
SOVIET PHYSICS JETP VOLUME 17, NUMBER 6 DECEMBER, 1963 

SHIFTS AND BROADENING OF ENERGY LEVELS OF SINGLE-ELECTRON ATOMS 

AND IONS IN A HIGH-TEMPERATURE PLASMA 

L. E. PARGAMANIK and G. M. PYATIGORSKII 

Khar'kov State University 

Submitted to JETP editor January 12, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 2029-2038 (June, 1963) 

The shifts and widths of energy levels of single-electron atoms and ions in an equilibrium 
high temperature plasma can be calculated by employing the spectral representation and a 
Bethe-Salpeter equation for the electron-ion Green's function. The calculated quantities are 
expressed in terms of the mass and vertex operators obtained by the diagram technique. The 
level shifts are proportional to the square root of the temperature and density for ions and 
to the first powers of these quantities for hydrogen atoms. The width is always proportional 
to the density. 

INTRODUCTION 

A consistent quantum-statistical theory of the in­
fluence exerted by a plasma on the energy levels of 
single-electron atoms and ions requires that the 
levels be regarded as two-particle excitations of 
the system, having properties described by a two­
particle electron-ion Green's function. [1] In the 
present paper this theory is developed for a high­
temperature plasma. 

For a low-temperature plasma the indicated 
procedure has been used in a recent paper by 
Kudrin and Tarasov, [2] who showed that the level 
shift calculated in [1], which is proportional to the 
square root of temperature and electron density, 
disappears for hydrogen atoms; these results 
agree with our findings. However, these authors 
did not calculate the energy shift of hydrogen 
atoms in the first nonvanishing approximation. In 
the present paper we have calculated this shift, 
which is proportional to temperature and electron 
density, in addition to the widths of atomic and 
ionic levels. 

We shall consider an equilibrium plasma at the 
temperature T = {3-1 as a system of nonrelativis­
tic electrons and ions undergoing instantaneous 
Coulomb interaction. For ions of charge Z > 1 
we shall consider the influence of electrons and 
ions of charge Z on an ion of charge Z - 1. The 
interaction Hamiltonian Hint= Hee + Hei + Hii 
of this system is given in [1]. 

In order to describe one- and two-particle exci­
tations we shall use temperature-dependent Green's 
functions expanded in Fourier series with respect 
to a "time coordinate" which is the reciprocal of 

temperature. [a] This is convenient for our prob­
lem, in which the principal effects depend on oper­
ators with zero-point frequencies. 

TWO-PARTICLE EXCITATIONS 

To describe single-electron atoms and ions we 
shall use the causal electron-ion Green's function 

G (x, y; x', y') = S~1 Sp {pT¢ (x) cp (y) cp+ (y') '!'+ (x') S (~)}; 

here pis a statistical operator, zp, zp+(cp, cp+) are 
the creation and annihilation operators of electrons 
(ions) in the temperature-dependent representation 
of the interaction, S({3) is the Matsubara S matrix, 
and x = ( x, x0 ), where x0 is the reciprocal of tem­
perature. 

We shall write (1) in the energy representation, 
transforming from the particle coordinates to the 
relative coordinates ~ and center-of-mass coordi­
nates T}: 

; -~ X - y, YJ c== vx _J._ v'y, v + v' = I' (2) 

with the primed variables introduced analogously. 
It is easily shown that each term in (1) contains 
the factor exp [ ( Ee + Ei )( TJ- TJ' )], where Ee + Ei 
is the electron-ion excitation energy. Therefore 
the spectral representation of G will in the iwk 
plane have poles Ee + Ei, where Wk is the param­
eter of a Fourier transform in TJ- TJ'. It therefore 
becomes our problem to determine the poles of G 
(or the zeros of G - 1) in the iwk plane. This can 
be done using a Bethe-Salpeter equation for the 
electron-ion Green's function. [4, 5] 

For the given system of nonrelativistic par­
ticles the equation for the temperature-dependent 
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function G will be easily obtained, for example, by 
expanding S ( (3) in (1) in normal derivatives; this 
procedure yields 

(2a) 

where Ge and Gi are the one-particle electron 
and ion Green's functions, and V is the most gen­
eral compact vertex operator for the electron-ion 
interaction. The equation for the zeros of G -l is 

+ V ('(, y; x'. y')] 'I)J (x', y') = 0; (3) 

here integration over x0 and Yo is performed from 
0 to (3. 

Equation (3) will now be written with the vari­
ables (2). We note that since the operator G (and 
therefore G-1 and V) possesses translational in­
variance in a state of statistical equilibrium these 
operators can be represented as functions of ~. e' 
and 11 -11'. The Fourier transform of (3) in spatial 
variables can be obtained for any v; we select v 
= me/(me + mi), where me and mi are the elec­
tron and nuclear masses. [oi] 

We now consider the Fourier transform of (3) 
in the "time" variables x0 and y0• The operators 
Ge, Gi, and G are antiperiodic functions of x0, y0, 

x0, y0; therefore their Fourier expansion in these 
variables contains only odd harmonics with the fre­
quencies w2n+l = ( 2n + 1 )7r(3- 1; [S] the function 
If! ( x', y' ) has a similar property .1> In calculating 
the operators Ge 1, Gi 1, and V by means of the 
diagram technique along with the antiperiodic de­
pendence of these functions we encounter vertices 
with O-function dependence On X- X' and y- y'. 
Also, a o function of the time variable is contained 
in the Coulomb potential. 

We first consider a transformation of the part 
of (3) containing no o-function vertices. The inte­
grand in (3) contains only even harmonics, i.e., 
periods (3 of x0 and y0• Transforming to the time 
coordinates (2), we obtain 

w:!mx;, + W2n!l~ = (2m + 2n) :rt~- 1TJ~ + (2mv~ -- 2nv0) :rt~-l;~. 

(3*) 

It follows that the integrand will have the period 
2(3 for ~ 0 only when v0 = v0 = t;2; this is the only 
choice of v0 that makes a Fourier transformation 
possible for the temperature-dependent functions 
in the cases of all possible masses. 

Transforming in (3) to the variables (2) with the 

l)This follows from the relation between ljJ and G. 

indicated choices of the numbers v and v0, we ob­
tain 

+ ~ ds'dlJ' {G;1 [TJ -TJ' + v' (s- s')l 

X G? [lJ -rJ' -v (s- s')] 

+ v (s, s', lJ -TJ')} 1Jl (s', TJ') = o. (3a) 

Here and hereinafter integration with respect to the 
time coordinates extends over the interval ( - (3, (3 ) • 
Integration over this region is possible in virtue of 
the indicated periodicity of the integrand; the inte­
gral is not changed thereby in the cases of terms 
containing time-dependent o functions. In apply­
ing (3a) and subsequent equations to such terms 
we shall multiply their Fourier transforms by 2v, 
where v is the number of o-function vertices, and 
we shall also double the Fourier transform of the 
Coulomb potential, taking u ( k) = u ( k) = 47re2k-2• 

The Fourier transformation of (3a) gives 

G;1 (vK + p)G/1 (v'K -p)1Jl (p, K) 

+ ~- 1 (2:rt)-3 ~ dqV (p, - q, K) 1Jl (q, K) = 0; (4) 

here the four-dimensional vectors have a discrete 
time component p = (p, wp) and the four-dimen­
sional integral denotes spatial integration and time 
summation. The quantities G61 and Gi 1 have only 
odd harmonics, while V(p, -q, K) and 1/J(q, K) 
have only even harmonics in Wk and a complete 
spectrum in wp and wq. However, in (4) and sub­
sequently summation over wq must be performed 
only over frequencies having parity opposite to that 
of Wk/2. The Fourier transform of V is 

v (p, q, K) = 2; ~ d£ dl,;' dTJV (I;, s', TJ) ei(p~+q~'+Kt,), (5) 

where p~ = p~ + Wp~ 0 ; the other quantities trans­
form similarly. 

ENERGY SPECTRUM OF TWO-PARTICLE EXCI­
TATIONS 

We select in the operator G-1 the zeroth and 
higher-order terms with respect to the density Ne 
of free electrons. For this purpose we use the 
Dyson equations 

where Se (Si) is the one-particle Green's function 
for noninteracting electrons (ions ) , and Me and Mi 
are the corresponding mass operators. We write 
the vertex operator in the form 
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where V0 is of zeroth order and V1 is of higher 
order in Ne. Equation (4) then becomes 

(S;1Si1 + V0 + W) \jJ = 0, 

where W approaches zero with Ne. 

(6) 

As already shown, the eigenvalues of this oper­
ator in the iwk plane give the energy spectrum of 
the electron-ion excitations. Since the terms of the 
order Ne in (6) are small, we shall solve this equa­
tion by the perturbation method. [1] A method of 
integrating the Bethe-Salpeter equation has been 
developed in [4•5] for quantum electrodynamics. 
This method can be extended to quantum statistics 
and to temperature-dependent functions in the fol­
lowing manner. 

We first consider the zeroth approximation of 
(6). In the momentum representation we have 

S;1 (vK + p) = i (wk/2 + Wp) + f.te - Te (p), 

Te (p) = (vK ! p)2/2me; 

s? (v'K- p) = i (wk/2- Wp) + f.ti- T, (p), 

T, (p) = (v'K - p)2/2mf. 

The vertex operator V0 corresponds to the Cou­
lomb interaction of an electron and nucleus: 

V0 (x, y; x', y') 

= - Zu (x - y) {J (x0 - Yo) {J (x- x') {J (y- y'); 

in the momentum representation we have 

Vo (p,- q, K) = -Zu {p -q). (7) 

Thus in the zeroth approximation (6) becomes 

S;1 (vK + p) Si1 (v'K- p) 'lJ (p, K) 

- ~- 1 (2nt3 Z \ dqu (p- q) \jJ (q, K) =0. (8) 
,I 

Here only lf! is integrated over q0• 

Introducing the function 

cp (q) = ~-l ~ dq0 \jl (q, K), 

we write (8) as 

\jJ {p, K) 

= S, (vK + p) S1 (v' K - p) Z (2n)-3 ~ dqu (p - q) cp (q). 

Applying the operation 2> {3-1 J dp0 to this equation, 
we obtain 

2lSummation here and subsequently can be performed using 
the Poisson formula, for example. 

~-1 ~dp0S, (vK + p) Si (v'K -p) 

= - F-1 (p, K) [1 - !, (T, (p))- /1 (T, (p))l, 

F (p, K) = iwk + f.! - T(p), 

f.! = fle + f11 , T (p) = K 2/2M + p2/2m, (9) 

where M is the ion mass, m is the reduced mass, 
and f is the Fermi function; terms of f are of the 
order N and must be considered only in first ap­
proximation. 

Thus in zeroth approximation we obtain 

[iw + f1- T(p)l cp (p) = - Z (2n)-3 ~ dqu (p - q) cp (q), 

i.e., the Schrodinger equation for a single-electron 
ion C7J having the momentum K, total energy iwk 
+ J.l. = Ko = K2/2M + E, and the wave function qJ. 

For lf!(p, K) we obtain 

'lJ (o, K) = --F (p, K) S, (vK + p) Si (v'K -p)cp (p). 
(10) 

Equation (6) containing the eigenvalue is non­
linear and requires a special form of perturbation 
theory developed in C4J for time-dependent Green's 
functions. 3> For temperature-dependent Green's 
functions the same method leads to the following 
formula for a correction to the energy level E of 
a state qJ under a perturbation W: 

!>..£ = {J£ -if = ~-l ~ dp'i) (p, K) W'ljJ (p, K) ''"'k+fl-=K,+iS 

+ Z ~ dpdqcp•(p)u(p- q) [/, (T, (q)) + /1 (T1(q))] cp (q), 

(11) 

where '¢ is obtained from (10) through the replace­
ment of qJ by qJ *. Here oE is the shift and r is 
the width of the given level. 

It follows from perturbation theory that in cal­
culating matrix elements we must consider Wk as 
belonging to a discrete spectrum, since (9) is ful­
filled only in this case, and that we must replace 
iwk + J.1. by K0 + io only in the final result. The in­
finitesimal imaginary term added to K0 will be w 
written explicitly only in calculating.the widths. 

MASS AND VERTEX OPERATORS 

Mass and vertex operators in the diagram tech­
nique can easily be constructed for a high-temper­
ature plasma. First- and second-order diagrams 
for an electron mass operator are given in [ 1], 

where it is shown that the main contribution to 

3lJn [2] this theory was developed for temperature-dependent 
Green's functions; however, the resulting formula is not exac't, 
a term -N being absent. 
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level shifts comes from second -order divergent 
diagrams. The divergences are removed by con­
sidering the Debye screening, i.e., by a diagram 
summation leading to replacement of the Coulomb 
potential u ( k) by the effective potential 

u (k) = u (k)/[1- u (k) p (k)], (12) 

where P(k) is the polarization operator. [1] 

The foregoing also applies to the ion-mass and 
vertex operators. We shall therefore consider dia­
trams where the Coulomb potential is replaced by 
the effective potential. Whenever the Coulomb po­
tential makes a negligibly small contribution we 
shall use the potential 

u (k) = u (k)- u (k)= u2 (k)P (k)/1 I- u (k) P (k)]. (13) 

In first approximation the electron polarization 
operator can be represented by 

Pe (k, k0) = - (N.~/'t .. ,k) [e-z' Erfi(z) + e-z" Erfi(z.)l, 

z = T..,k/2 + i~kol2't..,k, r,; = ~12m.; (14) 

here Erfi is the error function of imaginary argu­
ment. [S] Approximate expressions for Pe with 
small k are given in [ 1]. The ion polarization 
operator Pi is obtained from (14) through the re­
placement of Ne by Ni and of ~e by ~i 
= ({3/2mi )1/2. 

For Z > 1 we consider only the contributions 
of electrons and nuclei to the polarization operator. 
It follows from the theory of ionization equilibrium 
[ 9] that at high temperatures the density of (Z -n)­
charged ions is of the order Ne(NeA.~ )n; therefore 
their contribution to the polarization operator can 
be neglected. 

The principal contribution to the shift for ions 
comes from three diagrams, each containing one 
effective-potential line (the heavy dashed line in 
Fig. 1 ). The corresponding operators are 

Me1 (p) = - ~-~ (2rt}-3 ~ dqSe (p - q) u (q), (15) 

v3 (p,- q, K) = -zu (p- q). (16) 

The ion mass operator for diagram 2 is obtained 
when (15) is multiplied by Z 2 and Se is replaced 
by Si. 

We must also consider the four diagrams that 
are diagonal in x0 - y0, each containing two effec-

/.,.--,, /,,--.., ' ~ ~~ 
2 

FIG. 1 

"t" 
I 
I ,.., 

3 

4 5 6 7 

FIG. 2 

tive potential lines (Fig. 2), and the four diagrams 
with a "ladder" vertex (the cross-hatched rec­
tangle in Fig. 2 ). Corresponding to diagram 4 we 
have the mass operator 

Met = ~-2 (2rt}-6 u (0) ~ dp dqS~ (p) u (p - q) Se (q) 

~ I e2 

=~ (1 + Z)d' 
(17) 

and to diagram 5 the same expression multiplied 
by - Z; these diagrams thus cancel each other ex­
actly for the hydrogen atom. Two additional dia­
grams for Me and Mi, which are not shown in 
Fig. 2, are obtained from 4 and 5 through the sub­
stitution of an ion loop for an electron loop. The 
corresponding mass operators are obtained through 
the multiplication of (17) by - z2 and z3; these are 
also canceled for the hydrogen atom. 

We also give the vertex operator describing 
multiple electron-ion interaction. This operator 
is obtained by summing ladder diagrams: 

v1 (p, -q, K) 

(2 a T "\"1 T (q) -Kon ' 
= rt)· [ (p)- iwk - f-L] ..:,J iw + f-t _ K <rn (p) <rn(q); 

n k on 
(18) 

here the summation is performed over the entire 
ion energy spectrum. This vertex has been con­
sidered by Galitski1, [1oJ and its effect on the ion 
has been taken into account in [2]. One must also 
consider the compact diagrams 6 and 7 (Fig. 2) 
containing the ladder potential and one effective­
potential line, and also two analogous ion dia­
grams.4> Diagram 6 corresponds to the operator 

v" (p, - q, K> 
= ~-~ (2n)-3 ~ dru (r) s. (vK + p - r) V1 (p - v' r,- q 

+ v'r, K- r) Se (vK + q- r); (19) 

the additional operators are constructed analo­
gously. 

For the hydrogen atom the main contribution to 
the shift comes from eight nondiagonal diagrams 
containing two effective-potential lines. Figure 3 
does not show three ion diagrams analogous to the 
electron diagrams 8, 9, and 10, The diagrams in 

4>Noncompact diagrams are taken into account by the Bethe­
Salpeter equation. 
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Fig. 3 correspond to the operators 

Me8 (p) = ~-2 (2n}-6 ~ dqdrS, (p- q) u (q) 

X Se (p - q + r) l.t (r) Se (p + r); 

Me9 (p) = ~-2 (2n)- 6 ~ dqdrSc (p - q) U (q) 

X Se (p - q + r) U (r) Se (p - q); 

V1o (p, - q, K) = z~-1 (2n)-3 u (p - q) 

12 

X~ drSe (vi( + p -- r) u (r) Se (vi( + q - r), 

Vu (p, - q, K) = - 2"2~-1 (2n)-3 

x \drS. (vi(+ p- r)l.t (r) 

X S; (v'l(- q- r) u (r- p + q). 

(20) 

(21) 

(22) 

(23) 

Ion mass operators for diagrams analogous to 8 
and 9 are obtained through multiplication of (20) 
and (21) by z4 and the replacement of Se by Si; 
the ion vertex analogous to 10 is obtained through 
multiplication of (22) by z4 and the replacement 
of Se by Si. The operator for diagram 12, corre­
sponding to the product MeMi in (6), equals the 
product of (15) by the analogous expression for 
ions. 

SHIFTS AND WIDTHS OF ENERGY LEVELS 

The foregoing equations enable the calculation 
of energy level shifts and widths. The energy cor­
rection corresponding to the electron mass opera­
tor of diagram 1 is obtained from (11), (15), and 
(6); after summing over wp we have 

ll£1 = ~- 1 (2n)-3 ~ dp dq I cp (p) j 2 

~ u (q) 
X L..i Te (p- q) + T, (p)- iw1,- f1 + iwq • 

Wq 

The principal contribution to t..E1 comes from the 
term with wq = 0 and the region of small q. [1] 5> 

Therefore the shift and width are 

5>Terms with nonzero frequencies here and subsequently 
give only small corrections to the shifts and widths. 

1)£ 1 = ~-1 (2nta \' dp I <p (pl_l" \. dqu ( q, O) 
.) T (P)- Ko ,\ 

__ ~-~ _::._ (' dpl <Jl (p) I" 
- d j p2 ; :!.m - E ' 

'l\ = - ~-1n (2nt3 ~ dp dq I cp (p) f
2 u (q, 0) I) (Tc (p- q) 

The shift for diagram 2 is obtained from (24) 
through multiplication by z2• 

(24) 

The energy correction corresponding to the ver­
tex 3 is also determined by the zeroth harmonic of 
the effective potential; after summation over Wp 
we have 

IlEa = - z~-1 (2nt3 ~ dp dq 

<p• (p) <p (p- q) u (q, 0) [T (p) + T (p- q)- 2Ko] 
X [Te(P)+T;(p-q)-Ko-ill] [Te(p-q)+T;(P)-Ko-illj 

(25) 
The resulting shift is obtained from (24) through 
multiplication by - 2Z; therefore the combined 
shift from diagrams 1, 2, and 3 is 

l)Et = - (Z- 1)2 T::_ \ dp I <p(p) 12 • (26) 
d j p2 /:!.m-£' 

this increases with temperature and density as 
( TNe )1/2 and is due to the Coulomb interaction 
between an ion and the plasma. 

For the hydrogen atom this interaction is ab­
sent and (21) vanishes; the same result was ob­
tained in [2]. By substituting in (26) the hydrogen 
functions in momentum representation, [7] we ob­
tain 

fJE; __ ( z -1 )2 T _!!_ 8n3f (n + t + t) r (l + 7/2) r (n -l- 3) 
nt - z d f (n + l + 4) f (I + 3/z) f (n -I) f (- 2) 

F [-n+l-l-1, n+t+1. 1+'12. 3; 1] 
X 4 3 .- n + l + 4, n + l + 4, l + 3/2 ' 

(27) 

where 4F3 is a generalized hypergeometric func­
tion, [B] 6> and a and d are the Bohr and Debye 
radii. Specifically, 

/j£; = _ T _!!_ (Z - ~ )2 n2 (n + 3!2) 
"· n-1 d Z n + 1 ' 

6£' = - T _!!_ (z- 1)2 _i_ 2 no d z 2 n , n = 2,3, ... (28) 

For the combined width of the energy level from 
diagrams 1, 2, and 3 we obtain 

6>For the sake of brevity we have omitted the transition to 
the limit, as a result of which [' (- 2) cancels one of the fac­
tors in the numerator. 
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f = - n~-1 (2n}-3 ~ dpdqu (q, 0) {[Z2 liP (p) 1 2 

-ZIP* (p)lJl (p-q)l<l {T.(p) + T; (p -q) -K0) 

+ [ j lJl (p) 12 - ZlJl* (p) ~P(P - q)l () IT. (p - q) 

+ T, (p) - Ko)}. (29) 

This expression differs from zero only for K2/2M 
>IE j. 

At temperatures T « Ml E 1/me an appreciable 
contribution to r comes only from the first term. 
For an ion we have approximately 

r; = z (Zz- 1) 2n&N. \ dp I 1P (p) I' I v'K- PI 
m; J (p2 I 2m - £)2 

Here integration is performed over the region 
T e ( p ) ::::: K0• Thus we have a width "' T 112 N for 
an ion. 

(30) 

At temperatures T » Mj E 1/m both terms in 
(29) give identical contributions and Z ( Z - 1 ) in 
(30) is replaced by ( Z -1) ( Z2 -1 ). For a hydro­
gen atom we have the width 

fa = - ~-1n (21t}-3 ~ dpqJ.(p) \7 plJl(p) ~ dqu {q, 0) () (T, (p) 

+ T; (p - q) - K0); (31) 

this expression contains the interaction energy of 
an atomic dipole moment with the field ii ( q, 0 ) . At 
temperatures T > M) E 1/me we add to the 6 func­
tion in (31) a second 6 function given in (29). 

We now consider the diagrams in Fig. 2. It fol­
lows from (11) and (6) that the shift corresponding 
to mass operators that are diagonal in x0 - Yo 
(which are independent of frequency in the momen­
tum representation) is given by 

llE = ~ dp I <p (p) )2 Me (vK + p) (32) 

in the case of the electron mass operator, and sim­
ilarly in the case of the ion mass operator, and 
has no imaginary part. 

The shift of the mass operator 4, which is still 
independent of momentum, is Me4 [see (17)]; mul­
tiplying (17) by - z, - Z2, and z3, we obtain the 
shifts associated with diagram 5 and the analogous 
ion diagrams. The combined shift for the four di­
agonal diagrams with two effective-potential lines 
is 

(33) 

this is proportional to NU'2, decreases with in­
creasing temperature as T-112, and vanishes for 
hydrogen. At high temperatures it is considerably 
smaller than the shift (27). 

The shift for the four diagrams containing a 
ladder potential is, in virtue of (11) and (18), given 
by 

(34) 

this is of the same order as (33) and vanishes for 
hydrogen atoms. 

Let us now consider the diagrams in Fig. 3. All 
eight diagrams give real energy corrections dif­
fering only in their numerical coefficients; here 
the diagrams 8, 9, and 10 and the analogous ion 
diagrams correspond to the coefficients 1, 1, - 4Z, 
Z4, z4, and -4Z3; the diagrams 6Z2 and - 6Z 2 

correspond to the diagrams 11 and 12. Thus the 
combined energy level shift for the diagrams in 
Fig. 3 is 

() _ 4 73 '1'2 e4 \ dp I q> (p) 12 

E - - 2 (Z - 2.£.- - 2Z + 1) 1- d2 J (p' 12m_ £)3 • 

(35) 
For ions this shift is always considerably smaller 
than (27) and can be neglected. 

However, (35) does not disappear for Z = 1 and 
determines the shift for hydrogen atom~;~.7> The in­
tegral in (35) is also expressed in terms of gener­
alized hypergeometric functions: [BJ 

a 3 10 n7r (n + l + 1) r (l + 1112) r (n -l- 5) 
<lEnl=TNea 2 1t f(n+l+6)f(l+312)f(n-l)f(-4) 

X 4F3[-n+l+1. n+l+1, l+llf2, 5;1 J. (36) 
- n + l + 6, n + l + 6, l + s/2 

Specifically, 

M~.n-1 = TN.a3251tn6 (n + 7/ 2) (n + 5/ 2)/(n + 1) (n + 2); 
{j£2~ = TNea326 1381t, ()£~0 = TN,a3n6 1401t, n = 3, 4, ... 

(37) 

The shifts of hydrogen levels increase with tem­
perature and density as TN. This dependence on 
density is associated with the short-range forces 
between atoms and plasma charges. 

The foregoing shifts must be compared with the 
level shift determined by the second term in (11), 
for which we have approximately 

f3 r• 

<lEnl ~ e' 1'-e ~ dpdqqJ'(p) U {p - q) qJ {q) 

-16 •;,lE•l(l_§_I)'''•N :1 - 1t n• \ T efl • (38) 

This shift decreases with increasing temperature 
and at high temperatures is considerably smaller 
than (36). Thus the shifts and broadening of both 
atomic and ionic energy levels are determined by 
the diagrams containing the effective potential. 

7)The nonzero frequencies in the diagrams of Fig. 1 give 
for hydrogen atoms the shift - N e T-1 • At high temperatures its 
ratio to (36) is of the order (e2/aT)2 • 
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The foregoing calculated shifts of levels lead 
to shifts in the frequencies of emitted photons; 
these shifts are negative for ions and are positive 
for atoms. For atoms this result does not disagree 
with experimental results; [UJ no data are available 
for ions. 

The conditions for applying the foregoing re­
sults are determined first, by the possibility of 
approximating the operators Me, Mi, and V by 
the given diagrams; secondly, by the validity of 
the approximations performed in calculating the 
matrix elements; and thirdly, by the validity of 
the perturbation theory as applied to (6). The first 
and third conditions are fulfilled in any case for a 
high-temperature plasma, when the ionization en­
ergy is small compared with the thermal energy 
( z2e2 /2a T « 1). Thus these conditions provide 
a lower limit of the temperature region. The third 
condition leads to the requirement oEn « En; this 
condition is violated for large TNe because of the 
rapid increase of oEn with n. In this way upper 
limits of temperature and density are obtained: the 
upper limit of Nea3 • aT/e2 is of the order 
Z8/9 ( Z -1 )2n8 for ions and 10-3n - 8 for hydrogen 
atoms. 
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