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The concept of the spin of an interacting field is examined. Requirements on the interaction 
of higher-spin particles are formulated, such that when they are satisfied each interacting 
field transfers only one angular momentum, i.e., has one definite spin. The conditions in 
question single out a certain restricted class of interactions (theories of class A), for which 
examples are given. 

1. GENERAL CONSIDERATIONS 

In the theory of interacting fields the spin of a 
field is defined in practice as the number of dy
namically independent components. [1•2] As a rule 
the Heisenberg field operators have superfluous 
components. The supplementary conditions ( s.c.) 
which restrict the number of degrees of freedom, 
and thus single out a particular spin, in general 
depend on the interaction and differ from the s.c. 
for the free field. 

We note that for particles with spin 0 or % the 
situation is the same in the free case and with any 
Lorentz-invariant interaction; in each of these 
cases there simply are no s.c. (the number of 
components is equal to the number of degrees of 
freedom). 

The question arises, to what physical conse
quences do the differences in the s.c. lead? As 
an example let us consider the process which cor
responds to the diagram of Fig. 1, where the ini
tial and final states are connected by one virtual 
line of the field in question (in the general case 
with all radiative corrections). As is well known, 
if the intermediate particle has spin 0 (or %) it 
can transfer just the single amount of angular mo
mentum, 0 (or %) ; the amplitude for such a proc
ess contains only the partial waves that correspond 
to total angular momentum 0 (or % ) . 

In the simplest theory of a neutral vector field, 
where the s.c. is the same in form as for the free 
case, 

(1) 

the quanta of the vector field are also capable of 
transferring only one amount of angular momen
tum (unity). In general this is not true; in anum
ber of theories the virtual quanta are capable of 

transferring several amounts of angular mom en
tum. For example, in spite of the fact that in the 
simplest axial-vector theory the s.c. 

(2) 

( g is the coupling constant with the spinor field 1/J, 
and C is a constant which can be expressed in 
terms of the masses of the two fields ) reduces the 
number of dynamically independent components of 
the field AJJ. to three, nevertheless this field trans
fers the angular momenta 0 and 1; the amplitude 
for the process represented by Fig. 1 contains par
tial waves corresponding to both of these values of 
the total angular momentum. This fact is connected 
with the difference between the s.c. (2) and the 
S.C. (1). 

2. In the general case the field transfers several 
different angular momenta. Any field, however, 
(for example, a tensor field) with a finite number 
of components is capable of transferring only a 
limited number of angular momenta. 

The answer to the question as to what set of an
gular momenta a certain field can transfer is given 
by the operator 82 for the square of the spin of the 
field in question 1>: 

'2- 1 -2 s - 2 mp.mpa - p m,P m,.p Pp a 

- 1 . -2 
- 2 SpaSpa - p St.pSI,•P Pp a· 

(3a) 

(3b) 

It is constructed from generators of transforma
tions of the field operators 

P" =- ia", 
111pa = Xppa- XaPP +- Sp., 

1lThe projections of the spin operator can be defined in 
other ways, for example in the form 

~po = mpo + P-2 (ppma).P~<-- Pamp).P!) 

(4) 

(5) 

h 1 h h ( 

=spa+ p-2 (ppsa).PJ..- PaS pAPA), s2 = 2 Spa spa· 3a) 
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where the Spu are the generators of Lorentz rota
tions of the field components. 

The spectrum of the eigenvalues of the operator 
82 for a given field (i.e., for fixed Spu) gives the 
spectrum of the angular momenta that it can carry 
(Section 3 ). Generally speaking, a field can have 
several spins (i.e., can transfer several amounts 
of angular momentum). By means of 82 we can 
write down the condition which a field must satisfy 
for it to have a single definite spin s: it must be 
an eigenfunction of 82 with a prescribed eigen
value s ( s + 1 ) . 2 > 

Thus when we speak of the quantum number 
"spin of a field" we must first assign to it, in 
accordance with the principles of quantum me
chanics, a definite operator-the operator (3). 

3. It seems natural to divide theories of par
ticles with higher spins into two classes in the 
following way: 

A. Theories in which each of the interacting 
fields has a single definite spin, just as the free 
fields do. 3> 

B. Theories in which a single definite spin can
not be assigned to each of the interacting fields. 

It will be shown below that a theory belongs to 
class A when and only when the interaction is so 
chosen that it does not change the form of the s.c. 
as compared with those for the free fields (it is 
of course understood that in the free case the s.c. 
single out just one spin). 4> 

What is the explanation of the fact that in the
ories of class B an interacting field that has the 
same number of degrees of freedom as the free 
field still transfers a larger number of values of 
the angular momentum? Precisely this question 
(but in a somewhat different form) was posed for 
theories of the vector field by Byers and Peierls [6] 

and was cleared up by Kemmer. [7] The compo
nents of the field which carry the additional angu
lar momenta can be expressed in terms of the in
dependent components of the fields. For example, 
the s.c. (2) means that the part of the axial-vector 
field with the spin 0 is a combination of the lj!. 
Kemmer pointed out that evidently there always 
exists a canonical transformation which leads to 
new fields that satisfy the same s.c. as in the free 
case. It is true that after such a transformation 

2lThis approach to the singling out of the spin 1 of a vec
tor field has already been discussed in our papers [•-•]. 

3lJ:n complete analogy with the fields with spins 0 and ~-

4>We also note that if we do not impose s. c. that single 
out one spin, then difficulties arise either with an indefinite 
metric or with keeping the energy positive. 

the theory takes a very complicated and in general 
nonlocal form. Thus a theory of class B can be 
reduced to a theory of class A at the price of in
troducing nonlocality and other complications. 

4. The operator for the square of the spin of a 
closed quantum-mechanical system or a system 
of fields is one of the invariants of the inhomoge
neous Lorentz group. It has been discussed in 
various aspects in connection with the classifica
tion of the representations of this group. [S-H] The 
application of this operator to the free fields is 
extremely useful, since it combines within itself 
all of the s.c. and allows us to obtain them in a 
unified way (Section 2). A free field with definite 
mass and definite spin transforms according to an 
irreducible representation of the inhomogeneous 
Lorentz group-it is an eigenfunction of the invari
ants of this group. 

5. Unlike the operators of a free field, the op
erators of an interacting field no longer transform 
according to a single irreducible representation of 
the inhomogeneous group. In fact, an interacting 
field has a whole spectrum of eigenvalues of one 
invariant of this group, the mass operator - p2 = 0. 
Indeed, the operator of an interacting field in mo
mentum space is different from zero both for time
like and for spacelike, and also for isotropic and 
null, four-momenta. 5> Actually it is only owing to 
this that the interaction of fields, their mutual in
terconversion, is possible. 

As for the second invariant, the spin, in exist
ing theories its spectrum of values for an inter
acting field is in practice artificially restricted 
by the fact that fields are used that transform ac
cording to finite-dimensional irreducible repre
sentatipns of the homogeneous Lorentz group. 6 > 

Even with this restriction, however, as a rule 
the spin of the interacting field takes several val
ues. 7> The only fields that have just one spin value 
are the scalar and spinor fields. 

5>In particular, there are nonzero masses for the interact
ing electromagnetic field. This causes the appearance of the 
Coulomb interaction. 

6lJ:f we drop this postulate (which is a purely mathematical 
one), then, for example, theories are conceivable in which the 
free field has only the spin 0 (or the spin ~) and the interact• 
ing field has a whole spectrum of spins. 

7lNevertheless we can assume that the wave functions of 
physical one-particle states transform according to an irredu
cible representation of the inhomogeneous group. We empha
size that all of the other quantum numbers (for example charge, 
isospin, parity, and so on) are the same for the free and inter
acting fields and are the same as for the corresponding one
particle states. Only the mass is necessarily smeared out. 
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The spectrum of spins of each field is simplest 
in theories of class A: as in the free case, this 
spectrum consists of only one value. Then each 
field will always be an eigenfunction of its oper
ator s 2, and in this sense we can say that the 
spin of each field is conserved. 

6. All arguments relating to an interacting field 
can be made in the most practically convenient and 
mathematically correct way by dealing not with the 
field itself [say A(x)] but with the matrix ele
ments 

<O 1 A (x) 1 <Di>, (6) 

where <I>j are physical states which are eigenfunc
tions of the operator of the square of the spin of 
the system of interacting particles (the total an
gular momentum in the center-of-mass system) 
(Section 3 ) . 

The diagram for this matrix element is shown 
in Fig. 2. By definition the field A(x) transfers 
those angular momenta j for which the matrix 
element (6) is different from zero. In theories of 
class A there is only one such angular momentum 
(one spin per field ) . We note that if a real par
ticle of the field A ( x ) with definite spin were to 
decay into a system of particles in the state <I>j 
the matrix element would be different from zero 
only for values of j equal to the spin of the free 
field. 

It is obvious that the analyses of the diagrams 
of Figs. 1 and 2 lead to identical conclusions about 
the spin of the field, since a diagram of the type of 
Fig. 2 is a constituent part of the diagram of Fig. 1. 

7. It will be shown in Section 4 that class A is 
not empty, and examples will be given of theories 
of particles with spin 1 which belong to this class. 
In the same place we shall indicate the close con
nection between the concept of spin in ordinary 
space and isotopic invariance. 

8. As for zero masses, we shall here confine 
ourselves to the following remark. The restric
tions on the matrix elements which we have found 
cannot be expressed in the operator form (14) or 
(17) if there are physical states with zero mass. 
In this case the interacting field will have a defi
nite spin if the s.c. for it are satisfied in bracket 
expressions taken between physical states. This 
is the situation, for example, in the Fermi elec-

Virtual line of 
field in question 

Initial~ Final 
state ~------~state 

FIG. 1 

Virtual line of 
field A(x) 

- -~--~~Real particles 
~ instate<'!>j 

FIG. 2 

trodynamics. In all gauge invariant theories of 
vector fields one can impose any restrictions on 
Bp.Ap., since this quantity is quite arbitrary and 
is not determined by the equations of motion. The 
restriction ( 'llphys I a p.Ap. I 'llphys) = 0 allows us to 
carry out the quantization by the Fermi method. 
Therefore gauge invariant theories of vector fields 
are theories which describe only quanta with spin 1. 
These questions are discussed in our previous 
papers, [ 3- 5] of which the present paper is a further 
development. 

2. HIGHER-SPIN FORMALISM BASED ON THE 
OPERA TOR 62• FREE FIELDS 

1. The use of the operator for the square of the 
spin is helpful even in the case of free fields, since 
it provides a single point of view for all the s.c. 
and unites them. 

A field A transforms according to an irreduc
ible representation of the inhomogeneous Lorentz 
group if 

OA = m2A, 
s2A = s (s + 1) A, 

where m (the mass) and s (the spin) are fixed 
numbers. 

(7) 

(8) 

2. Let us begin with integer spins. We shall 
work in the tensor formalism, [i2] and to describe 
the spin s we shall use a tensor of the s-th rank, 
cpp.1p.2 ••• JJ.s· For it the matrices Spa in Eq. (5) are 
given by 

(Spo\••···f'-s; v1 ••• v8 = - j ((lpfJ-,(\Ov, - (\pv,(\ofJ-.) Ofl,v,(\l,,v,· • · (1!'-s''> 

- j(\1'-,•• (6/>1'-,c'lov, - c'lpv,c'lop.,) c'liJ.,v, • · • (11-'svs - · · · 

- ic'll-',v,6p.,v, • .. (l't'-s-lvs-1 (c'lpp.,6ov, - (lpv,c'lop)· (9) 

Then the operator 82 can be written in the form 

(~),., ... p.s; v, ... Vs = ~ (Spo)v.l···~s; At ... hs (s~H,h~o, ... As; vl•···lls 

- p-2 (sp,)p., .. ·1-'s; 1.1 ... '-, (Spah, ... ,.,; v, .... ,,_P "p ,· (10) 

Since this representation is reducible, 82 is not 
a single-valued operator, and its spectrum of ei
genvalues consists of the numbers n(n+1), where 
n = 0, 1, 2, ... , s. We are interested in the eigen
functions for the maximum eigenvalue: 

(s2).,., ... p.,; v, ... v,<rv, ... v, = s (s + 1) <p.,., ... .,.,· (11) 

It is convenient to work in the p representation, 
in which, by Eq. (7), p2 = - m 2 ;r!. 0, and go over to 
the rest system. In this system the operator (3b) 
for the square of the spin takes the form 

(r, s = 1, 2, 3) (12) 
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and for the tensor field it can be written in the 
form 

($2)p.,p., ... p.s; v,v, ... Vs = 2 (s- v) Op.,v,..,p.,v, ... 61'-s"s + 

{ [·~ 2 (6, , 6v v - 6, v 6, v) 6, v ... li, v for Jlt, !12, Vt, V2 =!= 4] 
t"""lr-2 1 2 rl 2 rll 1 r-3 a rs .s 

0, if any of the indices Jlt, 112, "''t, v2 is equal to 4 
+ all terms obtained by different choices of the pairs 

fl;V; and flkVk}. (13) 

Here v is the number of pairs (J.LiVi) in which at 
least one of the numbers is a four. 

An analysis of Eq. (11) leads to the well known 
S.C. [13,2]: 

a) 'P~'-•···1'-s- is a completely symmetric tensor, 
b) <p . = 0 

ll-P.I-la·· ·P.s ' 

c) o~'-rp = o. (14) 
P·P.2···J.ls 

3. Let us now consider half-integral spins in the 
y formalism proposed by Rarita and Schwinger [13] 

and by Tamm ( cf. [14•15J). In this formalism the 
spin s = k + % is described by a tensor of the k-th 
rank which has one spinor Dirac index a, lf!aJ.L1 •• ·J.lk, 
or, briefly, lf!J.L1 ... J.Lk· For lf!J.L1 ... J.Lk the matrices 
Spa are written in the form 

(spa) . 
P.t···P.k• Vt···vk 

= + Gpo0p.,v1 • • • 01'-k" k- i (Opp.,Oav,- 6pv,Oap.,) o.,.,v, ... Op.kv k 

- ... - iOp.,v,Op.,v, ... O"k-l •k-l (OPt'kOavk- t\vko·"l'-k)(15) 

[apa = -i(YpYa-Opa)l. Again it is simpler to 
make the calculations in the rest system, in which 

(s2).,., .. ·~'-1t? v, ... vk = [~ + 2 (k - v) l oJJ.,''• ... b.,.k. k 

{ [
- iG.,.,v, for [11, Vt =/= 4 J 

+ 0 for '[11 or v1, equal to 4 b,.,v, · · ' 61'-kv k 

+ terms in which f.ltV1 is replaced by !l2Vz, )l3'Vs .... J.lkVk} 

_ {[- 2 (6.,., 1,,6.,~,- 6f1,v,6p.,v) 6.,.,v, .. . liiJ.kYk for Jlt. Jl2, Vt, V2 =/= 4] 
0, if any of the indices lh, Jl2, Vt, v2 is equal to 4 

+all terms obtained by different choices of the pairs 

Jl;V; and Jli"i}. (16) 

Here again v is tne number of pairs ( J.LiVi) in 
which at least one of the numbers is a four. In the 
present case 82 has the eigenvalues r( r + 1 ), where 
r = %. % .... , k+%. We again look for the eigen
functions of s 2 with the maximum eigenvalue. An 
analysis of Eq. (11) in this case gives the well 
known s.c. [13,15,2]: 

a)1)l1,, ... 1.k -is completely symmetric in J.li .. ·J.lk 
b) r 1)l = o, 

P·t P.t!J·!···P.k 
c) a = o (17) 

.,.,<p1'·>11 • .. ·P.k • 

In the case of half-integral spins one ordinarily 
uses the Dirac equation instead of the Klein-Gordon 
equation (7). 

Naturally a precisely similar treatment of the 
s.c. on the basis of the operator for the square of 
the spin is also possible for the field operators in 
the formalism of Gel'fand and Yaglom. [16] 

3. INTERACTING FIELDS WITH HIGHER SPINS 

1. We now go on to the analysis of interacting 
Heisenberg fields cpJ.L1 ... and lf!J.L1 ... with arbitrary 
spins. Let <fljP be the state vector of a system of 
particles for which the total four-momentum is PJ.L 
( P 2 < 0, P 0 > 0) and the spin (total angular mo
mentum in the center-of-mass system) is j: 

(18) 

(the spin projection does not concern us). The op
erator S2 is of the form 

~ ~ 

where Pi\ and Mpa are the generators of displace-
ments and Lorentz rotations for the state vectors, 
and are the integrals of the motion for the system 
of interacting fields. It is well known that Lorentz 
invariance has as a consequence a connection be
tween these operators and the operators Pi\ and 
mpa of Eqs. (4) and (5) for a field A( x): 

pAA = [A,}\], 

mpoA = [A, Mpol. 

2. It is easy to see that the matrix elements 

(20) 

(21) 

<O I'PIJ.d'• .. ·~'• (x) I <Pjp), <O I 'l!J.,.,,,, .. .f!.k (x) I <Pjp), (22) 

are in general different from zero for j = 0, 1, ... s 
and j = Y2, % •... k+ 1/ 2, respectively. 

In fact, when we use the translational invariance, 
namely the fact that 

(0 ICJlp., ... !J-s (x) I <PiP)= eiPx (0 \CJlp., ... !J-s (0) I <Pjp), (23) 

the relation (21), and the property of the vacuum 
Mpa I 0) = 0, we can convince ourselves that 

(s2 )1't .. ·P.s; v, ... v5 (0Jcpv, ... v5 (x) \<PiP)= (0 jcpp., ... .,.. (x) S2 j <PiP) 

= i (j + 1) (0 !CJlp., ... , •• (x) I <PiP). (24) 

By Eq. (23) the operators Pi\ in 82 can be replaced 
by the c-numbers Pi\, and the problem of the ei
genvalues of the operator 82 as applied to such 
matrix elements can be solved in exactly the same 
way as in the free case (see Section 2). In par
ticular, the spectrum of the eigenvalues is of the 
form n( n + 1 ), where n = 0, 1, ... , s. It follows 
that j = 0, 1, ... , s. Similarly, for the case of 
half-integral spins we find j = Y2, % .... , k + %. 

The purpose of this paper is to obtain the con
ditions under which the field will transfer only 



170 V. I. OGIEVETSKII and I. V. POLUBARINOV 

one angular momentum, i.e., there will be only a 
single possible value of j. Exactly as in the free 
case we can choose for this single value the maxi
mum value, 8> namely s. For integer spins the 
conditions that single out the matrix element cor
responding to this maximum value can be written 

a) (0 1 cp~'-•···~'-s (x) 1 <DiP)- is a completely 
symmetric tensor 

b) (0 I cpl'l'l'•···l's (x) I <DiP) = 0, 
c) (0 I all! cpl'•l'•···l's (x) I <DiP) = 0. (25) 

Since the vectors <I>jP for physical states form 
a complete system, on the basis of the hypotheses 
of locality, covariance, and positive definiteness 
and by the theorem of Federbush and JohnsonC17 •18] 

we can remove the brackets in the conditions (25). 
In other words, an interacting field which describes 
a single integer spin s must obey the same s.c. as 
in the free case, namely the s.c. (14). 

Of course the converse is always true; the con
ditions (25) follow from the conditions (14). 

Thus if and only if the interacting field 
cp J.Lt .. . J.Ls (x) obeys the same s.c. as the free field 
is it possible (and indeed required) to say that it 
has a definite spin s. 

By referring to the theorem of Federbush and 
Johnson we avoid having to consider the matrix 
elements 9> 

<<I>i,P,l cpl'•···l's (x) I <I>i,P,) = ei(P,-P,)x <<I>i,P,I cpl'-•· .. 1'-s (0) I <l>J.p,), 

(26) 

which would make the argument depend essentially 
on whether the vector P2 - P 1 is timelike, iso
tropic, spacelike, or a null vector. These four 
possibilities correspond to four different classes 
of representations of the inhomogeneous Lorentz 
group, and each requires a special approach. 

In the case of fields l/JJ.LtJ.L2 ••• J.Lk which have a 
Dirac spinor index in addition to the vector in
dices, analogous arguments lead to the conclusion 
that in order for a field lfiJ.Lt···J.I.k to describe the 
single spin value k +% it must obey the s.c. (17). 
Theories of class A are theories in which each 
field satisfies the conditions (14) or (17) which 
define the fields with a single spin value. 

BlThe other possibilities lead to equivalent representations 
for fields with a given spin, in which the Heisenberg operator 
will have more vector indices than are needed for the descrip
tion of this spin. 

9lJ:n the case of a field with spin s these matrix elements 
are different from zero when j 1 + j2 + S = 0 (according to the 
usual rule for the addition of angular momenta). 

10lSuch equations are equivalent to the conditions that 
define irreducible representations of the inhomogeneous 
Lorentz group [for example, the conditions (7) and (8)]. 

4. THEORIES OF CLASS A 

There are well known equations for free fields 
which contain within themselves all of the s.c. that 
single out one spin value. 10 > These include all of 
the equations of Gel'fand and Yaglom[ts] in the 
tensor formalism, the Proca equation for spin 1, 
and the Rarita-Schwinger equation for spin%. 
We can also state such an equation for spin 2: 

+ (0cpl'v- a!'ai.(j);>.v- avai.(j)l'>.) 

+ -i- (Ocpv"'- ava~.cp~,"'- a"'a;..cpv>-) 

+ <'11'-VaAapcp).p-+ (61'-V 0- ai'aV) (j)pp- m2cpi'V = 0, (27) 

We know of the following theories with interac-
tion which belong to class A: 

1. The theory of a neutral vector field interact
ing with a conserved current (cf. e.g., [3]): 

0 A"'.,...... a"'avAv- m2 A"' = - j"', a"'j"' = 0. (28) 

2. The Yang-Mills theory, and all of its general
izations as indicated by Gell-Mann and Glashow[20J: 

where 
a G,. 2A' .; 

I' i>V- m V = - ]v, a"'i~ = o, 
(29) 

(the notation is the same as in [20J). When the 
conservation of the currents is taken into account 
Eqs. (28) and (29) each have as a consequence the 
supplementary condition (1), which singles out 
spin 1. [ 4, 5] Thus class A is not an empty class. 

It is also natural to state the converse ques
tion: how to include an interaction in such a way 
that the theory will belong to class A, i.e., so 
that in the theory not only the fields with spin 0 
and %. but also the other fields will have definite 
spin. In the case of fields with spin 1 we have 
solved this converse problem [2i] and have shown 
that the only theories of class A with dimension
less coupling constants are those in which the 
equations of motion are of the form (29). In other 
words, the only cases in which it is possible to 
include an interaction with a vector field in such a 
way that the spin of this field is 1 are the following: 

a) when the vector field is a neutral field; 
b) when three vector fields form an isotopic 

triplet and the theory as a whole is isotopically 
invariant; 

c) in the case of symmetries of higher orders. 
Possibility b) brings out a deep connection be

tween isotopic invariance and the concept of spin 
in ordinary space. 

We are carrying out a similar analysis for the 
higher spins. 
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We emphasize that there exist interactions 
which definitely do not belong to class A. First 
among such cases is the electromagnetic inter
action of charged particles with higher spins. 
This interaction violates isotopic invariance, and 
therefore does not allow us to assign a definite 
spin to an interacting field with spin 1 or higher. 

In conclusion we thank M. A. Markov, B. N. 
Valuev, and Ya. I. Granovskil for discussions. 
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