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Integral equations for the interaction amplitudes of three nucleons are derived by the dia­
gram summation technique. The first diagrams corresponding to the first iterations of the 
equations are considered. Their contribution is calculated in analytic form. An exact cor­
respondence is established between the contribution of the first diagrams and the results 
previously obtained by the authors in the first approximation of perturbation theory by taking 
into account particle interactions in the final state. The results are extended to the case of 
real nucleons with spin and isotopic spin. 

1. INTRODUCTION 

THE three-body problem with short-range forces 
has been investigated many times. The question 
of deuteron decay induced by a nucleon was con­
sidered by the authors of the present paper on the 
basis of perturbation theory, with account of the 
interaction of the particles in the final state [1]. 

Skornyakov and Ter-Martirosyan [2] and Danilov [3] 

have shown that the solution of the three-body prob­
lem can be reduced to an integral equation for a 
function that depends on a single variable. The 
equation was obtained with account of terms of 
zeroth [2] and first [3] orders in small parameters 
proportional to the effective radius of the forces. 

A method of investigation of nuclear reactions 
on the basis of the diagram technique has been 
recently developed in several papers 1>. The dia­
gram method has the advantage that it shows 
readily during the course of its application the 
particular processes that are taken into account 
in the different approximations. It is of interest 
to ascertain which diagrams of the nucleon-deu­
teron interaction process yield, upon summation, 
the Skornyakov and Ter-Martirosyan equations 
(STM) in both the zeroth and the first approxima­
tions in the interaction radius r 0• We show below 
(Sees. 2 and 3) that the problem of obtaining an 
equation for the Nd-interaction amplitude can ac­
tually be simply and elegantly solved on the basis 
of the diagram technique. 

1lAmado[•] considered the stripping reaction on the basis 
of the perturbation-theory pole diagram; Shapiro was the first 
to investigate direct nuclear ·reactions with account of more 
complicated diagrams, particularly the triangular oneJ•] 

We have shown earlier that many experimental 
data on deuteron disintegrations induced by protons 
[ 1] at a total reaction energy on the order of 5 MeV 
are in good agreement with the results of calculations 
on the basis of perturbation theory, with account of 
the particle interaction in the final state. In this 
connection, we clarify in Sec. 4 of the present ar­
ticle which of the diagrams correspond to the in­
dicated approximation. 

Before we proceed to the derivation of the inte­
gral equations for the amplitude of a nucleon­
induced deuteron disintegration by a method where­
in a series of diagrams is summed, we write out 
the equations corresponding to the vertices and to 
the several blocks from which the diagrams de­
scribing a particular process will be built up. Thus, 
the vertex corresponding to the transition from two 
nucleons into a deuteron (Fig. 1a) corresponds 2> to 
the quantity - i ..j 81ra /m; the nucleon propagation 
line corresponds to a quantity G~ = [E- E(p) +i T]-1, 

where T > 0 and T- 0; the nucleon-nucleon scat-

>=< >< 0 
a b c d 

FIG. 1 

2lThis value corresponds to an interaction Hamiltonian in 
the form 

v (I)= -gV4~ f (k) ~ {b+ (p, t)a (k, t) a (p- k, t) 
p. k 

+a+ (k, t) a+ (p- k, t) b (p, t)}, 

where b + (p, t) and b(p, t) are the deuteron creation and anni­
hilation operators, while a \k, t) and a(k, t) are the nucleon 
creation and annihilation operators. 

151 



152 V. V. KOMAROV and A.M. POPOVA 

tering block (Fig. lb) corresponds to A 
= -47ri/m( a +if) [SJ. 

In the non-zero approximation 3> in r 0, the ver­
tex corresponding to the contact interaction be­
tween two nucleons (Fig. lc) corresponds to A 
= - r 0• Any closed loop (Fig. ld) corresponds to 
integration over the energy and the momentum in 
the form 

+oo 
1 \ p dp 

J = 2n J dE J (2nJ" F (E, p). 
-00 

2. INTEGRAL EQUATIONS FOR THE INELASTIC 
Nd SCATTERING AMPLITUDE IN THE ZE­
ROTH APPROXIMATION IN r 0 

For the sake of simplicity we consider first the 
inelastic scattering of a nucleon by a deuteron, ac­
companied by the disintegration of the deuteron, in 
the zeroth approximation in the effective radius, 
and assume that all particles participating in the 
reaction are identical and spinless. The sum of 
the contributions of the diagrams to the inelastic 
scattering amplitude has in the zeroth approxi­
mation of the effective radius the form of the dia­
gram shown in Fig. 2, where block a is the exact 
value of the Nd scattering amplitude A ( k, k0 ). 

These diagrams do not include the contact­
interaction vertices and consequently correspond 
to the zeroth approximation in r 0• It is obvious 
that the entire sum of the diagrams in the right 
half of Fig. 2 can be represented in the form of 
Fig. 3, since the iteration of this last equation 

a b c 
FIG. 2 

FIG. 3. 

3lThis result is the consequence of the fact that in the 
nucleon pair-interaction Hamiltonian 

V (t) = - ~ a+ (k') a+ (p- k') V (k, k') a (k) a (p- k) 
k',p 

the value of 

V (k, k') = ~ i<k-k')rv (r) dr 

is equal to r0 in the approximation linear in r0 • 

makes it possible to reconstitute the aggregate 
of diagrams shown in Fig. 2. In fact, in view of 
the fact that the particles are identical, the pole 
diagram b of Fig. 3 is replaced by a sum of three 
diagrams, which differ only in the permutation of 
the particles in the final state (Fig. 4). The same 
pertains to the remaining diagrams. In other 
words, the amplitude of the nucleon-deuteron scat­
tering with disintegration of the deuteron has the 
form of the diagram shown in Fig. 5. 

FIG. 4 

a b c d 

FIG. 5 

The contribution of each diagram can be calcu­
lated with the aid of the values written out in Sec. 1 
for its definite elements. To obtain the inelastic 
scattering amplitude it is necessary to multiply the 
contributions of these diagrams by - i and by a 
factor kl27r(dEidk), the value of which can be 
readily obtained on going from the Feynman am­
plitudes (Figs. 3-5) to the amplitude whose square 
determines the inelastic scattering cross section. 
Here E is the total energy of the particles, which 
in the case of scattering has a value E = - a 2 lm 
+ k~ I2JJ., JJ. = 3ml2. The quantities entering in 
both equations of Fig. 3 must be taken on the en­
ergy surface, that is, the value of the nucleon en­
ergy En and the deuteron energy Ed must be set 
equal to En= kV2m and Ed= - a 21m + k&J 14m 
in the initial state (if we consider all the quanti­
ties in the c.m.s., then kod = -k0 ). 

For the sake of generality we assume that in 
the final state the NN system is formed in a con­
tinuous spectrum, that is, Ed.= f21m + k214m, 
wherein the energy of the third nucleon must be 
set equal to Efi = k212m. Here f, k, and k0 are 
connected by the energy conservation law, 3ka I 4 
- a 2 = 3k2 I 4 + f2 (elastic nucleon-deuteron scat­
tering corresponds to f = - i a and k = k0 ). 

The equation shown in Fig. 3 coincides directly 
with the STM equation for the nucleon-deuteron 
inelastic scattering. Indeed, the contribution to 
the inelastic scattering amplitude made by the 
pole diagram of Fig. 6, which takes into account 
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FIG. 6 

the interaction of the particles in the final state, 
is 

k m F 
Ao (k, ko) = F 2ndE/dk = 3:rt ' 

where 

., ·8:rt J/- 1 
,. = m S:rtaa+if a2 -k~i4+k2/2+(k+ko)•;2 ' 

or 

8 V8na 
Ao (k, k0) = 3 a+ if • 

a2 - k~/4 + k2/2 + (k + ko)2/2 (1) 

An analogous expression can be obtained for the 
contribution from exactly the same pole diagrams, 
but corresponding to the interaction of particles 2 
and 3 or 3 and 1. 

The contribution of the square diagram shown 
in Fig. 7 is determined by an integral of the form 

At (k, k0) 

{[ p' . J [ k~ a• (ko- p)2 . J X 8--+t-r ----8----+t-r 2m 4m m 2m 

[ k• a• (p + k)• . ]}-1 
X - 8 + 4m - m - 2/i"!"" + t't' , (2) 

which after integration over the energy 4> E can be 
written in the form 

The integral term (diagram c on Fig. 3 ) has a 
perfectly analogous form and differs from (3) in 
that under the integral sign the term 

8 ~rs,---{( -./3 2 3 k2 1 2) 3r :rta \a-v t;P --;;o-ra 

4lThis integration reduces to the calculation of the residue 
of the integrand at the point E = p2 /2m. 

' '>=r >r- J J 2~ ,i.?----k +2~ +~~ +2---r:: 
J~ 3 J 2)d-k. ~ 

a b c d 1 e 

;~;TI + + 3;o: + 

f g 
FIG. 7 

is replaced by the exact value of the amplitude 
A(p, ko) on the energy surface and is therefore 
determined by an expression of the form 

A (k k ) _ 8 1 4 \ dp 3/4 A (p, ke) 
n ' 0 - 3 a+ if :rt J (2:rt)3 a"- k2/4 + p2/'!. + (k + p)2/2 • 

(4) 

Thus, the equation shown symbolically on Fig. 3, 
or the amplitude A(k, k0 ) for particles 1 and 2 
produced in the final state in a continuous spectrum 
(diagram b of Fig. 5) can be written in the form 

3 1 [ ... /- 1 
8 A (k, ko) = a+ if r S:rta a2 + k2/2- k~4 + (k + ko)2/2 

+ 4 \ dp 3f4 A (p, ko) 
:rt J ('!.:rt)" a2 - k2/4 + p2/2 + (k + p)2/2 · 

If we introduce the notation 

A (k, k0) = [J/8:rtaj(a2 + f)l a (k, k 0), 

we obtain for a( k, k0 ) the equation 

~a (k, ko) = 1 ..L 4:rt \ ~ 
8 a- if a• + k•j2- k~/4 + (k + ko)•/2 1 J (2:rt)3 

X [a2 - k2/4 + p2/2 +a(~:0~)2/2] [p'- k~ + i-r] · 

(5) 

(6) 

It is obvious that the value of a( k, k0 ) obtained by 
summation of the diagrams coincides fully with the 
corresponding value of a(k, ko) in the STM equa­
tion. 

The total scattering amplitude A( k, f; k0, a) has 
in accordance with Fig. 5 the form 

A (k, f; k0 , a) = A (k; k0) + A (f - lJ2k, k 0) 

(7) 

3. CONTRIBUTION OF FIRST DIAGRAMS TO THE 
INELASTIC Nd SCATTERING IN THE APPROX­
IMATION LINEAR IN r 0 

We now proceed to calculate the inelastic scat­
tering amplitude with account of terms linear in r 0• 

The nucleon-nucleon scattering amplitude with ac­
count of the terms linear in r 0 can be written in 
the form 

a (f) = (f ctg {)- if)-t, (8)* 

*ctg =cot. 
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where 

If we now separate in the expression for a( f) the 
term corresponding to the vertex of the contact 
interaction, proportional to r 0, namely 

a (f)= r 0/2- (I + ar0)/(a +if), 

then the blocks in the diagrams of Fig. 2, which 
describe the scattering of two nucleons, must be 
represented in the form of a sum of two diagrams, 
one corresponding to the direct contact interac­
tion, and the other including the multiple scatter­
ing of the two nucleons. Then the nucleon-deuteron 
inelastic scattering amplitude with disintegration 
of the deuteron and with interaction of nucleons 1 
and 2 in the final state, A'(k, k0 ), can be repre­
sented in the form of contributions from the sum 
of the following diagrams (see Fig. 8 ) . 

FIG. 8 

We shall henceforth prime all the quantities 
determined in the approximation linear in r 0 to 
distinguish them from the quantities in the zeroth 
approximation in the nuclear-force radius. Since 
any pair of particles can interact in the final state, 
the expression for A'(k, ko) must be symmetrized 
with respect to the permutation of any pair of par­
ticles. 

Let us see what are the contributions from the 
first four diagrams. The contribution to the am­
plitude of the process from the first two pole dia­
grams, b and c of Fig. 7, obviously is of the form 

A~(k, k0) = f V8M a(f) [ a2 - ~ + ~2 + (kot k)}\ 

(f) = .!!..._ _ 1 + Ctro 
a ~ rx+if · (9) 

We now calculate the summary contribution to 
the scattering amplitude from the two triangular 
diagrams d and e of Fig. 7, which is determined 
by an integral of the form 5> 

5lin the nonrelativistic case the contribution of the triangu­
lar diagrams was calculated for the first time in general form 
by Blokhintsev et al,[•] by a method somewhat different from 
that used by the authors. 

00 

A~(k,ko)=({YVsna[~- ~~~?] 4n ~ ~de ~(~~)3 
-oo 

x[e-;~ +i-rr[~ -a2-e_(ko2~p)2+i1:r 

[ k~ k2 2 (k + p)2 . ]-1 
X 4m - Zm - e - a - ------zm- + n: .. (10) 

After calculating the integral (10) with respect to 
the energy E, which obviously reduces to the de­
termination of the residue of the integrand at the 
point E = p2/2m, we obtain 

8 1;-- [ ro i + rxro] ro 
= 3 r 8n:t 2 - rx + if 4n y h .. (11) 

This quantity can be calculated analytically. 
Using the well-known Feynman relation , 

1 
1 \ dx 

lib =.)[a+ b(1-x)2 j 2 ' 

0 

we represent the integral (11) in the form 

1 

I - 'i dx-1-1 dp 
Ll.- ~ 2n" J [p2 + p[xko + (1- x) k] + xk~+(1- x) k2 - 1.,2] 2 

1 00 

\ 2 \ q2 dq • 
= J dx--n.) [q•-sJ•, 

0 0 

£ = f - (a2 + f + q2) x + q2x2 

= q2 { [x- (a2 + F + q2)f2q2)2 

- (a2 + F + q2)f2q2 + ~: } . 

After integrating with respect to dq we get 

I 

(12) 

I = ~ (' dx = _1_Jn rx ~ i (f- q) (13) 
.:~. 2q J -v6 + i1: 2iq rx- i u + q) • 

0 

Consequently, the contribution of the triangular 
diagram to the scattering amplitude is of the form 

• • (8)3'1;--[ro 1+rxro] ro rx-i(f-q) 
AT (k, k0) = 3 r 8na 2 - rx +if 2Iq In rx _ i (f + q) • 

(14) 

The contributions of the first two diagrams are of 
the form 
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A~ (k, k0) + A~ (k, k0) 

By- { 1 
= 3 Sna a (f) ct2 - k~4 + k2/2 + (k + k 0)2/2 

+ ro ] ct - i (f- q) } 
'iiq n ct- i (f + q) • 

(15) 

4. COMPARISON WITH THE PERTURBATION­
THEORY MATRIX ELEMENTS, CONSTRUCTED 
WITH ACCOUNT OF THE PARTICLE INTER­
ACTION IN THE FINAL STATE 

The authors have previously investigated [1- 3] 
the energy distributions of the neutrons emitted at 
different angles, on the basis of perturbation the­
ory with account of interaction of the particle pair 
in the final state, for the decay of a deuteron in­
duced by protons at a total reaction energy "' 5 
MeV. In this approximation the amplitude of the 
reaction p+d- p+p+n (without account of the 
spin and isospin) is of the form 

B (k, k0) 

= ln z:. ~ e-ikr,<pf (pl2) [VIa+ V2sl eik,r,<pd (Pia) dpiadr2. 
(16) 

In the approximation of zero effective radius, 
the potential of the interaction can be represented 
in the form Vij = - 47rn2J.L - 1 Pij o ( Pij ) ; the wave 
function cp ( p12 ) of the two interacting nucleons in 
the final state has then the form 

<pf (p12) = e-ilp, + a (f) e'fPu/pi2· 

The wave function of the deuteron is 

<pd (Pia)= V a/2n e-~P"/Pia· 

Substituting these expressions into the integral 
(16), we obtain the scattering amplitude in the form 
B = J 1 + J 2, where 

J I= i_ \ eik,r,-. I, ct __!__ e-a.P"PiaO ( "Ia) e-ikr,[e-ilp., + ~ eifp,.] 
3 j V . 2:rt Pt• r P12 

x dpia dr2, 

J 2 = i. \ eik,r,-. I ct __!__ e-a.p,.P2al) ( ,., 23) e-ikr, [e-iiP., + ~ eifP,J 
3 J V 2:rt P1a r Pn 

(17) 

The second term of J 2 is proportional to the inte­
gral J P23o(p23 )dp23 , which vanishes in the approx­
imation of zero effective radius. If terms of the 
first order in r 0 are taken into account, the value 
of the analogous integral (- J.LI 47rn2) J V ( p23 )dp 23 

will be of the order of the effective radius of the 
nuclear forces. We denote it by r 0• 

After calculating the integrals J 1 and J 2 we 
obtain the expressions 6> 

J _ i_-. I ct 4n [~ _ 1 + ctro J 1 
I - 3 V 2:rt 2 ct + if (k + ko/2)2 + ct2 ' 

J2 = !;_l/ ct 4n {[~ _ 1 +ctro]~ In ct-i(f-q) 
3 2:rt 2 ct + rf 2rq ct- r (f + q) 

where 

(18) 

Thus, the inelastic nucleon-deuteron scattering 
amplitude is obtained in this approximation in the 
form 

B (k, ko) = ~n Vz: {[T- 1:x++ct;; J 
[ 1 ro I ct- i (f- q) J r0 } 

X q~+ct' +2iq nct-i(f+q) +(q-f)2 +ct2 • 
(19) 

Theterm r 0 /[(q-f)2 +a2] with f- 0 isasmall 
addition to B(k, k0 ) and can be neglected in the 
calculation of the corresponding sections of the 
nucleon spectrum; then expression (19) coincides 
exactly with the contribution of the first two per­
turbation-theory diagrams (15). 

Expression (19) differs from the total reaction 
amplitude A' ( k, k0 ) by an amount equal to the con­
tributions of the large number of the remaining 
diagrams. There are no theoretical grounds for 
assuming that the main contribution is made by 
the diagrams taken into account here. It is curi­
ous to note, however, that a comparison of the 
cross section calculated on the basis of (19) (or 
more accurately on the basis of analogous formu­
las calculated with account of the spin and of the 
isospin) with the experimental dataC1- 3] offers 
evidence that the contribution of all the remain­
ing diagrams is negligibly small, at least in the 
region of very low energies of the pair of pro­
duced nucleons. 

5. ACCOUNT OF THE SPIN AND ISOSPIN 

For a comparison of the experimental data it 
is essential to write down the amplitude of nucleon-

6lThese expressions were obtained by the authors together 
with V. K. Vo1tovetski1 in the investigation of the experimen­
tal energy distribution of the protons from the (n, d) reaction. 
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deuteron inelastic scattering with neutron disinte­
gration for real particles, with account of the spin 
and isospin variables. In the diagram method such 
an account reduces to a procedure wherein each 
block, describing the scattering of two nucleons 
(if) with production of an intermediate state in the 
zero effective radius approximation, is set in cor­
respondence with an operator 

1 [ -1 a=-c- . + 
2 Cl.t + tfij -1 J 

- Cl.s + ifij ' 

where fij has the relative momentum of the par­
ticles of i and j. The vertex of the decay of the 
deuteron into nucleons or the production of a deu­
teron from two nucleons corresponds, as in the 
case of bosons, to a number equal to - i ...j 81l"O!t /m. 

The vertex operators presented above have 
been written out for s-scattering of nucleons, that 
is, for the case when the contribution to the scat­
tering amplitude is made only by the s-waves of 
the expansion of the coordinate wave functions in 
partial waves, and consequently, when f>[j = 1. The 
contribution of each diagram will now be deter­
mined by a matrix element of some operator be­
tween the wave functions of the spin and isospin 
of the initial and final states. 

Let us construct first the matrix elements of 
the diagrams describing the process of three­
nucleon scattering, when particles 1 and 2 can in­
teract in the final state. Inasmuch as at low reac­
tion energies the particles 1 and 2 interact only in 
the s-state, the wave functions of the spin and iso­
spin 4? ( 12; 3) should be antisymmetrical with re­
spect to permutation of the variables of particles 1 
and 2. These functions, as is well known, are for 
the case T = Y2 and S = % the functions 
xWm ( 12; 3) J.k'202; 3) and x}f( 12; 3)J.~~m(12; 3 ), 
where 

x:~~m (I2; 3) = 6-'/, (2baa1a2- a3a1b2- a3b1a2), 

x~' (I2; 3) = 2-'/, (a1b2 - a2b1) a3, 

'fr~~m (12; 3) = 6-'/, (2~a1X1a2 - CXaa1~2 -- aa~1a2), 
'frY' (12; 3) = 2-';, (a1~2- a2~1) oc3 (20) 

( x are the spin and J. the isospin functions ) , while 
for the case T = % and S =% this is the function 
X 3/2 ( 12· 3 )J-112 ( 12· 3) where sym ' a ' ' 

"''1• (I2; 3) = 3-'/, (b3a1a2 + a3a1b2 + a3b1a2). (21) 
t.sym 

The case of states with T = % is not consid­
ered, in view of the fact that the isotopic spin of 
the initial state of the nucleon-deuteron system 
is Y2• 

Simple calculation shows that the contribution 
of the pole diagram can be represented in the form 

Ao = (<D* (I2; 3)A01<D (23; I))+ (<D* (I2; 3) Ao:;.<D (3I; ~)). 
(22) 

Here 4? ( 12; 3) denotes one of the wave functions 
of the spin and isospin of the final state, while 
4? ( 23; 1 ) and 4? ( 31; 2 ) denote the analogous func­
tions of the spin and isospin of the particles in the 
initial state. The operators A01 and A02 are of 
the form 

Ao1 =~[a+ bN2l y-1 (k, ko) fa1 + brf'~3], 
~ 4 Aa] 1 Aa] A 02 = 3 fa+ bP12 y- (k, k0) [a1 + b1P31 ; 

r (k, ko) = a 2 - k~4. + k2/2 + (k + ko)2/2. (23) 

The contribution of the square diagram is in 
this case of the form 

A 1 =(<I>* (12; 3) .4~<1>.(23; I))+ (<I>* (12; 3) A~<I> (3I; 2)) 

+ (<I>* (I2; 3) A~<t> (12; 3)) + (<I>. (12; 3)Ai<t> (12; 3)), 
(24) 

where 

A~= 2 (f Y [a + bP~2 ] {4n ~ [a2 + b2F~1 ] 

x (2~3 y-1 (p, k) y-1 (p, ku)} [a1+bJ'>;3 l, 

A i = 2 (~} [a+ bP~2 l {4n ~ la2 + bJ~3 ] 

x (2~3 y-1 (p, k) r-1 (p, k0)} [a1+ b1P:~1l, 

A~ = 2 (-} Y [a + bP~2] {4n ~ [a2 + bJ~d 

x (2~3 y-1 (p, k) y-1 (p, k0)} [a I +b1P~2l, 

A~ = 2 (i-/ [a + bP~2 ] { 4n ~ fa2 + bi~d 

X (2~3 y-1 (p, k)r-1 (p, ko)} fa1+ b1P~2l· 

If the two nucleons were in a bound state in the 
final state ( d~uteron), then the operator corre­
sponding in the diagrams to the block of scatter­
ing of two nucleons ij in the initial state a1 + b1 P~ 
must be replaced by the number ...j 81l"O!t. 

Using the indicated values of the contributions 
of the pole and quadratic diagrams, we can obtain 
integral equations for the nucleon-deuteron scat­
tering amplitudes for a total system spin S = 1/ 2 

and isospin T = t;2, or S = % and T = Y2• We first 
obtain the equations for the nucleon-deuteron scat­
tering amplitude in the zero effective radius ap­
proximation for S =% and T = %. 

We denote all the terms of the nucleon-nucleon 
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scattering amplitude with particle-pair interac­
tion in the singlet state by the subscripts s, while 
in the triplet state by the subscripts t. The con­
tribution of the pole diagram to the nucleon-deu­
teron inelastic scattering amplitude in the case 
of interaction of particles 1 and 2 with antiparallel 
spins in the final state will be of the form 

A;{~ (k, ko) = (x¥• (I2; 3) it'~'ym (I2; 3) 413 [a + bP~2 1 

x r-1 (k, k0) YBnatx'~'ym (23; I) it¥• (23; I)) 

+ (x% (12· 3) it'1• (I2· 3) 4/ [a ' bP" 1 .,-1 (k k ) a , sym , 3 T 12 a ' 0 

X YBnatX~~m (3I; 2) it¥' (31; 2)) 

= 2 Y8:rt7.t [as + if]-1y-1 (k, k0). (25) 

In the case of interaction of particles 1 and 2 in 
the triplet state 

Acii (k, ko) = (X~~m (12; 3) it¥• (12; 3)% [a+ bP;21 

x r-1 (k, k0) Y 8natx'~~m (23; I) itY' (23; 1)) 

+ (x'~~m (12; 3) it¥' (12; 3) 4fa [a+ bP~2 1 j-1 (k, k0) 

X Y8rtrltX~~m (31; 2) itY• (31; 2)) 

? .. ,-= if r 8nat (CY.t + i/)-1 r-1(k, k0). (26) 

The contribution from the square diagram for 
the case of interaction of particles 1 and 2 in the 
final singlet state is determined by the expression 

A{; (k, k0) = (xY• (12; 3) it~~m (12; 3) 2(-}Y [a+ b/J;2J 

X {4n ~ (2~3 [a2 + bi~1 ] r-1 (p, k0) r-1 (p, k)} 

x Y8ncxtx·~~m (23; I) 1':1} (23; I)) 

+ ( xY· (I 2; 3) it~~m (12; 3) 2 (-} Y ra + bP~2l 

x {4n~(2~3 [a2 + bzF~3 l 

X "(-1 (p, k0) "(-1 (p, k)} Y8rtCXtX:~~m (31; 2) it~' (31; 2)) 

+ (xY• (12; 3)it~~m (12; 3) 2(~Y [a+ bP~2J 

x {4Jt ~ (:,!~3 [a~+ bJ'~~I 

/ y· 1 (p, k0) y-1 (p, k)} Y8JtatX~~m(12; 3) it:(• (12; 3)) 

(
' 1/ 2 (J 3) .<>.1/ 1 (4)2 'a + Xa 2; Vsym(l2; 3) 2 3 [a+ bP12J 

x {4n ~ (2~. [a2 + bi~al 
x y-1 (p, k0) y-1 (p, k)} Y8natx~~m (12; 3) tt¥• (12; 3)) 

= (-} Y as~ if Y 8rtcxt ~ (2~3 [ ~ A;{~ (p, ko) 

+ f A:fi (p, ko) J y-2 (k, p). (27) 

For the case of interaction of particles 1 and 2 
in the triplet state, the contribution from the square 
diagram to the scattering amplitude will be of the 
form 

Ail (k, ko) = (x'~~m.(l2; 3) tt¥• (12; 3) 2(j-Y [a+ bP~2 ] 

X {4n ~ (2~3 [a 2 + b2P;11 r-1 (p, k0) r-1 (p, k)} 

x Y8natx~~m (23; I) ttY• (23; 1)) + (x'~ym(l2; 3) 

x tt¥• (12; 3) 2 ( j-Y [a + b/J;2l { 4n ~ (2~3 [a2 + b2P~3 ] 

X y-l (p, k0) j-1 (p, k)} Y8:rtrltX1~~m (31; 2)ttY• (31; 2)) 

+ (x';ym (12; 3) tt¥• (12; 3) 2(j-Y [a+ bP~2 1 

x {4n ~ (2~3 [a2 + b2P~1 1 r-1 (p, k0) y-1 (p, k)} 

X ,r81tct X'/, (12· 3) it'/, (J2· 3)) t' t sym ' a ' 

+ ( x·~~m (12; 3) itY' (12; 3) 2 (-} Y la + bP~2l 

x {4:rt ~ (2~3 [a2 + b2P;&J 

x r-1 (p, k0) y-1 (p, k)} Y8n"'tx'1' (12; 3) itY' (12; 3)) sym 

= (-}Y at~ if ~~(2~3 [~ A;{l (p, ko) 

+ { A;{; (p, k0) J y-1 (p, k). (28) 

The integral terms of the equations for the 
nucleon-deuteron scattering amplitude with singlet 
or triplet interaction of particles 1 and 2 in the 
final state can be obtained from (27) and (28) by 
replacing the zero -order terms A~~2 ( k, k0 ) or 
A~{2 ( k, k0 ) under the integral signs with the exact 
values of the scattering amplitudes A~2 ( k, ko) and 
Afl2 ( k, k0 ). We introduce the notation 

A;• (k, k0) = a;• (k, k0) Y8n"'tl (a~+ f2), 

A/'(k, k0) = a'!• (k, k0) Y8nrlt/(rl7 + {2). 

We then obtain the following expressions for 
a~2 ( k, k0 ) and ai12 ( k, k0 ) : 

cts + if •;, 3 -1 (k k ) 
k2- k2 as (k, ko) = 2 y ' 0 

0 

'I •r 
4 \' ~ 3/2 a1 ' (p, ko) + 1/2 a;' (p, ko) 

+ n J (2n)a r (p, k) (p2- k~) ' 

ctt + if a'l· (k k ) = _!_ y-1 (k k ) 
k2- k2 I ' 0 2 ' 0 

0 

1 4 ( ~ 1/ 2 a/• (p, k0) + 3/o a;• (p, ko) (29) 
1 Jt ~ (2n)" 1 (p, k) (p"- k~) · 

It is obvious that these equations correspond 
exactly to the STM equations with the spin and 
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isospin taken into account. Analogous equations 
can be obtained for the scattering amplitude in 
the case when particles 2 and 3 or 3 and 1 inter­
act in the final state. Then we have for the total 
nucleon-deuteron scattering amplitude 

A (k, f; k0, a) = A¥.• (k, k0) x~· (12 ; 3) tt~~m (12; 3) 

+ A'1• (k k) .._'/o (12• 3) tJ-'1• (12· 3) 
t ' o ""sym ' a ' 

+A¥' (f- 1/ 2 k; k0) x~· (23; I) tl-~~m (23; I) 

+ A'1• (f- 1/ k· k) .._•;, (23· I) t~-'1• (23· I) 
t 2 ' o 1v sym ' a ' 

+ A'1• (- f- 1/ k· k) .._'/, (31· 2) tJ-'1• {31• 2) 
s 2 ' o ~~..a , sym ' 

+ At'(- f- 1h k; k0) x·~~m (31; 2) tt~· (31; 2). (30) 

We now obtain expressions for the contributions 
of the first two diagrams to the nucleon-deuteron 
scattering amplitude in the approximation linear 
in r 0• If particles 1 and 2 interact in the final 
state then the contribution of the pole term in the 
indicated approximation, for singlet interaction of 
particles 1 and 2 in the final state, will be of the 
form 

·•;, - v-['os 1+cts'osl -1 A0, (k, k0)- 2 8na, 2 - ct, + if "r (k, ko). (31) 

and for triplet interaction of particles 1 and 2 

' 1/, v-[-'ot 1+ctt'ot] -1 . Aot (k, k0) = 2 8nat 2- :xt +if Y (k, ko)· (32) 

The contribution of the triangular diagram for 
the case of interaction of particles 1 and 2 in the 
singlet state is of the form 

'•;, v- f 'os 1 + ct,ros J 'os + 'ot 
Ar, (k, k0) = 8nat l-2 - + 1 . ·r ct5 I -tq 

(33) 

and for the case of interaction of particles 1 and 2 
in the triplet state 

••;, · _ 1;-l~ _ 1 + ctt'ot J 9ros + 'ot 
Art (k, k0)- r 8nat ·; + 1 2 · - ctt l tq 

':lt- i (f- q) 
x In . (f + ) . Clt-l q 

(34) 

The total amplitude of the process, with account of 
the interaction of any pair of particles in the final 
state, must be written in a form analogous to (30), 
where A112 and A112 are replaced by A'112 and 

ti/2 s t s 
At . 

The scattering amplitude in the real case can 
be obtained by multiplying the expression for the 
total scattering amplitude by the spin and isospin 
functions of the final state of the system under 
consideration. For example, in the case of the 

disintegration of a deuteron induced by a neutron, 
the spin and isospin functions of the final state 
for S = 1/ 2 and T = % can be 

x·~~m (12; 3) a1a2~3 or x~· (12; 3) ct1ct2~3• 

where a 1 a 2{33 - isospin state of neutron 1, neu­
tron 2, and proton 3. 

We now obtain the integral equations for the 
nucleon-deuteron scattering amplitude in the case 
S =% and T = %. Assume that in the final state 
particles 1 and 2 have a triplet interaction and in 
the initial state the deuteron consists of particles 
2, 3 or 3, 1 or 1, 2. Then the spin function of the 
final state is x~~m ( 12; 3 ). The spin function of 

the initial state is x312 (12· 3) or x312 (23· 1) sym • sym ' 

or x~~m ( 31; 2 ), while the isospin function of the 

initial state is J.f(2(12; 3) or J.§/~m ( 23; 1) or 

J-}{2(31; 2 ). 
In the zeroth approximation in r 0, the contri­

bution of the pole term to the scattering amplitude 
will be of the form 

(35) 

The contribution of the square diagram to the scat­
tering amplitude will be determined by the integral 

•;, 3 - 1 \' dp A~· (p, ko) 
A1 (k, k0) = - 4 V8nat 'Xt +if 4n ~ (2n)3 1 (p, k) . (36) 

For the integral term in the equation for the 
scattering amplitude we obtain an expression simi­
lar to (3.6), in which A~/2 (p, k0 ) is replaced by 
A 312 ( p, ko ) . If we introduce the notation 

A'1• (k, k0) = f8na, (k2 - k~t1a'1• (k, k0), 

we obtain the following integral equation for 
a3/2(k, ko ): 

Cl.t + if a'J, (k k ) - - 1 (k k ) + 4n \' a'f, (p, ko) ~ 
k2- k~ ' o - y ' o ~I (k, p) (p2 - k~) (2n)3 . 

(37) 

The expression for the scattering amplitude with 
account of the interaction of each pair of particles 
will have in the final state the form 

A% (k f· k a)= A'1•(k k) .._•;, (12· 3) {}'1• (12· 3) 
, ' Ot ' o A.sym. ' a ' 

+ A'1• (f - 1/ 2 k; k0) X~~m (31; 2) tt~· (31; 2) 

+ A'1• (- f- 1/ k· k ) .._'!. (23· I) t~-'1• (23· I) 
2 ' o Jl...·sym' ' a ' • 

(38) 

Using the same arguments as before, we can 
readily show that the contribution of the pole and 
triangular diagrams to the amplitude of the inelas­
tic scattering of a nucleon by a nucleon is, for S 
=% and T = 1;'2 in the approximation linear in r 0, 
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''I• 3 .,/- ['ot 1 + rxtrot J A (k, ko) = -2 y 8:n:O:t 2- rxt +if 

[ 1 rot rx - i (f - q) J 
X r (k, ko) + 2iq In rx- i (f + q) , 

(39) 

and the total nucleon-deuteron inelastic scattering 
amplitude in the approximation linear in r 0 will 
have a form similar to (38). 

In order to obtain the scattering amplitude in a 
real case, it is necessary to project the expression 
for the total amplitude on the real final spin and 
isospin states of the system. Thus, in the case of 
the decay of a deuteron induced by neutrons, the 
spin and isospin states of the system with S = % 
and T = % are described by the function 
x~~m (12; 3) a 1a 2{33. It is easy to show that the 
expressions (30) and (38) obtained for the contri­
butions of the pole and triangular diagrams in the 
approximation linear in r 0, with account of the 
spin and isospin, correspond fully to the expres­
sions obtained within the framework of perturba­
tion theory, with account of the interaction of real 
particles with spins in the final state. 

6. CONCLUSION 

The investigations carried out in the preceding 
sections show that in the zeroth approximation in 
the interaction radius r 0 (corresponding to the 
well-known Bethe-Peierls theory of the deuteron), 
the Nd interaction amplitude corresponds only to 
ladder-type diagrams, the summation of which is 
quite easy to carry out and leads to the STM equa­
tion. The use of the diagram summation procedure 
makes it possible to obtain also relatively simply 
equations for the Nd-interaction amplitude in the 
first approximation in r 0, as investigated by 
Danilov. 

Comparison of the matrix elements of pertur­
bation theory with account of particle interaction 
in the final state and the contributions of the series 

tributions from the pole and triangular diagrams. 
Inasmuch as a comparison of the experimen­

tally obtained energy distributions of the neutrons 
from the reaction p + d = p + p + n with those cal­
culated on the basis of the Born approximation with 
account of the particle interaction in the final state 
[ 1- 3] shows that they agree well, we can assume 
that the greatest contribution to the amplitude of 
the process is made by the pole and triangular di­
agrams. 

It must be noted that the diagram summation 
procedure considered yields integral equations for 
the scattering amplitude of more complicated sys­
tems consisting of four or five nucleons. The ker­
nels of these equations include the three-nucleon 
interaction amplitudes, just as the kernal of the 
STM equations for three nucleons includes the two­
nucleon interaction amplitude. 

In conclusion, the authors express their sincere 
gratitude to K. A. Ter-Martirosyan for interest in 
the work and for useful discussions. The authors 
are also grateful to G. S. Danilov, who reviewed 
the work and made several remarks. 
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