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The transmission coefficient of a one-dimensional quantum-mechanical system consisting of 
two potential barriers is considered (see Fig. 1). When the energy of the incident particles 
coincides with that of a quasi-level in the well between the barriers, resonance occurs. The 
resonance transmission coefficient is unity when the barriers are equal, and decreases ex
ponentially as the equality of the barriers is destroyed; this allows the transmission coeffi
cient to be controlled by a small deformation of the barriers. It is shown that there exists 
in principle the possibility of resonant tunnelling of electrons in a semiconductor through 
the two closely situated thin dielectric layers, 2 and 4 in Fig. 2, which act as potential bar
riers of different height. An external electric field can make the barriers equal and control 
the resonance current. The conditions necessary for the realization of this effect in experi
ment are discussed. The magnitude of the resonance current depends on the shape of the 
Fermi surface of the main crystal. The character of the reflection and transmission of 
electrons through the dielectric barriers should be specular, and all mean free paths should 
be large compared with the thickness of the system. 

l. It is well known that the quantum-mechanical 
one-dimensional system of two equal potential bar
riers, shown in Fig. 1b, has a property of reso
nance transmission. A detailed explanation of the 
physics of the phenomena and a calculation for the 
quasi-classical case can be found in Bohm's book. 
[l] The resonance transmission, or Ramsauer ef
fect, occurs when the energy of the particle inci
dent from region 1 on to the barrier 2 is the same 
as the energy of a quasi-level in the well 3 between 
the barriers. In the one-dimensional case such 
quasi-levels always exist. Resonance is accom
panied by the establishment of an intense standing 
wave inside the resonant well. In the stationary 
state the incident wave from region 1 proceeds 
through the barrier 2 into the well 3, while simul
taneously a wave of equal intensity flows out from 

FIG. 1. Change in char
acter of resonant penetra
tion of waves in the well 3 
with decreasing barrier 4. 
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the well on the other side through the barrier 4. 
When the energy of the incident particle is altered 
from the resonance value, the transmission coef
ficient falls exponentially. Because the system is 
symmetrical in the sense of the equality of the in
dividual transmission coefficients of each barrier, 
nothing is changed if we take the waves to be inci
dent not from region 1 but from region 5. The 
resonance transmission coefficient is a conse
quence of this symmetry. 

It is well known that if a single potential bar
rier is situated in front of an impenetrable wall, 

then resonance in the quasi-levels is possible 
also. In Fig. 1a such a barrier 2 in front of a 
wall 4 is of finite thickness. The transmission 
coefficient of a barrier decreases exponentially 
as the width or height of the barrier is increased; 
therefore, the finite barrier 4, large compared 
with the smaller barrier 2, can act as a practi
cally impenetrable wall. At resonance an intense 
standing wave is also set up in the well 3 in front 
of the wall. In the steady state resonance condi
tion the wave incident from region 1 completely 
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penetrates through the barrier 2 into the well 3, 
but a wave of exactly the same intensity flows out 
backwards from the well 3 to meet the incident 
wave. The steady state process of resonance re
flection is energetically equivalent to a simple 
non-resonant reflection of the wave from barrier 
2, but physically the two phenomena are greatly 
different, since, for non-resonance reflection, 
waves do not substantially penetrate into region 3 
behind the barrier. In particular, therefore, the 
build-up process is completely different. 

If it is considered that the barrier 4 is not an 
absolutely impenetrable wall, but possesses some 
extremely small transmission coefficient, then a 
small flux of particles also proceeds from well 3 
into region 5 through the barrier 4. Because the 
system of barriers is asymmetrical, when the 
wave is incident from the opposite side from re
gion 5, the resonance process will be greatly dif
ferent from that considered above. Despite reso
nance, there will be in practice simple reflection 
of the waves from the barrier 4, since the wave 
cannot sense small barriers separated from it by 
a high barrier. An increase of intensity of the 
standing wave in the well 3 between the barriers 
that is large compared with the incident wave 
cannot occur in this case, since the wave escapes 
more easily out of the well through the smaller 
barrier than it penetrates into it through the 
larger barrier. 

The basic idea of the present work is as fol
lows: if we start to deform potential barriers 
without destroying resonance, a continuous tran
sition can exist from one of the resonance effects 
discussed above to the other. Thus, if we gradu
ally start to diminish the width (or height) of the 
large barrier 4 in Fig. la, then, when the individ
ual transmission coefficients of the barriers 2 
and 4 become equal, the original resonance re
flection is changed into resonance transmission, 
to which corresponds Fig. lb. Further, when 
barrier 4 becomes smaller than barrier 2, as 
shown in Fig. lc, the resonance transmission 
becomes a simple reflection from barrier 2. The 
general principles quoted above can be readily 
verified in a concrete calculation if the barriers 
are taken to have a simple shape allowing an ex
act solution; however, the formulae are cumber
some, and their behavior is difficult to follow. A 
very clear expression for the transmission co
efficients of an arbitrary system of two barriers, 
which illustrates what has been said, above can 
be obtained 1> in the quasi-classical approxima-

1li am grateful to M. Y a. Azbel ', who, when acquainted 
with the original version of the article, obtained this formula 
and kindly suggested its use. 

tion, by exactly the same method as in [1]: 

Zj 

1iJt = ~ P,. dz, p = [ V2m [U (z)- £][. (1)* 
Z£-1 

Here Ji is the action integral taken in the i-th 
region between neighboring turning points; p is 
the classical momentum of the particle. 

Resonance occurs under the usual quasi
classical condition 

21iJ 3 = § p 3 dz = 2n1i (n + 112) (n = 0, 1, 2, ... ), (2) 

which determines the quasi-level in the well 3. 
Here cos J3 = 0, and the resonance transmission 
coefficient is simply equal to 

(3) 

i.e., depends on the ratio of the barriers, and 
tends to unity when J 2 = J4• Owing to the expo
nential variation, the resonance transmission 
coefficient (3) is very sensitive to change of form 
of the barriers. Thus, there exists in principle 
the possibility of shutting off or turning on the 
resonance transmission at will by means of a 
small deformation of the barriers. 

It is well known that the resonance effects con
sidered are not specifically quantum-mechanical, 
but can occur for waves of any nature, including 
electromagnetic, acoustic, etc. For electromag
netic waves, resonant systems of one-dimensional 
barriers can be easily formed with dielectric lay
ers at total internal reflection. For elastic waves 
in liquids, totally reflecting solid layers can serve 
as barriers. All the resonance effects mentioned 
above then occur, and an additional resonance dif
fraction effect associated with waves at inclined 
incidence. [2] The width of the potential barriers 
is here determined by the thickness of the totally 
reflecting layers, and the height by the material 
constants of the medium: the dielectric permittiv
ity and magnetic permeability for electromagnetic 
waves in dielectrics, and the elastic moduli for 
elastic waves. If these constants are changed by 
any external factors, it is possible to control the 
resonance transparency. 

2. There also exists in principle the possibility 
of the effect considered above occurring for elec
trons in crystals, and we discuss this further. It 
is well known that, in a number of semiconducting 
crystals and in certain metals, the conduction 
electrons possess an effective mass m * many 
times smaller than the mass of a free electron 

*ch =cosh. 
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m, a de Broglie wavelength of the order of tens 
of angstroms, and a large mean free path of order 
104-106 A. Such electrons can penetrate thin non
conducting layers of thickness d ..... 100 A by the 
tunnel effect. These electrons sense the non-con
ducting layers macroscopically as one-dimensional 
potential barriers of a height U ..... 1 e V determined 
by the width of the forbidden gap. If two such bar
riers are situated sufficiently close to one another. 
the resonance effects considered above can occur 
in principle. In this case it is especially easy to 
control the resonance transparency, since a small 
change of the applied voltage is sufficient to deform 
the potential barriers. 

We consider the plane layer system of a crys
talline medium shown in Fig. 2a. The shaded 
media 1, 3, and 5, correspond to an electronic 
conductor, and the unshaded ones, 2 and 4, to a 
dielectric. We shall consider the electrons in the 
conductors as a free Fermi gas which might be 
degenerate or nondegenerate. In Fig. 2b the poten
tial energy of electrons is shown under the simpli
fications taken. Ui is the bottom of the conduction 
band in the i-th region. It is assumed for simplic
ity that the barriers 2 and 4 have equal widths 
(this is not necessary in principle) and different 
heights, i.e., d2 = d4 and U4 > U2. The quasi-levels 
of electrons in the well 3 are shown by broken lines; 
the number of these levels depends on the width of 
the well and the height of the walls. 

We switch on an identical electric field <f in the 
direction 5 to 1 in both the dielectric layers. The 
potential energy of the electrons is thereby lowered 
by the amount V = eld2 ( e is the electronic charge ) 
in the medium 3 and by 2V in the medium 5. As a 
result we obtain the potential energy shown in Fig. 
2c. Because of the great steepness of the barriers 
it is impossible to use here the quasi-classical 
expressions (1)-(3); the problem, however, does 
permit an exact solution with the aid of Airy func
tions. We assume for simplicity that the effective 

a .r c U(Z) 

·FIG. 2. System of crystalline conductors (a) separated by 
dielectric layers 2 and 4, and the potential energy of the 
electrons without the field (b) and after turning on the field (c). 

height of each of the barriers is sufficiently large 
and that it is permissible to use the asymptotic 
representation for the Airy functions, [ 3] and we 
find that at resonance the transparency of the sys
tem is a maximum and is given as before by for
mula (3), where it is now necessary to put 

J2 =! {I£, 1'1• -I £tl'1•} +In{~ [I£, 1-'/, +I:_ I£, 1'1•] 
3 ~ ~ 

X [ I Gl 1'1· + ;! I Gl [-'/,]} ' 

14 = f {I£,+ o 1'1• -I £1 + o J'i•} 

+ In { :: [ I £, + o 1-•;, + ~i I£, + o 1'1•] 

X [I St + 0 1'1• + :~ I Gl + 0 ~--'/·]} ; 

ki= P/h, 

(4) 

It is not difficult to show that the quasi-classi
cal action integrals in (1) exactly coincide with 
the first terms in (4). 

Resonance occurs when the energy E of the 
external electron coincides with a quasi-level of 
electronic energy in the well 3 and is given by the 
condition k3d3 = ( k3d3 )res + Eo where 

ex ik d - i ' 3 ' 1 I [ 
(I ~ + 61-'1•- i~'k-1 I~ + 61'1•) (I~ 1'1• + ika (~')-1 I~ r'1•) ]';, 

p ( 3 a) res- (I ~r + 61 'I•+ i~'k311 ~r + Ill'/•) (I~~~·;,-- ika (~')-11 ~II 'I•) ' 
(5) 

2k;1 ~' (I Gt + 61'/,- k~ (~')-2 1 ~1+ 61-'1•) exp [- 4/a (I ;, + 61'1' -I £1 + ll1'1•)J 

"o = (I ~I+ ll1'1• + k; (~')-2 1 ~I+ ll ( 1') (I£,+ 6 r'i• + kw 2s'2 1 ~, + 61'1•) -

2ka (£')-1 (I ~r r'iz- k~2 ~'2 1 ~r I'>) exp [- 4/s (II;, i'"- I ~I !'0J 
<I ~,I •, + k 1 "~'2 I ~, \'"J < l£1 1'1•-+- k; (£')" I :;, I '1'l 

The expression (6) is an exponentially small 
correction of the same order as the individual 
transparency of either of the barriers; therefore 

the resonance condition is determined with great 
accuracy by equation (5), which is consequently 
the approximate resonance condition and deter-

(6) 
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mines the position and number of the quasi-levels. 
As the field is increased the difference in 

height of the barriers diminishes and, when V 
~ u4 - u2, tends to zero. Then J 2 = J 4 and Tres 
= 1, i.e., the conditions for resonance tunnel pene
tration of electrons from medium 1 to medium 5 
through the system of barriers occur. When the 
field is further increased the barrier 4 goes 
below barrier 2, the symmetry is destroyed, and 
the system loses its transparency. Consequently, 
the curve of resonance current with increasing V 
goes through a maximum and thereafter decreases. 
If unequal voltages are applied separately to lay
ers 2 and 4, then, by displacing the potential of 
the layer 3 relative to the potentials of the media 
1 and 5, we can destroy the symmetry of the bar
riers and thereby control the resonance current. 
If the field is applied in the opposite direction, then 
the original existing asymmetry of the barriers 
will be increased and the resonance transparency 
will not arise. 

3. We now evaluate the requirements which 
must be satisfied in order that the effect consid
ered can appear in real systems. Because the 
electrons fall on a system of barriers from the 
original crystal 1 in Fig. 2a, its properties are 
very important. The properties of the resonator 
layer 3 and the dielectric barriers 2 and 4, which 
together determine the sharpness of resonance, 
are also important. The purpose of the conductor 
5 is to collect and lead away the electrons pro
ceeding through the barrier; its properties should 
not, therefore, play a great part, and for this con
ductor a normal metallic coating can be used. 

We have considered above one-dimensional mo
tion along the z axis. Proceeding to the three
dimensional case, and assuming that the longitud
inal component of the quasi-momentum Px is pre
served, we find that all the results obtained pre
viously remain in force if we replace E by E 
-Pi /2m*. This means that resonance is possible 
only for those conduction electrons in crystal 1 
that lie close to the section of constant-energy 
surface by the plane p1z = p1z res. To calculate 
the total resonance current, therefore, it is nec
essary to know the shape of the constant-energy 
surface in crystal 1 and the density of states in 
the conduction band. It is also necessary to take 
into account that resonance penetration of elec
trons falling on the barrier at inclined incidence 
should be accompanied by the phenomenon of reso
nance diffraction. [2] However, such a calculation 
has been given by us previously. It is obvious 
physically that for a nonspherical shape of constant 
energy surface, which provides a great anisotropy 

of the electronic properties, a significant fraction 
of the conduction electrons in crystal 1 can parti
cipate in the resonance transmission. Therefore 
the effect considered should depend strongly on 
the shape of the Fermi surface in crystal 1. 

The resonance discussed by us occurs due to 
the presence of discrete energy levels in the thin 
conducting layer 3. It is well known that in an in
finite conductor the energy levels form a continu
ous band, but in the case of a thin film, instead of 
the continuous band a series of discrete levels oc
curs; this is associated with the formation of stand
ing waves. The energy levels of particles in a one
dimensional rectangular well with infinite walls can 
be written as follows: 

n 2li,2 2 ( m ) ( 100 A )2 2 2 ) En =--n = (0.0038eV) ----.-- -d- n (n= I, , .•. , 
2m"d2 m a 

3 (7) 

Substituting m * = 0.1 m, d3 = 200 A, we obtain, for 
example, with En~ 2 eV, which corresponds to 
n = 15, a value of En+l- En ~ 0.28 eV. Thus, for 
energies of the order of the Fermi energy the dis
tance between neighboring levels is sufficiently 
large. 

For smaller effective masses and larger film 
thicknesses the distance between the levels is still 
greater. However, in the real case of conducting 
films, the discrete levels occur only when reflec
tion of the electrons from both surfaces of the film 
is of a specular character. In the opposite case of 
diffuse reflection, the levels are greatly smeared 
out. Whether reflection is diffuse or specular de
pends on the relation between the de Broglie wave
length of the electron and the inhomogeneities of 
the film surface, which in the best case amount to 
several interatomic distances. One might think 
that, in semiconductor films where the effective 
mass of the electrons is sufficiently small and the 
de Broglie wavelength is particularly large, the 
conditions for specular reflection ought to be sat
isfied; however this question is still, apparently, 
inadequately investigated. 

In metallic films the reflection of electrons is 
usually of a diffuse character. Nevertheless, dis
crete levels exist and determine a number of ef
fects. It is, however, very curious 2> that for bis
muth, which is a semi-metal, reflection of conduc
tion electrons from the surface of a crystal is 
specular. [4] In all cases when the surface of thin 
crystals was specular for visible light, the reflec
tion of conduction electrons had a strictly specular 
character. The authors explain this by the very 

2lJ am grateful to L. V. Keldysh, who drew my attention to 
this fact. 
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large de Broglie wavelength of conduction electrons 
in bismuth, associated with the small Fermi en
ergy and the small effective mass. The mean free 
path in the experiments amounted to millimeters, 
i.e., the conditions necessary for the existence of 
the effect we have considered were realized with 
ease. It is true that the plates of bismuth used in 

[ 4] were too thick for the energy levels to be dis
crete. 

The insulating layers 2 and 4 must be very thin 
in order to possess adequate transparency, since 
for large film thicknesses, because of the expo
nential dependence, resonance becomes possible 
only for excessively large increases in the ampli
tude of the standing wave inside the resonator 3; 
this is unrealistic because of the finite density of 
states in the film 3 and the presence of scatter
ing. Because the transmission coefficient of a 
single dielectric film is determined simultaneously 
by the thickness of the film, the width of the for
bidden gap, and the effective mass of the carriers, 
a wide choice of possibilities exists here. In order 
to equalize the barriers it is necessary to apply to 
the film a constant voltage of the order of fractions 
of the forbidden gap. Because this voltage is 
smaller than the ionization potential of the dielec
tric, the only requirements which the films must 
satisfy is to possess finite transparency and mini
mum scattering. 

The calculation made did not take into account 
scattering of electrons, which plays an important 
part, because the resonance considered is a co
herent effect. Scattering in crystal 1 means that 

instead of plane monochromatic waves, wave pack
ets occur comparable with the mean free path. 
Scattering inside the layers 2 and 4 leads to addi
tional broadening of the quasi-levels. The process 
is therefore equivalent to the transmission of wave 
packets of finite extent through a resonant layer 
system possessing absorption. The greater the 
mean free path of the electrons in crystal 1 com
pared with the thickness of the system, and the 
smaller the scattering inside the layers, the 
sharper will be the resonance curves that can be 
obtained by increasing the thickness of the bar
riers. Scattering imposes a limit on the attain
able resonance parameters according to the same 
laws as applied for light waves in the presence of 
two totally reflecting barriers. [5] 
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