculations based on expansion (1.1) 
can hardly be considered optimal. An analogous 
situation arises also in problems with a discrete 
energy spectrum. In fact, an attempt could be 
made to calculate the bound state of the helium 
atom by expanding the sought wave function in a 

complete set of the hydrogen-atom wave functions. 
It is clear that such a series would have exceed
ingly slow convergence and the computation accu
racy would be low. The shortcomings of the method 
lie in the fact that the system of hydrogen functions 
is not optimal for the helium atom from the point of 
view of rate of convergence of the series. By us
ing a variational principle for the energy it is easy 
to obtain equations defining an optimal basis. The 
rate of convergence then increases to such an ex
tent that in the overwhelming number of applications 
the single-electron approximation is sufficient. The 
equations for this approximation are called the 
Hartree-Fock equations. [11] 

We can therefore hope to increase noticeably 
the rate of convergence of series (1.1) by correct 
choice of the system basis functions. This as
sumption was verified earlierC12 J and it was shown 
in particular that to calculate the cross section for 
the elastic scattering of an electron by a hydrogen 
atom, at least for low energies k2, the single
electron approximation is already sufficient. 

In the present paper we obtain a system of equa
tions for the optimal basis, for arbitrary k2 smaller 
than the ionization potential of the atom. All pos
sible inelastic processes are taken into account. 
Specific calculations are made for the scattering 
of an electron by a hydrogen atom. The generali
zation to include an arbitrary atom does not entail 
any difficulties in principle. 

We begin with the case of the scattering of an 
electron of infinitesimally low energy, the analysis 
of which is facilitated by the presence of a func
tional that is extremal with respect to the scatter
ing length. 
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2. SCATTERING OF AN ELECTRON OF 
INFINITESIMALLY LOW ENERGY ( k2 = 0) 

Let an electron with energy k2 = 0 be scattered 
by a hydrogen atom in the ground state. We con
sider the triplet case. We seek the unknown wave 
function in the form 

n 

"If (rl, r2) = ~ "If; (rl, r2), 
i=l 

(2.1) 

under the condition 

g1 (r) = U 1 (r), F1 (r) =I + ei/r (r---+ oo); (2.2) 

where u1 ( r) -wave function of the hydrogen-atom 
ground state, a -scattering length, and P - op
erator of electron permutation. 

To find the optimal system of basis functions 
we use the Hulthen functional 

J = - l:i + tc ~"If (r1 , r2) (H-E) "If (r1 , r2) dr1 dr2, (2.3) 

which has an extremum (minimum) for triplet 
scattering at k2 = 0 under the boundary conditions 
(2.2) [12]. 

Substituting (2.1) in (2.3) and varying with re
spect to Fi(r) (i=1,2, ... ,n) and gi(r) (i=2, 
... n ), we obtain a system of equations for these 
functions. The main consequence of the obtained 
equations is that the system gi (r), being the best 
(as follows from the extremal nature of the func
tional ) , does not consist of the eigenfunctions of 
the hydrogen atom. Consequently, it becomes nec
essary to deform at least the energetically unat
tainable levels during the course of the solution. 

Further improvement of the system gi ( r) is 
based on the following remark. In the exact ~or
mulation of the problem it is necessary to solve 
the equation 

H'¥ = E'¥ 

under the boundary condition 

'¥ (ri, ri) _,.(-I )iT';, gr(ri) (I + !:i/rj}, 
(i, j = I,2; i =I= j) 

and for the minimally possible E. It is important 
that the form of gi ( r ) and the value of E need not 
be specified beforehand, for they are determined 
during the course of the solution (and naturally 
coincide with the hydrogen values ) . It follows 
therefore that the values of gi (r) and E can dif
fer from their exact values in the approximate 
solution of the problem and for the optimal value 
of a. A shortcoming of the functional (2.3) is that 
it does not admit of variation of these quantities. 
A possible modification for it, free of these short-

comings, was proposed by one of the authors [14 ]. 
We shall not present the explicit form of the 

system of equations for k2 = 0. It will be obtained 
later as the particular case of a more general 
analysis. 

3. SCATTERING OF AN ELECTRON OF ARBI
TRARY ENERGY ( k2 "'- 0) 

Let the initial state of the atom be determined 
by an energy E 0, a momentum l~, a momentum 
projection m~z, and a spin projection m~s· The 
incident electron is described by a plane wave 
with wave vector ko· The wave function of the 
system has an asymptotic form ( r 2 - oo): 

1¥11, (rl, r2) = ~2~ <1>11 (1, 2) [<'liJ-,11 exp (iknr2) 
11 

Here J.L is the set of quantum numbers 
(nl1m1zm1sm2s ), and 

(3.1) 

<1>1'- (I, 2) = gnt, (rl) r!1Yt,m11 (Q 1) 'Y]m15 (I) 'Y]m 25 (2), 

where gnz1(r1)r11Yz1m 1z(Q1) -wave function of 
the hydrogen atom, 7Jm. ( i) - spin functions of 
two electrons, and AJ.L0~7n0 , n) -scattering ampli
tude corresponding to the transition from state J.Lo 

to state J.L with change in electron direction from 
n0 to n. 

We seek the function >¥J.L0(r1, r 2) in the form of 
an antisymmetrical combination 

1 
"If ~'-• (r1o r2) = VZ 

x~[(I -P) _!_g~'(ri) _!_p~•(r2)Yt~L (I,2) YsMs (I,2)], L.J r1 r2 
r; 

(3.2) 

where 

Yt~L (1,2) = ~ (llm11l2m2t!lll2LML) Yz,m11 (1) Yz,rn 21 (2) 
mll• m21 

is the eigenfunction of the total orbital momentum 
operator, ( ... I .•. ) are Clebsch-Gordan coeffi
cients, and r is the set of indices (nl1l2LMLSMs ). 

It follows from (3.1) and (3.2) that (v = {nl1l2}) 

F~· (r) _,. ~ B~· { <'lw, exp [- i (knr - :rtlJ2) J 
1~. mgz 

- s;v~ exp [i (knr- :rtlJ2)]} (r _.., oo), 

The scattering matrix sb'90 determines the 
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cross section of all the processes. In particular, 
the total atom excitation cross section for the 
transition n°Z~- nl1 is equal to 

0 (noLO-+ nl) = ~ "'V (2L + 1) (2S + 1) I sLS 0 12 
1 1 4k2 .LJ (21~ + 1) vv,- vv, . 

0 LSl2l~ 

To derive a system of equations for the radial 
functions F~O(r) and g~O(r) we use the functional 

) 1 mll (' d J = Ap.,1,, (no, n1 -4ii: (- 1) Jdq1 q2 

X{[~ dQ 1 dQ 21J!p., (- n0) (H-E) Wp., (n1)] 

2 

_ ~ ~ (- l)l,+l,-L+MLO •O •"l' 
i=l /1/1 l'l.lz l 

quantum number of the last energetically attainable 
level. 

The functional (3.4) leads in general form to a 
set of equations that determine two functions 
>I!J.l-0( -n0 ) and wJ.l-1(n1), so that this set is exceed
ingly complicated. A simplification is possible for 
elastic scattering of an electron by a spherically 
symmetrical atom, owing to the relation 

1¥~ (- n0, r1 , r2) ~ 1J!P. (nv Dr1, Dr2) 

(here D is the operator of rotation by the angle 
between the vectors n1 and n0 ), and also for the 
case of elastic scattering forward. The latter 
case is of great interest in view of the existence 
of the optical theorem, which relates the imagi
nary part of the amplitude of elastic forward 

X (-no)(Hi-E) 'X~'(n1)}; (3.4) scattering with the total observed cross section: 

H =-vi - V~- 2/r1 - 2/r2 + 2/r12• 

H1 = - v~~ - v;i + Li (li + 1)/rJ (i, j = 1, 2; i =1= j), 

'VP. ( ) ( 1)i2-'/, -1 p. ( ) -1 Q~'- ( ) '"L n = - ri gr ri r1 r r1 . (3.5) 

Here Qt has the form (3.3), Q is the solid angle 
determining the position of the electrons, q the 
aggregate comprising the radial coordinate and the 
spin variable, and E is the total energy of the sys
tem. The summation is over L, S, ML, Ms, v, 
and v'. The functions >I! J.lo (- n0 ) and >I! J.li ( n1 ) differ 
in the initial state of the atom and in the initial di
rection of motion of the free electron. 

If we use for g¥ ( r ) the wave functions of the 
hydrogen atom, then the functional (3.4) loses the 
last term and coincides with Kohn' s functional [ 15 J. 
In the general case it admits of individual varia
tion of all the bas is functions. For fixed E , the 
functional i is stationary with respect to 
AJlO Jl1(no, nj), i.e., oJ = 0. 

In the general case, allowing for the possibility 
of varying E, we have 

_. 1 mll "'V "Ev'LS [/LS" " 
uJ = 4Ji: (- 1) .LJ u v·J'Unn'- U<; ,• 

r. r· 

00 co 

ILS " (' (f~'-•fl'' Q~'•Q~'') d vv' = u-.; 't'' .) r r· - r r· r, !i (A, B)=~ ABdr, 
0 0 

(3.6) 

where T = ( Z1Z2 LS). The parameter E is assigned 
an index v because this parameter can be varied 
independently before each term of the sum (3.2). 
In practice it is necessary to vary only those 
EVLS for which n s m, where m is the principal 

In varying the functional it is necessary to take 
into account the supplementary conditions 

(3. 7) 

co 

0 ·0 • (' F vLS (r) (H1'- E.,•LS) gv'LS (r) dr = 0. 
!,12 1,11 J 

0 

(3.8) 

Otherwise the sought equations turn out to be in
compatible with required boundary conditions of 
the problem. The condition (3.8) must be regarded 
as a limitation on FvLS(r). In (3.7) and (3.8) v 
runs through all possible values, and v' only 
through those for which the corresponding kft' are 
positive. We use here the notation 

H 1 = - d2/dr2 + l (l + 1)/r2 - 2jr, 
()() 

EvLS = \ gvLS (r) H 1'gvLS (r) dr = pLS - k~,. 
0 

We require also that 

These orthogonality conditions, for a finite number 
of terms in (3.2), restrict somewhat the class of 
functions in which the solution is sought. Nonethe
less, we retain this requirement in order to sim
plify the sought-for equations. 

As a result we obtain the following system of 
equations: 

~ f~.,. { 61.o 
v', A 

r 

X [ (H1' + /,~~) ~~~ + \ f vLS (r') ( + - f) f v'LS (r') dr' J 
0 
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+ 2 (1- b~.o) Y1- (F vLS• fv'LS I r)} gv'LS (r) 

- (- ll-S ~ g~v' {bl.o (H 1'- k~·) Ll (gv'LS, fvLS) 
v', A 

+ 2yA(f vLS, gv'LS I r)} F v'LS (r) + 
X ~ r::/;3 f~v' (H1'- Ev'LS) gv'LS (r) = 0, 

v' 
(3.10) 

H''F vLS (r) - k~F vLS (r) = 

+ 2y~. (gvLS• gv'LS I r)} fv'LS (r) 

- (- 1)1-S ~ g~v' {bl.oll [gvLS (H1'- EvLS) fv'LS] 
A, v' 

~ pLS 0 HI, E 
- LJ [-'vv'gvv' ( - v'LS)gv'LS (r). 

v' 
(3.11) 

LS LS LS Here O!vv'• f3vv'• and A.vv' are the Lagrange mul-
tipliers determined by the conditions (3.7)-(3.9), 
and f~v' and g~v' are the matrix elements of the 
multi pole interaction operators (A. is the order of 
the multi pole): 

!~' •. = (l1l 2L I P~. (cos il'12) !l~t;L), 

g:,~. = (- 1)1'+I,-L (lll2L I PI (cos {}12) ll;t~L). 

The explicit form of these coefficients follows 
from the theory of irreducible tensor operators 
and is contained in the paper of Percival and 
Seaton[2J. If we assume in (3.11) that gv'Ls(r) 
is a complete system of hydrogen functions, then 
we return to the system obtained by Percival and 
Seaton [2]. The quantities y are given by 

r 

Y1. (A, B I r) = r1
1, 1 ~A (r1) B (r1) r~dr1 

0 
00 

+ /'~A (r1) B (r1) r~ 1.- 1dr1 . 

When k2 = 0, confining ourselves to the single
electron approximation, we obtain the system pre
viously obtained in [12]. We note that the agree
ment will be incomplete. In [12 ] there is no factor 
corresponding to {3~~~. so that the equation that 
follows from (3.10) with k2 = 0 must be regarded 
as more correct. 

When the number of terms in expansion (3.2) 
is increased, the functions gvLs(r ), which de
scribe the really excitable levels, tend to the hy
drogen functions as a result of (3. 7) and (3.8), and 
the asymptotic value of the wave function 'VJJ.o (r1, r 2 ) 

takes on the form (3.1). When the number of terms 
is finite, (3.1) is not satisfied. Consequently, in 
any approximation it is advisable to modify some
what the boundary conditions of the problem for 
an optimal determination of the scattering ampli
tude. 

The parameters EvLS are in general complex, 
and their imaginary parts tend to zero with in
creasing number of terms in (3.2). 

The amplitude AJJ.oJJ.o(n0, n1 ) obtained from the 
system (3.10)-(3.11) can subsequently be improved 
by substituting the solutions of (3.10) and (3.11) in 
the functional (3.4), in which the parameter E must 
be equated to the exact value of the energy of the 
system under consideration. 

4. ESTIMATES OF THE PHASE SHIFTS FOR 
ELASTIC SCATTERING OF SLOW ELECTRONS 
BY HYDROGEN ATOMS 

We confine ourselves in (3.2) to the zeroth ap
proximation, i.e., we represent the 'IF function in 
the form 

"lfs (r1 , r 2) = 2-'/, (1 - P) r~1gs (r1) r;1F s (r 2) Y s (1,2) (4.1) 

(the indices Ms, which are immaterial in this 
problem, are omitted). Such an approximation is 
equivalent to account of s-scattering in the frame
work of the self-consistent-field method. 

The functional (3.4) is of the form 

00 

2n 1 [ d' d' l J =- k tg'Y]±- 2n ~ F 5 (r) dr' Fs (r)- Q5 (r) dr' Qs(r) dr 
0 

00 

+ 4n ~ [ [U o <rv r 2) - iJ F~ (r1) g} (r2) dr1 dr2 

0 

co 

- 4n (-1)1-s ~ U 0 (r1 , r2) gs (r1) gs (r2) F s (r1) 

0 . 

00 

x F 5 (r2) dr1 dr2 + 4n (-1)1-s ~ F s (r1) gs (r1) gs (r2) 

0 

00 

- 2n (£0 + k 2) E [f~ (r) - Q~ (r)l dr 
0 

00 

- (-1)1-5 [~ Fs(r)g5 (r)dr]'}. (4.2) * 
0 

*tg = tan. 
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Here 

E 0 is the energy of the ground state of the H atoms, 
and 11 is the phase shift. 

For the functions Fs ( r ) and gs ( r ) we use the 
following approximations: 

F 1 (r) = k-1 sin kr + (k-1 tg t]_ cos kr + ye-2~r) (I - e-2~r), 

Q1 (r) = k-1 sin kr + k-1 tg t]_ cos kr, g1 (r) === 2~'1're-~r; 
(4.3) 

F 0 (r) = k-1 sin kr + k-1 tg t]+ cos kr (I- e-2~r) 

+ 2y~'1•re-~r, 

Q0 (r) = k-1 sin kr + k-ltg t]+ cos kr, go (r) = 2~'1're-~r. 
(4.4) 

As the zeroth approximation we use for the pa
rameters k-1 tan Tj, {3, and y the data of a previ
ous paper [12 ] for k2 = 0. Substituting (4.4) and 
(4.3) in the right half of (4.1) we obtain the cor
rected values of k-1 tan 11 • The results of the 
calculation are listed in the table, which shows for 
comparison also the data of the latest paper by 
Temkin [16]. 

k 0.01 

3.124 
3.1237 
3.084 
3.086 

0.05 

3.052 
3.046 
2.855 
2.86 

0.1 

2.955 
2.942 
2.565 
2.59 

17- calculated values of the phase 
shifts, 7j*- phase shifts as given by 
Temkin. 116] 

The agreement between Temkin's calculations 
and ours offers evidence that even in the simplest 
approximation the proposed method ensures suf
ficient accuracy. At the same time, it was deemed 
interesting to check the reliability of Temkin's cal
culations, in which an approximation based on dif
ferent principles was used. 

5. CONCLUSION 

The system (3.10)-(3.11), obtained above from 
an analysis of the elastic scattering of an electron 
by a spherically symmetrical atom (or forward 
scattering), actually has a wider range of applica
bility. It remains valid also in the presence of in
elastic processes. This follows from the fact that 
the sought system of equations can be obtained 
from Schrodinger's equation by substituting in the 

latter the expansion (3.2), multiplying from the left 
in succession by 

f~1 gvLS (r1) Y~~L (J, 2) Y SMs (I, 2), 

r;1 FvLs(r2)Y~~L(J, 2)YsM5 (1, 2) 

and integrating over the corresponding angular, 
spin, and radial variables. The subtraction pro
cedure with the use of the x-functions is quite 
easy to realize in this case. 

A simplified variant of the system (3.10)-(3.11) 
can be obtained from a separate examination of the 
real and imaginary parts of the functional (3 .4). 

This lets us confine ourselves to real gvLs(r ). 
The resultant two independent systems of equa
tions determine the real and imaginary parts of 
the scattering amplitude, respectively. The latter 
of these systems is of independent interest, in view 
of the optical theorem. 

We consider it our pleasant duty to thank L. M. 
Biberman and G. E. Norman for a discussion of 
the part of the paper devoted to the results. 
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