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The Regge trajectories for scattering from a o potential are investigated. Many of the re
sults apply also to potentials without singularities at the origin. 

1. INTRODUCTION 

IN the present paper we investigate the motion of 
Regge poles [t] for the potential U(r) = q 6 (r -a), 
where q > 0. In contrast to the case of the poten
tial in the deuteron model (which is obtained in the 
limit a - 0, 2qa - 1), the scattering matrix S 1 is 
an analytic function of l for a >" 0 . In general, the 
nonanalyticity of the potential, with the exception 
of the neighborhood of r = 0 , has evidently little 
effect on the analytic properties of the S matrix, 
and the qualitative picture of the motion of the 
poles in the l plane depends for large energies 
only on the behavior of the potential in the region 
of small r. 

The simplicity of the 6 potential allows us to 
study such details of the motion of the poles as the 
coincidence recession into the complex plane, etc. 
As will be clear from the following, bound states 
exist only for orbital momenta l < qa + 1/2 and 
are described by a single Regge trajectory. 

2. EQUATION FOR THE POLE 

The solution of the radial Schrodinger equation 
has the form: 

'Xt = Yr [c1H~1) (kr) + c2H~2) (kr)l, (1) 

where c 1 = c 2 = 1 for r < a and c 1, 2 = 1 
± irrv 0Jv(ka)H~2·tl(ka) for r >a. 

For the scattering matrix we obtain then 

2151 1 + irtvoJv (x) H~2) (x) 
St=C = . 

1 - invoJ v (x) H~1 ) (x) (2) 

Here Jv a:nd Hv are the Bessel and Hankel func
tions, v = l + 1/2, x = ka, and v 0 = qa. The poles 
of the S matrix are determined by the zeros of the 
denominator: 

(3) 

In the analysis of Eq. (3) we shall use for large 
values of x or v the known asymptotic representa-

tions of the Bessel functions which are obtained by 
the saddle point method [2] and correspond to the 
quasiclassical approximation. We introduce the 
complex variable T = cosh -t (v /x). Then the equa
tion for the pole for I arg xl < rr /2 has the following 
form: 

I. ~ sh 't' + 1 = ie2xq>(o), 
Vo 

II. ~sh 't' + 1 = i (1 _ e2i1tv) e2x'll('), 
Vo 

Ill. ~ sh 't'- 1 = ie2x"'(') 
Vo 

IV. .=._ sh 't' + 1 = ie-2x'f>(irt-o) 
Vo ' 

(4) * 

where cp(T) = sinh T - T cosh T, and the regions I to 
IV are shown in Fig. 1 (unmarked regions are of no 
interest). The condition for the validity of these 
equations is lx sinhTI >>1. 

fli 

~ 
0 

FIG. 1 

3. SMALL AND MODERATE ENERGIES 

For small energies we have a group of poles 
located near the real axis and another group near 
the imaginary axis. In the right half-plane there 
is one simple pole near the real axis correspond
ing to a bound state. In the region of small ener
gies, positive as well as negative, the equation for 
this pole is 

Vo 2 rt exp (- irtv0) ( x )2vo . 
"V=vo+2(v~-1)x +···- sinnvol'(vo)' T +···· 

(5) 

*sh =sinh. 
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This formula is obtained with the help of the power 
expansions of Jv and H~il; the second and omitted 
terms correspond to the subtractions cn in [3] and 
the last term describes the recession of the pole 
into the complex plane for positive energies. 

For negative energies (x = iy) this pole moves 
along the real axis to the left according to the law 

-..r-2--~

" = r Vo-Y · (6) 

Formula (6) has been obtained in the quasiclassical 
approximation (e- ~'o « 1) . It is seen from this 
formula that the pole recedes into the complex 
plane for y R< v 0 and v close to zero. The energy 
of the bound states can be obtained from (6): 

Et =- [v~- (1 + 1/ 2) 2]j2a2 , 

and the number of levels is equal to the integer 
part of v 0 + 1/2. 

In the left half-plane we have an infinite set of 
poles at small energies which are located near the 
negative integers: 1 l 

v0 -m (x )2m 
Vm=-m+m!(m-1)!vo 2 

2(v0-m-1) (x)2m+2 
- (m-1)!2 (m2 -1) vo 2 + • • · 

plex conjugate roots. Therefore, the poles leave 
the real axis as a result of coincidence.[4] 

In connection with the analysis of the motion of 
the poles we note that Eq. (3) has the following im
portant property: it does not change under the in
terchange v - -v for integer v. 2 l Since there is a 
single pole for v > 0 which passes once through the 
integers from v 0 to zero, not a single pole can pass 
through the integer points to the left of -v 0 , and the 
integer points to the right of -v 0 can also be passed 
through only once. At the point of coincidence 
sin rrv is negative if v < -0.83 - v 0 and positive if 
-0.83 v 0 < v < 0. Therefore, the poles located be
tween -v 0 and -0.83v 0 must turn around on the real 
axis and pass again through the point at which they 
were located at E = 0 before meeting again with 
their neighbors. The pole with the number equal 
to the closest odd integer to 0.83 v 0 will always re
main unpaired and will, as y increases, move to 
the right along the real axis up to a point near 
v = 0, where it meets with the pole (6) coming 
from the right (see Fig. 2). The trajectory of these 
two poles after coincidence is given by the formula 

(9) 

+2ln(2/x)+i:rt (~)4m + ... (x2~m). 
(m-1)!4 v~ 2 

(7) which is valid for I v 12 « v 0 • 

In the region of negative energies the even poles 
move first to the right and the odd poles, to the 
left, as long as m < v0 • The direction of the mo
tion changes for m > v 0 • The further motion of 
these poles along the real axis, the coincidence 
and the recession into the complex plane can be 
followed with the help of an equation which is ob
tained in the same approximation as Eq. (4) (more 
precisely, the condition for its validity is 
exp I.Jv2 + y2 I» 1): 

Rev< 0; 

f (y, v) = 2v Arsh (v/y)- 2 yv2 + y2 • (8)* 

The function f(y, v) changes sign at y = -0.66 v. As 
long as y < -0.66 v the condition exp {f(y, v)) » 1 is 
satisfied and the poles are located near the nega
tive integers. In the opposite case, exp{f(y, v)) « 1, 
Eq. (8) has no real solutions. Thus the recession 
into the complex plane occurs at y R< -0.66 v . 

The exact as well as the approximate equations 
for the pole have, for E < 0 , either real or com-

FIG. 2 

According to (7) the poles recede for positive 
energies from negative integer points into the 
upper half-plane and move first to the right for 
m > v 0 , and to the left form< v 0 • For large x 
these poles are determined by (4, II). The analysis 
of this equation shows that, beginning with x ;::::, m, 
they all move to the right. 

Let us now turn to the analysis of the other 
group of poles located near the imaginary axis for 
small energies. These poles were investigated by 
Gribov and Pomeranchuk L5J for an arbitrary short
range potential (threshold poles). For I v I « 1 and 
x, y << 1, their formula is valid with the para
meters 

2lThis property also holds in the case of an arbitrary poten-
1>We note that the residues of the S matrix vanish for E = 0. tial, as can be seen from Eqs. (7) and (14) of the lectures of 
*Arsh =sinh-'. GribovJ•] 
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1 r=--, 
2v~ 

y! 1 
-r= In-4 +-+2C, 

Vo 
(10) axis the trajectory of these poles is given by the 

formula 

where C is the Euler constant. 
The far poles are described by the formula 

2 1 -1 X i v=-(x-m:n:)+- arc tan -+-In(! -t-x2jv2) n n vo 2n o' 

_ ink _ _!_I (2n I kl ) 
V-A 2An voA' 

m=l,2, ... , 

which is valid for (x-m7T) 2 << m 1r. It is seen from 
A= In 2nl kl , 

y k= ±1, .. . , (11) this that the pole with the number m intersects the 

which is valid if the logarithms of the arguments 
are much larger than unity. This formula applies 
also to the region E > 0 . 

For positive energies the poles are located 
nearly symmetrically about v = 0, their trajec
tories are parabolas, and the front of the poles is 
close to a straight line slightly inclined toward the 
imaginary axis. 

4. HIGH ENERGIES 

Let us consider first the behavior of the pole 
(6) for large positive energies. Its trajectory lies 
entirely in the region III of Fig. 1, and we have, 
according to (4, III), for x « v~/ 2 

iv2 { } v = Y v~ + x2 + V 0 exp - 2 Y v~ + x2 Arsh ~ + 2v0 • 
v~+x2 x 

For larger values of x we can simplify (4, III), 
using the smallness of T (as we shall see, 
IT I ~ x-113 ). The equation then takes the form 

This equation has the solution 

-r = ('}.,k/x)'loeit'!a, 

where 

(12) 

(13) 

(14) 

).k = In (x/v~') + 3i:n: (k - ~) + fIn Ak, 

and I A. k I « x . 

k = 0, ±1 ... 

The pole under consideration corresponds to 
k = 0. The poles corresponding to other values 
of k will be discussed below. Since x >> v~l 2 , the 
last term in the equation for A. k is always small 
in comparison with the first, and it suffices for 
the determination of A. k to iterate the equation 
once. Recalling that v /x = cosh T, we obtain fin
ally 

(15) 

Let us now turn to the poles located at negative 
integer points for E = 0 . Beginning with x ~ m, 
they all move to the right. Near the imaginary 

imaginary axis at x ~ m 1r. In the asymptotic reg
ion (large x) these poles move according to the law 
(15) within the region I of Fig. 1. But the equations 
in regions I and III differ only by the sign in front 
of unity, which is unimportant in the asymptotic 
region. Therefore, formula (15) applies to both of 
them, where k = m runs through the values 1, 2, ... 
The front of these poles makes an angle of 30° with 
the real axis for 37Tm « ln(x v0312 ) arid becomes 
more and more inclined as m increases. 

The poles corresponding to the values k = -1, 

-2, ... in ( 14) are situated in region III of Fig. 1. 
Therefore, (15) describes the asymptotic behavior 
of the trajectory of the threshold poles of the series 
(10), which were located in the upper half-plane for 
small energies. If -37Tk « ln (x v03/ 2 ) the front of 
these poles has an inclination of 30° with respect 
to the real axis. As lkf increases the angle be
comes larger and reaches 60° when x >> -37Tk 
» ln (x v03/ 2 ). For -37Tk » x, (15) becomes in-
valid, and the poles are described by (11), which 
implies that the front of the threshold poles with 
very large numbers has an inclination of 90°. 

Finally, we must investigate the motion of those 
threshold poles which were located in the lower 
half-plane for small x. First these poles were in 
the region Re v < 0, Im v< 0 (this corresponds to 
region IV in Fig. 1). It follows from (3) that no pole 
ever crosses the real axis for positive energies. 
Therefore, these poles will always remain in the 
third quarter of the v plane. It can be shown that 
they never leave region IV. Let us introduce the 
new variable T' = i 1T - T and note that IT' I decrea
ses as x increases. Then we obtain the approximate 
equation 

(16) 

which has the solution 

-r' =(A~/x)'1•, v =- x - 1f2 x'l• ').,~1·, 

').,~=In (x/v~·) + 3:n:i (k - 1/ 4) + 1/ 2 ln ').,~ (k > 0) (17) 

It is seen from (17) that the front of the threshold 
poles is vertical for small k. For x >> 3nk 
>> ln (x v0312 ) the inclination approaches 60° and 
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tends again to 90° as k is further increased. 
For sufficiently large negative energies all 

poles are located in the left half-plane symmetri
cally with respect to the real axis. If Im v > 0 the 
poles with numbers 3 rr I k I « y are described by 
(14) and (15) with x- iy. In the case 3 rr I k I » y 
the corresponding formulas for small energies are 
valid. 

In conclusion we note that the quantity v 0 enters 
in (10), (15), and (17) only in the argument of the 
logarithm, which implies that our results are evi
dently valid for an arbitrary potential without sing
ularities at the origin. [6J 
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