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It is suggested that the difficulties of local theories in scalar quantum field theory connected 
with the presence of ultraviolet divergences in the perturbation approach are a result of the 
circumstance that the interaction Lagrangians usually considered grow more rapidly with 
respect to the scalar fields than the free field Lagrangian, i.e., than cp2 • It is found possible 
to introduce nonlinear local interaction Lagrangians obeying certain conditions which do not 
give rise to ultraviolet divergences in second-order perturbation theory. The correction to 
the mass of the scalar particle is computed. 

INTRODUCTION 

The problems connected with the presence of 
ultraviolet divergences in quantum field theories 
with local interactions play a basic role in the 
formulation of a consistent and closed theory of 
microparticles. 

The removal of the divergences from the scat­
tering matrix by renormalization does not get rid 
of the difficulties of the theory, since the infinities 
are transferred from the matrix elements to the 
interaction Lagrangian. The whole formulation of 
the problem of quantum field theory in terms of a 
Schrodinger equation has therefore a rather pro­
visional character. This has now led the majority 
of physicists to regard it as necessary to abandon 
the Hamiltonian and to work only with the S matrix, 
which is constructed on the basis of the general 
principles of unitarity, causality, and the spectral 
conditions. The successes of the development of 
these ideas in the field of dispersion relations are 
well known. 

Attempts to avoid the divergences usually in­
volve dropping the requirement of the locality of 
the interaction, which gives rise to new specific 
difficulties which have not yet been completely re­
solved. 

quantization of the theory. In this respect our 
model of a quantum field theory is essentially dif­
ferent from the classical nonlinear theory of 
Born, [1] which no one has yet been able to quantize. 

A complete discussion of the second order of 
perturbation theory is presented. It was found 
possible to choose such a nonlinear local inter­
action that no ultraviolet divergences appear in 
this order. The author is aware of the fact that it 
is impossible to draw definite conclusions on the 
possibility of constructing a finite local theory 
without investigating the higher approximations. 

In Sec. 1 we consider the S matrix by the meth­
od of functional integration and formulate the basic 
assumption concerning the possible forms of the 
interaction Lagrangian. In Sec. 2 the necessary 
conditions for the absence of ultraviolet diver­
gences in second order perturbation theory are 
investigated in detail. A class of possible inter­
action Lagrangians is found in Sec. 3. As an ex­
ample, we calculate the correction to the mass of 
the scalar particle in Sec. 4. 

1. BASIC ASSUMPTION 

We shall consider a one-component scalar 
meson field. The Lagrangian density is written in 
the form 

L (x) = L0 (x) + L1 (x), 

Lo (x) = _...!..(fl2qJ2(x)- o<p(x) o<p(x)) 
z ax. axv ' 

L1 (x) = - gU (qJ (x)), 

(1.1) 

(1.2) 

(1.3) 

In the present paper we attempt, on the example 
of a one-component scalar field, to avoid the diffi­
culties of quantum field theory connected with the 
ultraviolet divergences by introducing a local in­
teraction Lagrangian which is essentially nonlinear 
in the scalar fields and satisfies certain require­
ments. The free field Lagrangian remains unal­
tered, so that there will be no difficulties in the where U(a) is some function of a, for example, 
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U(a) = a 4 for the self-interaction of the scalar 
field usually considered. 

The S matrix is in the interaction representa­
tion 

S = T exp{- ig~ d4xU(qJ(x))}; (1.4) 

it is a functional of the operator cp(x). As usual, 
we shall assume that the meson operators cp(x) in 
the interaction Lagrangian LI(x) are normally or­
dered. 

Following Feynman, [2] we assume that the S 
matrix (1.4) as a functional of the operator cp(x) 
can be written as a superposition of exponential 
functionals: 

S = TC ~ 6<1> ~ 6 A exp {i ~ d4 x<l>(x) IJl (x) 

- i ~ d4x<l>(x) A (x)} exp {- ig ~ d4xU (A (x))}, (1.5) 

where C is a normalization constant chosen such 
that S = 1 if g = 0. The functional integration goes 
over the space of the real scalar functions <I>(x) 
and A(x). 

Let us rewrite (1.5) in terms of normal opera­
tor products with the help of Wick's theorem, 
written in the form [3] 

We obtain 

S = C ~ 6<1> : exp {i ~ d4 x<l>(x) qJ (x)} 

: exp{ -{-~~ d4x1d4x2<l>(x1) D. (x1 - x2) 

X <l> (x2)} ~ 6A exp {- i ~ d4x<l> (x) A (x) 

- ig ~ d4xU (A (x))}. (1.8) 

In this expression we can take the functional 
integral over <1>, since it is of Gaussian form. We 
find 

-ljl (x1)].D.-1 (x1 - X 2) 

X [A (x2) -ljl (x2)l}: exp {- ig ~ d4xU (A (x))}, (1.9) 

where the function ~,-i (x1 - x2) is defined by the 
equation 

~ d4yD. (x1 - y) D.-1 (y- x2) = 6<4l (x1 - x2). 

Let us investigate (1.9) in more detail. If the func-

tion U(A) grows faster with A than A 2 (as, for ex­
ample, in the Hurst-Thirring model, LI = gcp3 or 
LI = gcp4 ), the convergence of the integral over A 
is not determined by the quadratic term in A 
arising from the time ordering, but by the inter­
action Lagrangian U(A). Therefore, the integral 
(1.9) will not be analytic in the coupling constant 
g and cannot be expanded in a power series in g. 

This qualitative result is in agreement with the 
known view that the perturbation series are 
asymptotic in the coupling constant. 00 

The following consideration also confirms this 
conclusion. The free meson field represents a set 
of oscillators, i.e., particles moving in a potential 
well of the form cp2 • Any interaction which 
changes the asymptotic form of this well at in fin­
itely large values of ({' (for example, cp4 ) will, by 
all appearances, lead to a new system of eigen­
functions in this modified well which is cardinally 
different from the system of oscillator eigenfunc­
tions and may even be orthogonal to the latter in 
the limit of an infinite number of degrees of free­
dom. [5] 

In view of all that has been said above, we make 
the following assumption: 

In the quantum theory of a scalar meson field 
only such interactions are admissible for which 
the function U(cp) in the interaction Lagrangian 
increases less rapidly with cp than cp 2 • 

If this principle is valid, then the S matrix for 
interactions satisfying this principle can be expan­
ded in powers of the interaction and one may also 
hope that the basic difficulties of present day 
quantum field theory have been removed. 

Anticipating our later discussion, we note that 
the vanishing of U(cp) with increasing cp alone is 
not a sufficient condition for the absence of ultra­
violet divergences. 

2. FORMULATION OF THE PROBLEM 

In order to choose the interaction Lagrangian 
U(cp), we consider the S matrix in second order 
perturbation theory, since this order contains the 
most important divergence of the theory-the cor­
rection to the self-mass of the particle. 

Using (1.4) and (1.6), we can write the S matrix 
in second order in the form 

s2 = (- ;g)• ~~ d4xld4x2 

{ 1 ,. 62 ' 

X exp 2 J~ d4y1d4y2D. (y1 - Y2) 6<p (Yl) 6<p (Y•) f 
xU (IJl (x1)) U (IJl (x2)) = (- ~g)• ~~ d4x 1d4x 2 

x exp {D. (x1 - x2) acx1~ct•} U (a1) U (a2)j "•=<o(x,) • 
" Ctz=cp(Xs) 

(2 .1) 



CONSTRUCTION OF A LOCAL QUANTUM FIELD THEORY 1419 

Concerning the function U(a), we make the fol­
lowing assumptions. 

1. U(a) is continuous and has no singularities 
on the real axis, and can be expanded in a Taylor 
series around the point a = 0 with some radius of 
convergence p : 

00 

U (a)= ~ ~1 an. 
n. 

n=O 

(2.2) 

2. U( a) satisfies the following condition at in­
finity: 

lim I a-2 U (a) 1 = 0. (2 .3) 
("J.----...)-00 

It will turn out in the following that these condi­
tions on U(a) are not sufficient for the absence of 
ultraviolet divergences in the theory. 

The transition to the normal product in (2 .1) 
reduces to the determination of the function 

(2 .4) 

with U(a) given. The variables a 1 and a 2 can be 
regarded as c numbers. 

The functions Fm1m 2 (6) in the expansion of 
F(6, a 1 , a 2 ) in powers of a 1 and a 2 a:re related 
to the radiation operators and are the coefficients 
of the expansion of the S matrix in terms of normal 
products of the operator cp(x). We quote the usual 
definition of the radiation operator Rm 1m 2 (6): 

Rm,m: (xl- x2) = (0 Is I O>-l<O 16q>m' ~:;+;;:. (x.) I o). 
(2.5) 

The expansion of the operator (2.4) is equiva­
lent to the solution of the following partial differ­
ential equation: 

a a2 azs: F (~. a 1 , a 2) = acx1 acx2 F (~,a1 , a2) (2.6) 

with the initial condition 

The existence of a solution of this equation even in 
some neighborhood of the point (a1 = 0, a 2 = O) is 
very problematical and depends in an essential 
way .on the region of variation of the complex 
variable 6 and on the initial function U(a). 

However, for us it suffices to satisfy this equa­
tion by the formal power series (2 .4) which is not 
required to converge in any neighborhood of the 
point a 1 = 0, a 2 = 0 and to use an initial condition 
which is weaker than (2.7), viz., 

(2 .8) 

where urn is defined by (2 .2). Here it is essential 
to define the region of variation of 6 and the path 
in the complex 6 plane along which 6 tends to 
zero in (2.8), since equations of the type (2.6) have 
a singularity at the point 6 = 0 . 

The adequacy of such a solution follows from 
the fact that the amplitudes for physical processes 
are determined only by the functions Fm1m 2 (6) 
and not by the function F(6, a 1 , a 2 ). Physical re­
quirements as, for example, unitarity and caus­
ality, are imposed on the Fm1m2 (6), not on 
F(6, a 1 , a 2 ). Moreover, although a 1 and a 2 can 
at the present stage be regarded as numerical 
variables, they are actually operators, a 1 = cp(x1) 

and a_2 = cp(x2), and the series (2 .4) is an expan­
sion of the S matrix in normal products of these 
operators. It follows from this that there is no 
reason to require convergence of the series (2 .4) 
in any neighborhood of the point a 1 = 0, a 2 = 0. 

Let us turn to the determination of the region 
of variation of 6, which is carried out within the 
framework of quantum field theory. At the same 
time we shall find the conditions on the radiation 
operators Fm1m 2(6) which remove the ultraviolet 
divergences from the amplitudes for various proc­
esses in perturbation theory. For this purpose we 
derive an expression for Fm1m 2(6) in the form of 
a formal expansion in 6 by substituting (2 .2) for 
U(a) in (2.4) and expanding in 6: 

00 00 

Fm,m, (~) = L; ~;- Un+mJln+m, = ~ rn~n. (2.9) 
n=O n=~ 

The coefficients rn have been introduced for later 
convenience. 

The matrix elements of the scattering matrix 
are Fourier transforms of the radiation operators 
(2 .9). The problem reduces to the determination 
of the following integral: 

K(p2)=ij' d4xeipxF(~(x)). (2.10) 

In the formalism of perturbation theory, where the 
radiation operator for the interactions usually con­
sidered is simply a polynomial in 6.(x) in second 
order, the integral (2.10) is calculated in momen­
tum space and, since the integrals usually diverge 
at large momenta, 6 (x) is regularized (for exam­
ple, by the Pauli-Villars method). In our case, 
where F(6(x)) is of a rather complicated form, 
it is more convenient to do the calculations in co­
ordinate space. 

As usual, we will take for 6(x) the causal func­
tion (1.7) regularized according to Pauli-Villars 
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and make the transition to the limit, removing the 
regularity, only in the final expressions. For sim­
plicity we shall not introduce a special index to 
denote the regularized function 6(x). We have [i;J 

~ (x) = . (21 )• (' d4keikx ( • ~. . - M• ~. . ) 
t :rl ,\ f1 - - tB - - IB 

00 

1 (' ( { f12 - ie } { M• - ie}) = 4:n2 .\ d(xe-i~x· exp - i -a.- - exp - i -a.-
o 

(2.11) 

Here 

where A= x2 = t2 - r 2, M is the regularizing mass, 
and Hf2>(z) and K1(z) are the known Bessel func­
tions. 

First of all we define the integral 

(2 .12) 

In the calculation of this integral it is convenient 
to go over to a Euclidean metric in coordinate 
space. It is easily seen from the parametric repre­
sentation of the causal function (2 .11) that 6 (x) can 
be continued into the region of complex times 
t = x 0 + ix4 or into the region of complex coordi­
nates r = x + ip. The contour of integration in the 
complex t plane must be displaced from (-oo, +co) 
to ( + i co, - i co) and in the complex r plane, from 
(-oo, +co) to (- i co, + i co). 

The choice of continuing in the time or in the 
coordinates depends on whether the momentum 
vector p in (2 .12) is time- or spacelike. In the 
first case we must continue in the coordinates, in 
the second, we must continue in time. 

Making use of what has just been said, it is now 
easy to reduce the four dimensional integral (2 .12) 
to a single integral. We have, for p2 > 0 
(p = q = v'p~ - p2)' 

00 

K.(n)(p2) = 4;2 ~d~~2Jl(~p) ~~ (~). (2 .13) 
0 

and for p2 < 0 (ipj = r-:rJ" = vlp2 - p~), 
00 

K.<n> (p2) = ~~ ~ d~~2J d~ I PI) ~~ (~). (2.14) 
0 

where J 1(z) is a Bessel function. We note that the 
integral (2 .14) is real, since the function 6 2({3) is 
real. 

Let us consider the integral (2 .13) in more de­
tail. If the momentum p < f..Ln, the integral must be 

real, since it corresponds to a graph with two 
vertices and n intermediate particles. Such a 
graph is real for energies below the threshold 
for the production of n real particles. The integral 
(2 .13) can in this case be written in a form which 
makes its reality expUcit, by deforming the con­
tour of integration from (0, +oo) to (0, - 00 ). We 
find 

00 

K,<n) (p2) = 4; 2 ~ d~~2J1 (~p) ~~ (~) 1 (p < t.tn). (2.15) 

If p > J.m, the integral (2.11) is complex. Let us 
divide it into its real and imaginary parts. The 
imaginary part of the integral K(n) (p2) does not 
contain ultraviolet divergences in accordance with . 
the unitarity condition, since the region of integra­
tion is limited by the momentum p. All divergences 
are contained in the real part. 

Let us now determine the integral (2 .10) which, 
for p2 < 0, is taken to be equal to 

00 

K. (p2) = ~;~ ~ d~~2J 1 (~I p I) F (~2 (~)). (2 .16) 
0 

If p2 > 0 and J.lno ::::; J.tN ::::; p ::::; (N + 1)J.l, the integral 
(2 .10) is defined as 

oo N 

K. (p2) = 4;
2 {~ d~~2/d~p) [ F (~2 (~))- ~ Tn~~ (~)] 

o n-nu 

oo N N 

+ ~ d~~2J d~p) [ L] Tn Re ~~ (~) + i L; Tn Im ~~ (~) ]} . 
0 n=n0 n=-n0 

(2 .17) 

If the function F(6) is such that 6-2 F(6) - 0 for 
6- co, the integral of it is free from ultraviolet 
divergences. The divergences in the two real 
sums (2 .17) cancel each other, while the imaginary 
part of the integral is always finite. 

We note that .it is not possible to go to the limit 
M- co directly in (2 .17), since for M = co the func­
tions 6 1 ({3) and 6 2 ({3) behave differently at the 
point {3 = 0 . For the limit M- co it is necessary 
to change the integration contour of the integral of 
Re 6 n/1 ({3) from the ray (0, oo) to the path shown 

I 
in Fig. 1, where a is some finite quantity, for ex-
ample, a = 1/J.t. In the resulting expression the 
limit M- co can now be taken. The whole expres­
sion will be finite if the radiation operator 
6-2 F(6) vanishes with increasing 6. 

.JJ 

FIG. 1 
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To avoid ultraviolet divergences in the expres­
sions for the amplitudes it is therefore necessary 
that the radiation operators Fm1m 2 (~), regarded as 
functions of the real variable ~ (where ~ > O), have 
the following properties: 

1. The functions Fm1m (~) must increase less 
rapidly than ~2 as~ goes2to infinity, i.e., 

On the right-hand side of (3 .3) we have the dis­
placement operator for the variable {3. Substituting 
(3.3) in (3.2) and returning to the variables a 1 and 
0'2 , we obtain 

-00 

1~ !!-2Fm,rn, (!!) = 0. (2.18) X U (a 2+ y--K(x1 - ix2)). (3.4) 

2. The functions Fm1m 2 (~) must satisfy the ini-
tial condition (2 .S). Let us now make the change of variables 

1 ( Ct, + Ct2 ) 3. The functions F m 1m 2 (~) must not have any 
singularities in the interval 0 < ~ < oo. Indeed, the 
presence of an isolated pQint x 0 in space at which 
the radiation operator has a singularity would be 
in contradiction with the homogeneity of space. 

3. CHOICE OF THE INTERACTION U(a) 

Thus the problem reduces to the following: find 
functions U(a) satisfying (2 .2) and (2 .3) for which 
~he function Fm1m 2 (~) defined by the formal ser­
les (2.9) satisfies conditions 1, 2, and 3, enumera­
ted at the end of Sec. 2. 

Let us consider the series (2 .9) for m 1 = m 2, 
i.e., when its coefficients are manifestly positive. 
The following cases are possible: if the series 
converges everywhere, then ~-2 Fm m (~) increa-

. h A • 1 2 ses w1t u , and 1f the series has a finite radius of 
convergence p, then the function ~ -2 Fm1m 2 (~) can 
dec.rease ':ith increasing~ only if Fm1m 2 (~) has 
a smgulanty on the real axis. 

Hence Fm1m 2 (~) cannot fulfill the above-men­
tioned conditions if the series (2 .9) converges in 
some neighborhood of the point ~ = 0 . From this 
it follows also that the required U( a) cannot de­
crease rapidly at infinity, e.g., exponentially. 

There remains a last possibility: the series 
(2 .9) diverges for arbitrary values of~. i.e., it is 
asymptotic. 

In order to find a function Fm1m 2 (~) which has 
an essential singularity at~ = 0 and can be expan­
ded into the asymptotic series (2. 9), we return to 
the original expression (2 .4). We make the change 
of variables 

(3 .1) 

Let us use the operator equation 

x, = v K YI- -2- ' 

We obtain finally 
()() 

F (!!, al, a2)=! ~ ~ dy1dY2l U(yl+ iy2) j2 1 
-00 

(3.6) 

It should be noted that this method of solution is 
formal and must be put on a better foundation, 
since in taking the residues we have worried little 
about the existence of singularities of the function 
U(a) and have freely deformed the contour of inte­
gration in the complex plane. 

Let us consider the solution F(~. a 1 , u 2) in 
more detail. The integral (3 .6) may contain 
singularities connected with possible singularities 
of U(a) in the complex a plane. We require that 
these singularities of the function U(a) are of the 
integrable type, i.e., that the integral of jU(a) j2 

over an arbitrary finite region in the complex a 
plane exists. Under this assumption the integral 
(3 .6) exists for abritrary values of a 1 and a 2 and 
f), > 0 . It is easily verified that it satisfies condi­
tion (2 .6). 

Thus the integral (3.6) is the solution of (2 .6) in 
the whole region of variation of the variables a 1 

and a 2 for f), > 0. 

It is now necessary to show that the solution 
(3 .6) satisfies the initial condition. It turns out that 
(3 .6) does not fulfill the initial condition (2. 7) in the 
whole region of variation of the variables a 1 and 
a2 . There exists a region (for example, a 1 > 0, 
a 2 < 0) where the initial condition is not satisfied. 

However, as already said in Sec. 2, it suffices 
to satisfy the weaker initial condition (2.8) instead 
of (2.7). 

We find an expression for Fm m (~) from (3.6) 
b d . . 1 2 

y expan mg m a 1 and a 2 : 

F, !! = 'V (-)m,+m,+k m,! m2! ( 1 k 

n,m, ( ) f (k- m,)! (k- m2)! (m1 + m2 - k) ! 7s:) 
X Yk-m, k-m,(!!), (3.7) 
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where the summation goes over all allowed values 
of k, and 

oo 2n 

Yn,n, (t1) = ~ dxe-x 2~ ~ d{} (V xt1e111)"' 

0 0 

(3 .8) 

Here we have gone over to an integration over 
polar coordinates. 

It can be shown that Fm1m 2 (.0.) as given by (3.7) 
satisfies the initial condition (2 .8). 

Therefore, if U(a) is such that (3.7) satisfies 
also the condition (2 .18), then the conditions im­
posed on Fm 1m 2 (.0.) are all fulfilled and the prob­
lem is solved. 

Below we shall consider interaction functions of 
the form 

(3.9) 

where f is a second coupling constant of the dim en­
sion of the square of a length, y is a positive para­
meter, and s is a positive integer. For f = 0 and 
s = 1, 2, 3, 4 we obtain the known interaction 
Lagrangians for the scalar field. 

Substituting (3.9) in (3.8) and integrating, we find 

y (t1)= (-)' f(1-r)t1s+l-rf'f(s+l-r+1) 
n,n, 22Y-I f (r) 2s+l 

X 

[(s+/-r)/2] 

~ 
(-)q(2s+2l-2q)! r 2 2 

q! (s + /- q)! (s + l-r -2q)! A2Y+r, s+l-q+'l, (f ,1 ), 
q=O 

(3.10) 

where n1 + n2 = 21, /n1 - n2 / = 2r, and l and r are 
integers. If (n1 + n2) is odd, then Yn1n2 = 0. The 
function Ar a,tJ.(z) is given by 

, 00 dtla-IJ,(t) 
Aa fL (z) = ~ . (3.11) 

· 0 (1 + zi2 )1'-

Let us write down the asymptotic behavior of the 
function A for large and small values of z: 

A' (z) = z-(a+r);2 f(ft-(cr+rl/2)f((cr+r)/2)[1 +O(_!_)J 
a, fL 2'+lr (flo) r (r + 1) z . 

(z~ 1). (3 .12) 

A' (z) = 2a-l r ((cr + rl/2) r 1 + 0 (z)J (z < 1 ). (3 .13) 
a, fL r ((r- cr)/2 + 1) 

The function A is not analytic in the point z = 0. 
The presence of the factor r(l - y) in (3.10) in­

dicates that the expression obtained, regarded as 
an analytic function of the parameter y, has poles 
for positive integer values of y. The requirement 
of the integrability of U(a) mentioned earlier im­
plies that 0 < y < 1. 

Let us now direct our attention to the growth of 
the function Fm1m 2 (.0.) as .0. increases. The maxi­
mal power of .0. is easily seen to be .0. s-2 Y, which 
corresponds to a correction to the vacuum energy. 
Recalling the condition (2 .18) we obtain 

s - 2y < 2 or r > sj2 - I. (3.14) 

The same restriction is obtained from (3.9), using 
(2 .3). Thus, for example, it suffices to take 
y = 3/4 for an interaction with s = 3 ( Lr = -g cp3 ). 

In this section we have derived formulas for the 
calculation of any process in second order pertur­
bation theory with the interaction Lagrangian (3.9). 
Divergences connected with high energies do not 
occur anywhere. 

4. SELF-INTERACTING SCALAR FIELD 

As an example, let us consider the modification 
of the usually considered "self-interacting" one­
component scalar field with the interaction Lagran­
gian 

L 1(x) = -g<p3{x). (4 .1) 

As is known, this interaction leads to divergences 
in perturbation theory, which can be removed by 
mass renormalization. 

In view of what has been said in the preceding 
sections, it is necessary to consider an interaction 
Lagrangian of the form 

LI(x) =- g<p3 (x) (I + f<p2 (x)r';,, (4.2) 

which goes over into (4.1) for f = 0. 
Let us find the correction to the mass of the 

scalar particle due to the interaction (4.2). This 
correction is in second order perturbation theory 
determined by the integral 

(4 .3) 

where p2 = tJ. 2 , and R 11 (x) is given by (2 .5). Substi­
tuting the second order S matrix in (2 .5), we find 

Ru (x) =- g 2 [Fn (t1 {x)) + cW> (x) ~ d4 yF2o (t1 (y))], (4.4) 

where F 11 and F 20 are defined by (2.4) and (3.7). 
The first term in (4.4) corresponds to the graph of 
Fig. 2 and the third term, to the graph of Fig. 3. 
The vertices are labeled by numbers and the 
dashed areas between them correspond to the sum 
of all possible internal lines which would be ob­
tained if the Lagrangian (4.2) were expanded in 
powers of f and a Feynman graph associated with 
each term of this expansion. 

Let us substitute (4.4) in (4.3) and use (2.17). 
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FIG. 2 FIG. 3 

We find 

00 

+2n2 ~ d~~3F20 (~2(~))]. (4.5) 

Substituting the functions F from (3.7) and (3.10) in 
(4.5), we obtain finally 

'I oo 

bK = 3 rclf4):2n), ~ d~~2~d~I-t)( 4~2~ Kdf.t~)r 
0 

00 

dK = 15 tr ( ~) (2n3)'1' ~ d~~3 ( 4:2~ Kl (I-t~) r 
00 '! 

X \ dti 'h (I) 
.) ( f1 2]><+1

/, 

o [ 1 + f21\ 4n2~ K1 (f1~)) 
(4. 7) 

Each of these integrals is convergent. We have al­
ready taken the limit M = oo. 

We call attention to the fact that the integrals 
(4.7) have a singularity at f = 0 and can, therefore, 
not be expanded in f. This implies that the diver­
gence in the theory with the Lagrangian (4.1) is 
connected precisely with the expansion in f. 

Thus it appears that the correction to the mass 
of the scalar particle with the local interaction 
Lagrangian (4.2) is finite in second order pertur­
bation theory. 

CONCLUSION 

This investigation has confirmed the assumption 
that the presence of ultraviolet divergences in the 
quantum theory of the meson field is connected 
with the behavior of the interaction Lagrangian for 
large fields. In the present paper we have only 
considered the second approximation of perturba­
tion theory in complete detail. The final answer to 
the problem of the possibility of constructing a 
local field theory without ultraviolet divergences 

can be given only after the higher approximations 
have been investigated. 

We note that the disappearance of the ultraviolet 
divergences in the amplitudes for physical proces­
ses is connected with the nonanalyticity in the new 
coupling constant f. If the constant f is regarded 
as very small and we put f = 1/M2, we obtain the 
usual divergent expressions if the parameter M 
tends to infinity (f __. 0). 

We have considered only the one-component 
scalar field. However, it is easy to generalize our 
result to other types of fields and interactions in­
volving scalar particles (mesons). For example, 
instead of the usual nucleon-meson interaction 
Lagrangian LI = g(1[Jr 1/J) cp it suffices to choose 
LI = g(1{J r 1/J ) ( 1 + f cp 2) - 1 I 2 • The matrix elements 
calculated from this Lagrangian will be free from 
divergences in second order in g. 

From the physical point of view the introduction 
of interaction Lagrangians with an infinite number 
of powers of the meson operator cp means that 
processes involving the exchange of an arbitrarily 
large number of particles can occur already in 
first order of perturbation theory. The matrix 
element for the process will be simply a constant, 
which is in agreement with the basic assumption of 
the statistical theory of multiple production. 

The author expresses his deep gratitude to 
Prof. D. I. Blokhintsev and Academician N. N. 
Bogolyubov for their interest and valuable com­
ments and to L. G. Zastavenko and I. T. Todorov 
for useful advice. 

Note added in proof (May 11, 1963): The author learned 
recently that similar results have been obtained by E. S. Frad­
kin (Nucl. Phys., in press). 
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