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It is shown that the electrical conductivity and galvanomagnetic coefficients of semimetals 
and degenerate semiconductors in a strong electric field are considerably modified if the 
phonon system is not in equilibrium. The lack of phonon equilibrium is manifested by the 
"heating" of phonons (increase of the number of long-wavelength phonons in a strong elec­
tric field) and by the "mutual" drag of electrons and phonons. The first circumstance leads 
to a decrease of the path length of electrons scattered by phonons when the field strength is 
increased, and is the cause of the dependence of the electrical conductivity on the field 
strength in the zeroth approximation with respect to degeneracy. In a strong magnetic field 
the electrical conductivity increases at first with increase of the electric field, then reaches 
a maximum, and at sufficiently high field strengths decreases in inverse proportion to the 
field strength and is independent of the magnetic field strength; the current on the other hand 
increases monotonically and approaches saturation. The Hall conductivity decreases with in­
crease of the electric field E and in a sufficiently strong field is - E - 2, whereas the Hall 
current has a maximum (Fig. 3). A coefficient {3, representing the deviation from Ohm's 
law in a weak electric field [ cf. Eq. (3.4)], is negative in a weak magnetic field, changes its 
sign with increase of the field and approaches zero in strong magnetic fields. The "mutual" 
drag of electrons and phonons results in a considerable increase of the electron path length. 
This leads to a decrease of the electric field at which the current saturates. 

1. INTRODUCTION 

THE electron temperature and electrical conduc­
tivity of metals in a strong electric field have been 
dealt with in [i-S]. In the present work we shall 
show that the phenomena in a strong electric field 
are considerably altered if the phonon system is 
not in equilibrium, in particular if there is consid­
erable drag of phonons by electrons. It is difficult 
to establish a strong electric field in metals. For 
this purpose it is more convenient to study crystals 
of lower electrical conductivity. We investigated 
semimetals and semiconductors with degenerate 
electrons. 

Electrons are "heated" by an electric field 
which, however, at realizable field intensities can­
not eliminate the degeneracy and incred.Ses only 
slightly the diffuseness of the Fermi surface. 
Therefore the isotropic part of the electron dis­
tribution function n<i)( E- t ), where t is the chem­
ical potential, remains almost a step function, i.e., 

where T( E) is some characteristic energy having 
the meaning of the electron temperature in an elec­
tric field E. (The crystal temperature will be de­
noted by T.) 

Mutual interaction between the electrons alters 
only the details of the electron distribution near the 
Fermi surface, making it approach the equilibrium 
distribution corresponding to the temperature T( E). 

Electrons in the crystals considered interact 
only with long-wavelength phonons whose momentum 
is of the order of or less than the electron. The 
fraction of these phonons is of the order of 
(spy /T )3, where s is the velocity of sound, and 
PF is the electron momentum at the Fermi surface. 
We shall consider temperatures at which this frac­
tion is small, i.e., temperatures above 1-10°K, de­
pending on the effective electron mass. Long-wave­
length phonons obtain energy from electrons 
"heated" by the electric field, and transfer this 
energy to the main body of phonons which acts as a 
thermal reservoir. 

The relative heating of long-wavelength phonons, 
and consequently the relative increase of their 
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number ~N(q)/N<0 >(q), where N<0>(q) and N(q) 
are the equilibrium and non-equilibrium distribu­
tion functions of long-wavelength phonons, is pro­
portional to the relative ''heating'' of electrons 
[ T ( E ) - T ]/T = ~ T /T and the ratio of the phonon 
paths Lfe (energy transfer to the reservoir and to 
electrons) and Le (energy obtained from electrons): 

N (q)- N(o) (q) Lfe T(E)- T 
N(o) (q) T; T 

The quantities Lf and Le are independent of the 
electric field -the former because long-wavelength 
phonons are scattered on the reservoir phonons, 
and the latter because the electron distribution is 
almost unchanged. 

Increase of the number of long-wavelength pho­
nons leads to an increase in the same ratio, of the 
probability of electrons being scattered by these 
phonons, and consequently decreases the path length 
of electrons scattered by phonons lf. If electrons 
are scattered mainly by phonons, then on strong 
heating of phonons, when ~(q)/N<0 >(q) » 1, the 
electrical conductivity u becomes proportional to 
(Lfe~T/LeT)-1 • In a strong electric field ~T/T 
~ E and u~ E-1• 

In the presence of a magnetic field the depend­
ence of the electrical conductivity on the electric 
field is more complex. This is because in the 
case of strong degeneracy u(E, H) = u(E, 0 )/ 
[ 1 + (l/R)2 ], where R is the Larmor radius and 
l is the mean free path of electrons at the Fermi 
surface. In a strong magnetic field ( l » R) when 
l ~ lf the electrical conductivity is u( E, H) 
~ u( E, 0 )/lf "' 1/lf. On increase of the electric 
field lf decreases and therefore u(E, H) increases 
until the decreasing path length lf reaches the 
value R. On further increase of the electric field 
u( E, H) - lf, i.e., the conductivity decreases. Thus 
u( E, H) as a function of the electric field has a 
maximum but the electric current h ( E ) increases 
monotonically, approaching saturation (Figs. 1, 2). 
The Hall conductivity u' ( E, H) decreases mono­
tonically with increase of the electric field. In a 
strong electric field (when lf < R) u'"' l 2"' E - 2, 

so that the Hall current decreases with increase 
of the electric field intensity (Fig. 3). 

FIG. 1. Dependence of the electrical conductivity on the 
electric field in mutually perpendicular magnetic and elec­
tric fields: 1) l,/R « 1; 2) l,/R » 1. The maximum occurs 
atE~ [6LtdLe/L,L] y'(sH/c); l,/R ~H. 

FIG. 2. Dependence of the con• 
duction current j 1(E) on the elec­
tric field: 1) l,/R « 1; 2) l,/R » 1; 
l,/R- H. 

E 

FIG. 3. Dependence of the Hall current j,(E) on the elec­
tric field in mutually perpendicular electric and magnetic 
fields. The maximum is reached at E = [3LtdLe/LtL]'I2(sH/c). 

In a weak electric field 

a (E, H)= a (0, H) [I +~(H) £ 2 ]. 

The coefficient (3 (H) is negative at H = 0, rises 
algebraically with increase of H, becomes positive 
and, having reached a maximum, decreases in 
strong fields to zero (Fig. 4). 

Apart from phonon ''heating'' the non-equilibrium 
state is also manifested by another process which 
appears most simply in the absence of a magnetic 
field. It is the "mutual" drag of electrons and 
phonons, which occurs as follows: phonons acquire 
momentum from electrons and form a directed cur­
rent, the drift velocity of which may approach the 
drift velocity of the electron current if electrons 
and phonons are scattered mainly on one another[6J. 
In the case of such parallel motion the mean free 
path of the electrons may increase considerably. 
This leads to a reduction of the electric field in­
tensity at which the field can be regarded as strong, 
i.e., at which the current reaches saturation. 

In the presence of a magnetic field the situation 
becomes more complicated because the behavior 
of the system then depends on two parameters. 

Concluding, we note that we are not studying 
here the role of optical phonons, which may be con­
siderable and which deserves separate considera­
tion, and moreover we shall limit ourselves to 
non-quantizing magnetic fields. 

2. SYSTEM OF EQUATIONS FOR ELECTRONS 
AND PHONONS AND ITS GENERAL SOLUTION 

The system of transport equations for electrons 
and phonons has the form 

FIG. 4. Dependence of {3(H) on 
the ratio l,/R - H in mutually perpen• 
dicular electric and magnetic fields. 
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e( E + + [vHl) aa~ = 2; Wq {[np+q (1 - np) 
0 

X (Nq + 1) - np (1 - np+q) Nql 6 (B_,+q - Bp -1iroq) 

+ [np-q (1 - np) Nq- np (1 - np-q) (Nq + 1)1 6 (81,-q 

- Bp + 1iroq)}- v (np - n~>) I 14 ; (2.1) * 

2; Wq lnp+q (1 - np) (Nq + 1)- np (1 - np+q) Nql 
p 

(2.2) 

Here W q is a quantity which determines the 
probability of electrons being scattered by phonons 
and of phonons by electrons: for acoustic-mode 
phonons it is proportional to the absolute value of 
the phonon momentum q. 

We shall separate the distributioh functions of 
electrons and phonons into an isotropic part and a 
small correction 

np = n~1 + n~ = n~> + (f(c), p/ p), (2.3) 
T (i) ' (i) Aq = Nq + Nq = Nq + (F(ro), q/ q) 

[the functions n~i) and N~) occur in Eqs. (2.1) 
and (2.2); from now on we shall omit the super­
script (i)]; further, we shall assume that 

n~~np. N~ ~ Nq. 

The vectors f( e:) and F( w) are parallel to the 
current vector when the energy spectrum is iso­
tropic, as is assumed here. The relationships 
(2.3) represent the first step of the expansion of 
the distribution functions as series of Legendre 
polynomials in terms of the angles (p, f), ( q, F), 
in which all the polynomials beginning with the 
second are rejected. Linearizing Eqs. (2.1) and 
(2.2) with respect to nJ> and Np and expanding the 
collision operators in terms of the small quantity 
tiw/T, we obtain, as in [3, 7] 

(2.4) 

2P 

f -L el (E) [Hf] + s2l (E) dnP ~ F (ro) 4d 
1 cp 4p3TI de J q q 

f n 

= -eEl (E) anploc; (2.5) 

N -N(O) J1_L_!:J_ Tv; 2 r np(1-np) ~:de} 
q - q l I L, ( ) PF e(q/2) 

L v2 
F ( ) - fd N F . 

ro- L q-2-
e spF 

00 2 oc 

X 
\ P { Lfd v F (' dnP p• }-1 
.\ f (c) V2 de 1---z::- -2- ~ ae fj2 de . (2. 7) 

e(q/2) p F e(q/2) 

Here l and L are respectively the path lengths of 
electrons and phonons, with subscripts indicating 
the scattering mechanism (f -phonons, d -defects, 
e -electrons, no subscript -total path lengths), 
and 

2P 

r;-1 (E) = 4 :n•:•p•v• ~ WqNqcfdq, 
0 

(2.8) 

lf is the electron path in the case of scattering by 
phonons in the absence of a field, s is the velocity 
of sound, and the subscript F denotes the Fermi 
surface. 

We find 

lt;:::;:fa (1i 2v/E0pa2 ) 2 (Ms2 /T), ld = const, 

L,;::::: (1i 2v/E0pa2 ) 2 (Ms!q), L1 ;::::: a (Ms2/T) 8'4/(sq)k T4-k, 

and Lct = const (in the case of scattering on walls; 
in semimetals the scattering of phonons by defects 
can hardly be important). 

Here M is the mass of a unit cell, E 0 is the 
deformation potential constant, a is the lattice 
constant, ® is the Debye temperature, k = 2 for 
cubic crystals and k = 3 for trigonal ones. The 
path length of phonons scattered by electrons is 
equal to the path length of electrons when energy 
is transferred to phonons in the absence of an 
electric field, i.e., 2lfN~>. 

Using the step-like nature of np, we obtain, in­
tegrating Eq. (2.4) with respect to e:: 

(l I (E)) F T (E) - 1 = -..!:___ \ l f (E) (E f ( )) d (2. 9) 
(l f) F T 3s2 ~ p2 ' 8 8. 

Calculation of the quantities in Eqs. (2.6)-(2.8) 
by means of Eq. (1.1) gives 

(2.10) 

L Nq v} 00~ p F (ro) = -L - _ f (c) - 2 de, 
e s 2 v 

PF e(q/2) 

(2.11) 

2P 

[ 1 (' Lfe 3 !:J.TJ-1 
!1 (E) = !1 1 + 4P4 ~ r; q dq T · (2.12) 

0 

2 00 

f Lf ~ ~ dnP p• }-1 
X ) 1 - -L 2 -d --.-de , 

l e PF • e v 
e(q/2) 

The expression (2.10) for Nq applies to q :s 2pF, 
(2.6) i.e., to long-wavelength phonons interacting with 

electrons. For the remaining phonons the function 
N~i) is unchanged. 

Having determined f( e:) from Eq. (2.5) and sub-*[vH] ~ v x H. 
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stituted it into Eq. (2.11), we obtain an integral 
equation for F ( w ) : 

F (w)- !:__ Nq elF(£) {E + /FR(E) [Eh] 
- Le sp F 1 + I} (£) I R2 

12 (E) 2PF 
1 _F __ h (E h) -1- 82 (' [F !.!__(£) [fh] 

T R" ' , 4ep}T(li)F ~ + R 

1}(£) J ' + -w-h(F, h) q4dqf. (2.13) 

Here R is the Larmor radius, R = CPF /EH; h is 
a unit vector along the magnetic field direction. 
Hence we see that FLe /LNq is independent of q 
and therefore the equation is easily solved. Sub­
stituting the solution into Eq. (2.5) we obtain 

f = - el (E) [ (1 - v (£))2 + t•~;) r1 { (1 - v (£)) E 

..;_ ..!..._IB_ [Eh] ' 1 12 (£) h (E h) }anP 
1 R 1 1 ·- v (E) R• ' iJe • (2.14) 

Here and later all the quantities depending on 
the electron momentum refer to the Fermi sur­
face. The quantity v( E) is 

2P L 
(£) - ~ _!_ (' .!::_ ( 1 + __l!) llT 3d v - l 4p4 ~ L L T q q. 

f · " e e 
0 

It represents the "mutual" drag of electrons and 
phonons, which, as expected, is important when 
l(E )L/lfLe Ri 1, i.e., when electrons and phonons 
are scattered mainly on one another. The mutual 
drag appears to increase the electron path, re­
placing Z(E) by Z1(E) =Z(E)/[1-v(E)]. The gen­
eral relationships contain the following value of Z1 

in the absence of electron heating 

l · L l )-1 ll = -- = l ( 1 --- • 
1- V . Le 11 

(2.15) 

In the limiting case of considerable mutual drag 
we have 

(2.16) 

3. DETERMINATION OF THE ELECTRON TEM­
PERATURE AND ELECTRICAL CONDUCTIVITY 

We shall consider a crystal in mutually perpen­
dicular electric and magnetic fields when the cur­
rent is j = aE + a'E xh. 

Substituting Eq. (2.14) into Eq. (2.9) we obtain 
an equation for determining the electron tempera­
ture: 

t1 (£) ·T (£) e2£21 (£) 11 (E) (1- v (£)) 
-~-,- --T-- 1 = s2p2 [(1- v (£))2 +I"(£) I R2 ] • ( 3·1) 

In view of the complexity of this equation we 
shall consider only the limiting cases in which one 
phonon scattering mechanism predominates. Since 
the phonon path L depends on q in step-like fash­
ion, an allowance for this dependence produces only 
numerical multipliers "' 1 in the integrals of q in 
(3.1). The concept of the path length Lf is purely 
qualitative since the corresponding collision inte­
gral cannot be written in the form - s(Nq- N~0 > )/Lf. 
Therefore in the use of this quantity an allowance 
for numerical coefficients of the order of 1 has no 
meaning and we are correct in neglecting the de­
pendence of L on q. The electron temperature 
equation representing interpolation between the 
limiting cases can then be written in the form 

(3.2) 

This cubic equation has only one root with phys­
ical meaning. Its solution is given simply in terms 
of physical parameters in the following limiting 
cases: 

1) Weak electric field ( LfeLltfLeLfdlf)(~T/T) 
« 1, or, as given by the solution 

eEl11sp < [(LeLtdiLLr) (I + /i!R2)J'r•. 

Then 

When Lf « Le this expression reduces to the one 
obtained in [3,4] for the case when the phonons are 
in equilibrium. Strong heating not only of electrons 
but also of phonons may also occur when scattering 
of electrons by defects is the dominant process. 
However, the electrical conductivity then depends 
weakly on the field. 

A small deviation from Ohm's law may be due 
to two causes: as a result of an increase of the dif­
fuseness of the Fermi surface by electron heating, 
and as a result of the reduction of the electron path 
length because of phonon heating. 

If the second cause is important, then in the ex­
pression 

a(£, H) =a (0, H) [1 +~(H) £ 2 ] (3.4) 

the coefficient is 

~(H)= + fe ~;d U! - 1) ( 1 + ~n -2 (~:; r (3.5) 

It vanishes when Z1 /R = 1, changes sign, reaches 
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a maximum at Z1 /R = ..f3, and in strong magnetic 
fields approaches zero (Fig. 4). 

The Hall conductivity 

a' (E, H) =a' (0, H) [1 + W (H) £ 2 ], (3.6) 

(3. 7) 

decreases monotonically with increase of the mag­
netic field. 

2) Intermediate electric and strong magnetic 
fields: 

Lfe L lr liT lr lr [ LfL (cE ) 2 ] 1+LL-Tr<-R,or-R l-3L L- >I. 
e fd f fd e sH 

Then 

(3.8) 

~ R2 [ 1 Lf L (cE )2 ]-1 o(£,H)~o(0,0) 2 l-3"LL H , 
11 fd e 5 

(3.9) 

a'(E, H);:::::; a (0, 0) R/!1• (3.10) 

When ZtfR is sufficiently large, i.e., in suffi­
ciently strong magnetic fields, a(E, H) may rise 
steeply when ( LfL/3LfdLe )( cE/sH )2 approaches 
unity reaching values {l1/R)a{ 0, H)~ ( R/Z1 )a( 0, 0 ), 
and heating may be strong. 

3) Strong electric field: 

' 2 [ )2 ] Lfe L lr liT ll 1 Lf L cE 
LLtr>I, or""§!" 3LL(sH - 1 >I. 

e fd f fd e 

Then 

o (£,H)= 3o (0,0) !i_ Ltd!:!__ (sH )2 [0_~ (~)' 2-1 ]'/•, 
lr L 1 L cE 3Lfd L, sH 

, R Lfd L, (sH )2 (3.12) 
o (£,H)= 3o (0,0) TYfT C£ . (3.13) 

The quantity a( E, H) as a function of the elec­
tric field has in this region a maximum equal to 
umax( E, H) ~ a( 0, 0 )R/Z1 (Fig. 1). 

If, apart from the conditions listed under 3), the 
following inequality is satisfied 

then 

l!..T [ 2 ]'1• l I I y = L,LtdLf I 3LL1, eE 1 sp > . (3.14) 

In this case the number of phonons in the iso­
tropic part of the distribution function increases 

and the path length of electrons scattered by pho­
nons decreases in a ratio proportional to the elec­
tric field, both these quantities being independent 
of the magnetic field. 

For the electrical conductivity we have 

(3.15) 

Thus, the electrical conductivity is independent 
of the magnetic field and inversely proportional to 
the electric field, while the current approaches 
saturation (Figs. 1, 2). Since a'(E, H)~ E-2, the 
Hall current h ( E ) is inversely proportional to E 
in this region. 

In the case of considerable "mutual" drag the 
asymmetric part of the phonon distribution function 
F ( w ) in a strong electric field becomes comparable 
with the symmetric part N(q), if the scattering of 
phonons by defects or by the surface is unimportant 
compared with the phonon-phonon scattering. 
Therefore our results for this case have only qual­
itative meaning. 

Concluding, let us consider briefly the case of 
an arbitrary angle J. between the electric and mag­
netic fields. Then 

j = aE + a' [ Eh] + a"h(E, h). 

It is obvious that a(E, 0) = a'(E, H)+ a"(E, H). 
The maximum of the electrical conductivity a( E, H) 
is independent of the angle J. and its position is 
displaced toward weaker electric fields on reduc­
tion of J. [ a( E, H ) has a maximum at E 
:;: [ 6LfdLe/LfL] 112 (sH/c) (1 + cos2 J.)-1/ 2 ]. The 
expression for the coefficient {3 acquires, com­
pared with Eq. (3.1), an additional multiplier 
1 + (ZUR2 ) cos2 J., and when cos J. > 5/3 the 
maximum of {3 in the positive region disappears. 
The function a" ( E, H) decreases monotonically 
with increase of the electric field; in the region 
of strong electric fields a" ( E, H ) ~ E - 3• 
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