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Some general rules are formulated, based on the directed orbital method familiar from quan
tum chemistry, which can be used to determine the geometric arrangement of alpha-clusters 
in a nucleus if the Nilsson orbit series or shell configuration is given. As an example, some 
excited states of 0 16 and C12 are considered and the geometric arrangement of alpha-clusters 
in Ca40 is determined. In conclusion some critical remarks are made concerning the appli
cation of the alpha-model to light nuclei. 

1. INTRODUCTION 

A very timely question in the theory of light nu
clei concerns the limited nature of the shell de
scription. This arises, in particular, in connection 
with the problem of alpha-clustering of nucleons. 
From the energy point of view this effect manifests 
itself, as is well known, in that the difference be
tween the binding energies of the last neutrons in 
p-shell nuclei with A = 4k and 4k + 1 reaches 
15-17 MeV. The excitation energy of the lowest 
level with T = 1 in nuclei with A= 4k and Z 
= A/2 has the same magnitude. These phenomena 
are essentially connected with the relatively large 
weight of the Majorana forces in the nuclear inter
action. 

As long ago as in the Thirties, an alpha-particle 
model of the nucleus was proposed to describe the 
alpha-clustering of nucleons. This is the simplest 
model that takes alpha-clustering into account. It 
has turned out, however, that this model is not 
based on reality, since it stipulates that the nucleus 
contains alpha particles that are distinctly set apart 
and are located sufficiently far from one another. 
This assumption, as will be discussed below, does 
not hold true, so that interest has attached in re
cent years to Wheeler's model of resonating 
groups [1 J. It has been developed by many authors 
and in recent papers it is called most frequently 
the cluster model. For the sake of brevity we 
shall designate it CM. ·In the CM the wave func
tion of the nucleus with A = 4k and Z = A/2 is 
written in the form of an antisymmetrized product 
of the k wave functions cpa that describe the in
ternal motion of each alpha-cluster by the wave 
function <I> of their relative motion. For the sim-
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plest nucleus of this type, namely Be8, this func
tion has the form 

(1) 
A 

where L is the total orbital momentum and A is 
the anti symmetrization operator. 

In specific calculations [2- 4] these functions are 
chosen in the form 

4 

!Ila, = exp [-- ]- 2J (r,- Ra,? J, 1 4 

Rx, = 4 2J r;, 
i=l i=! 

<DLM = RnYLM (8R, ¢R)exp [-bR2 ], R= Ra,- Ra,. 
(2) 

n = 4 for the lowest levels with L = 0, 2, 4. 
From the form of the functions (1) and (2) it is 

clear that if the parameter a (characterizing the 
internal dimensions of tlte alpha-clusters ) is much 
larger than the parameter b (which determines 
the distance between clusters) then the role of nu
cleon exchange between clusters, due to the anti
symmetry of the wave function, is quite small, and 
we deal with a function 

that is, essentially with the wave function of the 
simple alpha-model. 

If we introduce a parameter x = b/a, charac
terizing the degree of separation of the a-clusters, 
then x - 0 (a - oo) denotes a transition to the 
limiting case of the CM, namely the alpha-model 
of the nucleus, when the alpha clusters do not over
lap. As x increases from zero to a value compar
able with unity, the role of the anti symmetrization 
becomes more and more appreciable, since the 
distance between clusters becomes comparable 
with their internal dimensions, and the wave func-
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tion of the nucleus differs noticeably from the 
simple product f11a{Pa2il>L(Ra1 -Ra2 ) in which 
no antisymmetrization is carried out. It is suffi
cient to state that if we take n < 4 in the function 
il> v then the anti symmetrized function (1) van
ishes identically when x = 1, whereas the non
antisymmetrized function differs from zero for 
all values of x. 

The wave function (1), (2) tends to a known 
limit as x - 1. It is shown in several papers [2] 

that when x = 1 the wave function (1), (2) coin
cides with the function I s 4p4[44]L1S = 0, T = 0) 
of the shell model with an oscillator potential 
[of course, for complete coincidence it is neces
sary to multiply the function (1) by the function 
of the zero-point oscillations of the nuclear mass 
center '11 00 ( RBes ), or else it becomes necessary 
to compare the function (1) with the functions of 
the translation-invariant shell model]. Thus in 
the limit x = 1 the CM goes over into the shell 
model with oscillator wave functions and LS cou
pling. 

What is the actual degree of separation of the 
clusters, that is, to what extent is x smaller than 
unity? From the fact that the shell model de
scribes quite successfully the properties of the 
light nuclei [5], it is to be expected that x is some
what smaller than unity, and that the physical pic
ture is closer to the shell model than to the alpha 
model. In particular, such a conclusion can be 
drawn from the data on the ( p, 2p ) reaction with 
fast protons, even for the very loose nucleus 
Be9C6]. Were the alpha clusters to be far from 
one another (alpha-model), then the spectrum of 
the knock-on protons would have one maximum 
corresponding to the binding energy of the proton 
in the alpha cluster. Actually, two peaks are ob
served, separated by a large energy interval, 
which can be attributed only to the fact that the 
function of the nucleus is close to the shell limit, 
with one peak corresponding to the protons knocked 
out from the p-shell (weakly bound protons) and 
the other to protons from the s-shell (strongly 
bound protons). The question of the possible val
ues of x will be discussed in greater detail in 
Sec. 3. 

From all the foregoing it follows that the shell 
function of the nucleus can be regarded as a good 
zero-order approximation. 

In the general case, taking into account the mix
ing of the configurations due to the alpha cluster
ing effect, the wave function of the nucleus in the 
CM is of the form 

n/4 

AP ( ... (Rk) •.. ) exp {-i (~ (rtk- Rk)2 + 4x (R%)} x (a, -r). 

k,i (3) 

It is assumed here that the Young tableau has the 
form [ 44 ... 4]. A is the antisymmetrization op
erator, Rk the radius vector of the k-th alpha 
cluster, x(a, r) the spin-isospin function, rik the 
radius vector of the i-th nucleon in the k-th alpha 
cluster, n the number of alpha-clusters, and x 
= b/a a parameter characterizing the degree of 
the separation of the alpha-clusters. 

When x = 1 (a = b) the function (3) goes over 
into the wave function of a definite shell configu
ration. When x- 0 (a- oo ), (3) goes over into 
the wave function of the alpha model. P ( ... (Rk) ... ) 
is a polynomial independent of x in the vectors 
of the distances between the alpha clusters, with 
its degree and coefficients determined by the shell 
configuration. The polynomial P ( ... (Rk) ... ) de
termines the spatial arrangement of the alpha 
clusters (the alpha geometry) and, to the con
trary, can be determined if the alpha geometry 
is known. 

This raises the general problem of determining 
the alpha geometry for a given state of the nucleus 
with a Young tableau [ 44 ... 4]. In the general 
formulation this problem has not been discussed 
heretofore. In view of the difficulty of the compu
tations in the CM, connected essentially with the 
anti symmetrization of the wave function (in [16] 

we consider some possibilities of simplifying 
these calculations ) , only the lightest nuclei have 
been analyzed (A< 12[6, 7J), and for the heavier 
nuclei there are only ineffective attempts to con
sider them as a system consisting of two clusters, 
one light (triton, alpha particle) and one heavy 
(the remainder of the nucleus), with the heavy 
cluster taken in a fixed excited state and with the 
exchange effects disregarded. Such approxima
tions are not justified at all. A correct formu
lation of the problem makes knowledge of the alpha 
geometry obligatory. 

The polynomial P, which determines the alpha 
geometry, does not depend on x and it is there
fore clear that in order to determine the alpha 
geometry we can use the wave functions of the 
shell model. 

Wheeler [1] has noted that the alpha geometry 
can be determined by the directed orbital method 
(DOM) which is known from quantum chemistry [s], 
and indicated that the wave function s 4p12 of o16 

corresponds to an alpha-cluster arrangement in 
the form of a regular tetrahedron. An analogous 
analysis of the states of the configurations s 4p4 

( Be8 nucleus ) and s 4p8 ( C12 nucleus) shows that 
Be8 is a dumbbell made up of two overlapping 
alpha clusters and C12 is an equilateral triangle. All 
these results coincide with the usual alpha-model 
predictions relative to the geometry of these nu-



MUTUAL ARRANGEMENT OF NUCLEON ASSOCIATIONS IN A NUCLEUS 81 

clei. However, for heavier nuclei there.is usually 
no such agreement between the alpha geometry in 
the shell model (or the unified model ) and the 
alpha model. In addition, the alpha model actually 
cannot tell anything about the alpha geometry of 
the excited states of light nuclei, where this ge
ometry may be different than in the ground state. 

The solution of all these problems constitutes 
the topic of the next section, in which we deter
mine the geometry of the alpha clusters from 
zeroth-approximation functions with the aid of a 
modified DOM. 

2. DETERMINATION OF ALPHA GEOMETRY BY 
THE DIRECTED ORBITAL METHOD 

In nuclear theory, the DOM is used somewhat 
differently than in quantum chemistry. Whereas 
in the theory of molecular structure we are inter
ested only in the directions of the chemical bonds, 
that is, only in the angular coordinates of the max
ima of the electron wave function, in nuclear the
ory we deal not only with angular but also with ra
dial coordinates and with the maxima of the wave 
functions of the nucleons constituting the alpha 
clusters. The point is that the alpha clusters can 
produce in the nucleus several belts, that is, there 
can be several maxima in a given direction, each 
described by its own directed or, more accurately 
speaking, localized orbital. In addition, in some 
configurations the alpha cluster may be located at 
the center of the nucleus, that is, at the origin, 
and such cases are not considered in quantum 
chemistry. Finally, another feature of the appli
cation of the DOM to nuclear theory is that the 
concept "strength of the bond" is missing here, 
and the choice of the most suitable alpha-figures 
from the energy point of view is based on the num
ber of short-range couplings between alpha clus
ters (four bonds in a square, etc.). 

It is assumed, as in general in the CM, that the 
total orbital angular momentum L, the total spin 
S, and the Young tableau are "good" quantum num
bers, which is approximately satisfied for many 
nuclei in the lp and 2s-ld shells. We shall refer 
only to nuclei with N = Z = 2m. 

By way of the first example let us consider the 
nucleus 0 16 , where groups of four nucleons occupy 
the orbits lls ), llPx ), llPy ), llpz ), ( llPx) 
~ x exp ( - vr2 I 2 ) [B J , etc. ) . Determining from the 
usual rules of the theory of finite point groups the 
possible types of the alpha-figures, we find that 
the only possible figure is a tetrahedron, with the 
wave functions of the hybrid orbits having the form 

'I';=+ jls) +a~; I r), i = I' 2, 3, 4; Oltalj = {jij- T ' 

where Oli are three-dimensional numerical vec
tors and I r) is a three-dimensional vector with 
components llPx). llPy ), and llpz ). The vec
tors Oli are directed toward the vertices of the 
tetrahedron, and it is clear from symmetry con
siderations that the radius vectors e~ correspond
ing to the maxima of the functions are parallel to 
the vectors Oli. 

By way of an example, the figure shows the z
dependence of the square of the modulus of one of 
the possible hybrid wave functions 

w = + 11 s > + + v:rr z >. 
We see that the cluster localization admitted by 
the shell wave functions is not sufficiently well 
pronounced to be able to neglect the over lap of 
the clusters. 

0.0 

We now choose for 0 16 the configuration 
(No. 1)4 (No. 2)4 (No. 3)4 (No. 5-7)4, corre
sponding to oblate deformation of the nucleus. The 
linear combination of the Nilsson orbits No. 5 and 
No. 7 should be chosen such that the end result is 
an LS coupling. This example is not merely aca
demic. Recent measurements of the intensity of 
the E2-transition 6.92 MeV ( z+)-- 6.05 MeV ( o+) 
[ 9] gave a reduced probability of the same value 
as for the rotational transition 4.42 MeV (2+) 
-- 0.00 MeV (0+) in C12• This shows that the lev
els 0+(6.05 MeV), 2+(6.92 MeV) and 4+(10.36 
MeV) form, in confirmation of Morinaga's as
sumptions [ 10], a rotational series, and the mo
ment of inertia turns out to be very large so that 
the nuclear deformation is also very large. 

Namely, in four-nucleon excitation, which was 
proposed by Morinaga [1o] and by others [H], orbit 
No. 4 which stabilizes the spherical form of the 
nucleus, turns out to be completely empty, and 
this leads to very large deformation. The large 
energy gain in a transition to the strongly de
formed nuclear form is apparently the principal 
reason why the level can drop so low in the four
nucleon excitation. That 0 16 is oblate in the 
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o+(6.05 MeV) state and has furthermore the con
figuration indicated above is evident by the pres
ence of the 6.37 MeV(%+> level in 0 17 , which can 
be interpreted as a nucleon on orbit No. 6 "over" 
an excited 0 16 core of oblate form. The binding 
energy of this nucleon with the excited core is 
close to zero ( + 0.3 MeV), as is also the binding 
energy of the nucleon in orbit No. 6 over the 
oblate core in c13 [ 12J ( -1.8 MeV). In this energy 
region 0 17 should also have an orbit No. 4 (%- ). 
In the case of a prolate core, 0 17 would have in 
this energy region only the Nilsson orbit No. 4, 
and orbit No. 6 would be filled. 

Thus, we have a configuration such that in each 
Nilsson orbit n1 = N, that is, we have within the 
limits of the four-particle excitation 1s41p81b4 the 
maximum possible deformation, corresponding to 
an oblate nuclear form. The set of orbitals 
1s1p21d, as can be directly verified from Table 8 
of [SJ, corresponds to a symmetry D4h, that is, a 
flat square made up of four alpha clusters. This 
geometry is closest to a tetrahedron in the number 
of bonds. It is interesting to note that the configu
ration (No. 1 )4 (No. 2 )4 (No. 3 )4 (No. 6 )4, which 
is close in energy to the configuration just consid
ered and has negative deformation ( E < 0 ), corre
sponds to an entirely different alpha geometry, 
namely a flat three-pronged star with an alpha 
cluster at the center (three bonds). This can be 
simply verified by recognizing that the orbital 
part of the wave function of orbit No. 6 has a pre
exponential factor (x2 + y2 - 2 ), that is, it is a 
two-dimensional scalar, just as orbit No. 1. There
fore, leaving the cluster I s4 ) in the center, we 
construct from the states I x), I y), and I x2 + y2 - 2 ) 
hybrid orbits which give an equilateral triangle. 
But since the function I x2 + y2 - 2) has a maximum 
shifted to the periphery in comparison with the 
function l1s ), the side of this triangle will be 
longer than that of the c12 triangle (orbits l1s ), 
I x), and I y) ), so that if we designate the bonds 
we obtain a three-pronged star. 

It is easy to find the form of the alpha geometry 
for other nuclei, too. For Ne20 this will be a 
three-faced bipyramid, while for Mg24 it is a 
four-faced bipyramid, but these figures differ 
from the corresp~mding figures of the alpha model 
in that in the latter the four-faced bipyramid for 
Mg24 has all edges of equal length, that is, it is 
an octahedron, a spherical top, while in the unified 
model, inasmuch as Wz < w l• the z axis is singled 
out and the pyramid is no longer a spherical top 
but a "prolate body." We thus encounter here for 
the first time a phenomenon wherein quadrupole 
deformation distorts the alpha geometry con-

structed by the rules of the alpha model. The sit
uation for Ne20 will be essentially the same. 

We can formulate three general rules for the 
construction of the alpha geometry. 

1. For oblate nuclei, in which N = n1 for all the 
Nilsson orbits, the figure will be such that all alpha 
clusters lie in a single plane. Two examples of 
this type were considered above. 

2. For prolate nuclei, in which N = nz for all 
the Nilsson orbits, a linear chain of alpha clusters 
is obtained. One example of this kind is Be8, and 
another is the excited state of C12 with the orbits 
(No. 1 )4( No. 3 )4 (No. 6 )4 filled. According to very 
simple estimates [13], the excitation energy in this 
case, amounts to 10-15 MeV (it is possible that 
this is the 7 .65-MeV level). 

3. For nuclei with shells closed in the LS cou
pling, the alpha geometry should be described by 
a cubic group (the system comprises a spherical 
top). This includes Ca40 in addition to the 0 16 nu
cleus considered above. The set of orbitals 
1s1p31d52s is broken up into two parts, 1s1p31d2 

+ 1d32s, and we find, using the same method as in 
the analysis of 0 16 ' that the alpha geometry of Ca40 

has the form of an "octahedron within an octahedron" 
with 24 bonds (there is one cluster over each 
center of the four pairwise opposite faces of the 
octahedron, and each cluster has three bonds to 
the vertices of the corresponding face). We see 
that even for the Ca40 case, which at first glance 
is sufficiently intricate, the alpha geometry is de
termined in a very simple fashion. 

It is interesting to note that whereas the deter
mined four-particle excitations correspond, as we 
see, to a change in the geometry of the arrange
ment of the alpha clusters, single-particle excita
tions which retain the orbital Young tableau cor
respond to rotation-vibration excitations for rela
tive motion of the alpha clusters, with conservation 
of the alpha geometry (see the discussion of the 
alpha model below). Inasmuch as the transition 
from the shell orbitals to the hybrid orbitals does 
not change the total antisymmetrized wave func
tion of the system, therefore, if the alpha geom
etry of the system is known, the separation of the 
coordinates of motion of the mass centers of the 
clusters can be carried out by the usual methods [2]. 

Let us note one interesting consequence of the 
foregoing. In our preceding investigations [14] we 
calculated the alpha-widths for the decays of the 
lower levels of nuclei of the Be8 type (J = o+, 2+, 
4 +; T = 0)- a + a or C12*- Be8* + a in the 
shell model, that is, we considered the transitions 
1s41pn- 1s41pn-4• These transitions cannot be 
regarded as the vanishing of one alpha cluster, 
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corresponding to some hybrid orbital from the 
nucleus, since the function 1p4 cannot be reduced 
to any hybrid orbit populated with four nucleons. 
The emitted alpha particle is made up of nucleons 
belonging to different clusters. 

The emission of a complete fully populated hy
brid orbit is hindered by energy factors: the higher 
shell excitations of the final nucleus are energeti
cally inaccessible. In the case of high-energy 
quasi -alpha-particle photodisintegration ( y, pt), 
which apparently takes place when Ey ::::::: 60-80 
MevC15 J, and particularly in the case of quasi
elastic scattering (p, pa ), these energy limita
tions become less rigid, and the picture becomes 
closer to one in which a whole hybrid orbit, pop
ulated with four nucleons, is knocked out of the 
nucleus. If we make the last assumption, that is, 
neglect the nucleon exchange between the different 
hybrid orbits, then, knowing the wave function of 
the hybrid orbit, we can readily calculate the spec
trum of the residual nucleus in the shell basis. 
This spectrum will differ from the spectrum cal
culated by the shell theory [14]. A comparison of 
the experimental spectra with the two just-men
tioned theoretical spectra will help clarify the 
role of the exchange effect. The same factor 
(formation of an alpha particle from different 
localized orbits) causes the reduced alpha width 
for the Z4 configuration to decrease rapidly with 
increasing Z, since the alpha particle is "assem
bled" of nucleons at localized orbits that are 
farther and farther from one another. 

3. EXPERIMENTAL POSSIBILITIES OF DETER
MINING THE ALPHA GEOMETRY AND THE 
DEGREE OF SEPARATION OF THE ALPHA 
CLUSTERS 

The degree of separation of the alpha clusters 
can be determined experimentally from the matrix 
elements of the electric transitions. Let us take, 
for example, Be9• The spatial separation of the 
alpha clusters will cause the quadrupole moment 
Q to exceed the shell value [2], so that it is pos
sible to determine from the experimental value 
of Q the parameter x which determines the de
gree of separation of the alpha clusters. Calcu
lationC16] yields x = 0.6, which corresponds to a 
noticeable overlap of the alpha clusters. A value 
of x close to 0.6 was obtained by Wildermuth and 
co-workers [ 17 ] by minimization of the energy of 
Be9 with specified phenomenological pair inter
action. The separation of the clusters is due prin
cipally to the Majorana forces, which, unlike the 

Wigner forces, cause the alpha clusters to be re
pelled not as a result of the exchange interaction 
integrals, but the direct integrals, that is, the 
repulsion is appreciably intensified. (Estimates 
of the direct and exchange integrals in shell the
ory are given in [5]. ) 

It was noted above that the ( p, 2p) reaction in 
Be9 at Ep = 200-400 MeV also indicates an ap
preciable overlap of the alpha clusters. More ac
curately, the large value of the interval (10-12 
MeV) between the two broad cross section max
ima (knock-out of 1p and 1s proton, respec
tively), which is comparable with the binding 
energy of the proton in Be8 ( 17 MeV), indicates 
that the frequencies of the internal motion of the 
nucleons in the alpha clusters and of the relative 
motion of the alpha clusters are comparable. The 
first maximum corresponds to the ground state 
with respect to the relative motion of the clusters 
in the final nucleus, while the second corresponds 
to the first excited state. The alpha model situa
tion would correspond to a larger ratio of the fre
quencies of internal and relative motion. The ex
citation of different vibrational states would then 
determine the fine structure of a single broad 
maximum. 

The intensification of Q and of the probabili
ties of the E2 transitions in Be9 can be explained 
also from the point of view of the unified model. 
However, in the heavier nuclei, a difference is ob
served between the unified model and the CM. Thus, 
for example, in c12 the levels o+, 2+, 3-, ... form 
according to the alpha model a rotational band. 
Consequently, on going over from the shell model 
(x = 1) to the separated clusters (x < 1 ), there 
will be an intensification not only of the E2 tran
sitions but simultaneously also of the E3 transi
tions, something which does not take place in the 
unified model. Here, as in the case of Be9, we 
can determine the degree of overlap of the alpha 
clusters from the intensification of the gamma 
transitions. The CM will be directly confirmed 
if the one parameter x can account for the ob
served intensification of both the E2 and E3 tran
sitions. An analysis of the intensification of the 
E2 and E3 transitions in C12 will show whether 
the Q-Q forces play some independent role in C12, 
as for example in Mg24 (see above). 

Another effective experimental method of in
vestigating the alpha clustering of nucleons is 
apparently the scattering of high-energy electrons. 
It is known [1B] that the total cross section of elas
tic and inelastic scattering, as a function of the 
angle, yields information concerning the form 
factor of the pair density of the protons ( Debye-
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gram). Inasmuch as alpha clustering is charac
terized by relatively large radii, it is sufficient 
to confine oneself to a range of several times 10 
MeV, in the excitation energies of the final nuclei, 
and if the experimental accuracy is high, it is 
possible to obtain information both with respect 
to the degree of separation of the alpha clusters 
(that is, the extent to which the wave function of 
the CM differs from that of the shell model) and 
on their relative geometry. The excitation cross 
sections of the individual levels can yield infor
mation on the electric transitions of high multi
polarity. The alpha clustering causes an intensi
fication of an entire group of Ei\ transitions with 
i\ ::s: i\0. The values of i\0 and of the intensity of 
the individual transitions are determined by the 
number of alpha clusters and by the alpha geom
etry [ 16]. Unfortunately, there are still very few 
experimental data. 

Along with the scattering of high-energy elec
trons, very valuable information concerning the 
relative separation of the clusters in the nucleus 
can also be obtained from other reactions with 
fast particles. Particularly useful in this respect 
may be reactions of quasi-elastic scattering of 
fast particles with knocking out of nucleon clus
ters, that is, reactions of the type (p, pd ), (p, pa ), 
(a, 2a) etc. An investigation of the angular cor
relations of the products of these reactions makes 
it possible to find the momentum distribution of 
the clusters inside the nucleus. Comparing these 
results with the momentum distribution calcu
lated by the shell model [ 19], we can explain the 
difference between the wave function of the nu
cleus and that of the shell model, and determine 
the degree of separation of the clusters. Experi
ments of this type are being carried out at pres
entC20J, but so far they cover only too small a 
group of nuclei to be able to present some sort 
of systematic analysis of the problem. For a 
clarification of the degree of deviation of the 
wave functions of the nuclei from the shell model 
and for the construction of a more realistic model 
of the lightest nuclei it would be very useful to 
investigate the momentum distribution of the pro
tons in all the p-shell nuclei (this investigation 
is almost complete), and also of the deuterons, 
tritons, and alpha particles. 

4. LIGHT NUCLEI AND THE ALPHA MODEL 

In conclusion, in connection with the 0 16 ex
perimental data discussed above, let us make a 
few remarks concerning the description of light 
nuclei by the alpha model. The alpha-model in-

terpretation of 0 16 [21 ] was based on the lowest 
excited levels o+, r, 2+, 3-, and 4 +. Recently 
a o- level was discovered at - 10 MeV, this 
apparently agreeing very well with the Dennison
Kameny variant "b" [ 21]. However, the results 
presented above obtained by Gorodetzky and 
co-workers [9], and also the fact that the lifetimes 
of the lower excited levels o+ and 2+ [22 ] are 
15-20 times larger than those obtained with the 
alpha model [ 21], make it necessary to reject the 
Dennison-Kameny scheme. In addition, an anal
ysis of the negative-patity levels of 0 16 by the 
shell theory (Elliott and Flowers [23]) has shown 
that the lower levels 3-, 2-, and 1-, are well 
described as single-particle excitations p- 1d or 
p- 1 (2s + 1d) with a Young tableau [4444], so that 
the level o- which is close to them is also a 
single-particle excitation p- ( 1d + 2s ), except 
that the spin is S = 1 (such levels lie somewhat 
lower than the levels with T = 1). Therefore the 
o- level is apparently simply not an "alpha-model 
level," and it is incorrect to regard it as a type
E double excitation. 

It is apparently possible to retain for the levels 
1-, 3-, and 2- the alpha-model interpretation. Fur
thermore, as is evidenced by the quadrupole mo
ment 0 17 , the type-E 2+ level, which "soaks in"C 21] 
almost the entire quadrupole sum for the transi
tions between the levels with T = 0 [24], should lie 
at 15-20 MeVC25]. This region apparently contains 
also the "breathing" level o+ [25]. According to 
the shell theory, both levels are single-particle ex
citations. Thus, if the level 2- (8.88 MeV) is in
terpreted as a vibrational level of the type E, there 
is a tremendous tunnel splitting. 

There is another circumstance which compli
cates the alpha-model interpretation of the spec
tra of light nuclei. The distance between clusters 
is usually determined from data on the rotational 
spectra, which yield the moment of inertia, and 
consequently, in accordance with the classical for
mulas, also the distances between the clusters. In 
fact, however, the formulas for the rotational en
ergy of, say, Be8 and c12, contain in the case of 
the shell theory only exchange integrals, so that 
their classical interpretation is impossible [3]. 
In addition, if the wave function of the nucleus is 
close to that of the shell model, then owing to the 
large distance between the levels of the different 
shells it becomes impossible to combine the lev
els of different parity in a single rotational series, 
as is the case in the alpha model, according to 
which in C12 a single rotational series is made up 
of the levels o+' 2+' 3-' 4 + ... and in o 16 the levels 
o+, 3-, 4 +. . . . The magnitude of the tunnel splitting 
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and the close agreement between the arrangement 
of these levels (which are rotational in accordance 
with the alpha model) and the rotational interval 
rule are apparently sufficiently sensitive ''indi
cators" of the cluster overlap. 

The example of 0 16 demonstrates that, owing 
to the overlap of the alpha clusters, the alpha 
model is on the whole not fruitful for the analysis 
of the level schemes of light nuclei. Nonetheless, 
a comparison of the experimental results with its 
predictions, where possible, is very useful since 
it helps clarify under what circumstances the de
viations from the asymptotic alpha-model values 
are insignificant. For problems where the alpha 
model representations are appropriate, they have 
the advantage of the greater simplicity. By way 
of an example we can cite the description of the 
lower levels of 0 17 [ 26], where use is made prin
cipally of the symmetry properties of the wave 
function of the 0 16 core written in the CM, and 
the degree of overlap of the clusters actually does 
not play any role. 
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