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The multichannel effective-radius theory is extended to the case of a Coulomb attractive 
field. It is shown that this theory leads to the presence of resonances in the cross sections 
below the threshold of the new reaction. Expressions are obtained for the averaged cross 
sections, widths, and shifts of the resonances. 

INTRODUCTION 

BAZ' has considered [l] the behavior of the elastic 
cross section near the thrr shold of the first in­
elastic reaction, and established the existence of 
resonances in the elastic scattering cross section. 
The resonances are the result of the fact that at 
definite energies below the thresholds the particles 
are able to excite a transition and remain them­
selves bound on one of the Bohr orbits in the Cou­
lomb field. Such a state is unstable and the parti­
cles return to the ground states and move apart. 
To each of the unstable states there corresponds a 
resonance maximum (and a minimum) on the cross 
section curve. The distance between neighboring 
maxima is approximately equal to the distance be­
tween the corresponding Bohr levels. Near the 
threshold, where this distance is very small, only 
the cross section averaged over the resonances is 
of interest. Baz' has shown[!] that the average 
value of the elastic cross section below the first 
threshold is equal to the total cross section above 
the threshold. Fonda and Newton [2- 4] investigated 
the behavior of the cross sections near higher 
thresholds. They expressed the scattering matrix 
below threshold in terms of its values above 
threshold and also demonstrated the continuity of 
the averaged total cross sections. In the present 
paper expressions are derived for the discontinu­
ities in the averaged partial cross sections, widths, 
and shifts of the resonances. It is shown that these 
expressions are also applicable to the excitation of 
hydrogenlike ions by electrons, where polarization 
forces of the type r- 3 act between the scattered 
electron and the ion in the excited state at large 
distances, in addition to the Coulomb forces. 

We are considering d parallel nonrelativistic 
reactions X (a, bf) Yf, f = 1, ... , d near the 

threshold of a new reaction X (a, bt) Yt· (Several 
channels, differing in the momenta of the particles 
bt and Yt can open immediately at this threshold. 
Accidental coincidence of thresholds of two essen­
tially different reactions are disregarded.) We as­
sume that at these energies there are no reactions 
in which three or more particles are produced. 
The particles bt and Yt are assumed oppositely 
charged. The remaining particles may or may not 
be charged. 

We choose r 0 such that only Coulomb forces 
act between them when r 2:: r 0 • The wave function 
of the system of particles participating in the re­
action is in this region a linear combination of 
single-particle wave functions in a Coulomb field. 
The cross section is expressed in terms of the co­
efficients of these functions, determined by 
smoothly joining the wave function of the system 
when r 2.: r 0 with the same wave function for 
r :S r 0• In place of the explicit solution for the 
latter, we shall use the smooth energy dependence 
of the logarithmic derivative. This, together with 
the known energy dependence of the Coulomb wave 
functions, is sufficient to determine the behavior 
of the cross sections below threshold and their 
connection with the cross sections above threshold. 

1. FUNDAMENTAL EXPRESSIONS 

We denote by l, J, m, r, v, and k the diagonal 
matrices whose elements are the orbital and total 
momenta, the reduced mass, the distance, the 
relative velocity, and the wave number of the chan­
nel. F ( kr) and G ( kr) are the regular and irreg­
ular Coulomb wave functions [5], 

Gt = arg r (l + I + iYJ), Wt=Gt-:Jo, 

s is the spin of the channel. 
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The wave functions of the system for r ~ r 0 

can be written in the form of a square matrix[6] 

\jJ = v-•;, (F (kr) + G (kr) K). (1) 

Different columns in (1) correspond to different 
linearly independent solutions. Different rows 
correspond to the wave-function components for 
different channels. Only components of open chan­
nels and of those closed channels whose threshold 
region is under consideration are included in (1). 
The wave-function components for the remaining 
channels attenuate rapidly with increasing r, and 
when r 0 is sufficiently large their contribution is 
negligibly small. The channels that are open only 
above threshold will be called new, and summation 
over them will be denoted by L'. The remaining 
channels will be called old and the summation de­
noted by L". 

The symmetrical matrix K is connected with 
the cross sections in the following manner: 

QJ (i- f) = !!:_ 2J + 1 IT ·12 
kz 2s. + 1 ft ' i l 

T = e-iw [eziw _ U] e-iw. 

(2) 

(3) 

(4) 
We have chosen for the matrix T a definition 

(4). which differs from that used in [6] by the factors 
e-1w, so as to simplify the formulas derived later. 

The matrix K, as a function of the energy E, 
has a branch point at the threshold Et of the new 
channel. We must separate in the formula for K 
the terms with the branching from the part that is 
analytic in the vicinity of the threshold. To this 
end we use the method employed by Teichmann for 
elastic scattering [7]. We define the R-matrix [B] 

by the relation 

I 1 d I 
lrm 'P (ro) = R v· m ro dr 'lJ (r) r=r, ( 5) 

and, substituting (1) in (5), express Kin terms of 
R, 

K-1 = - ~-+- J.... --.1-· [r-1 .!.. Rl-1 ~~ • 
F ' FF p112f F- ~ Fp 2 

. d 
p = kr0 , F = F (p), G = G (p), f=dP F \P)· (6) 

It follows from the solution of the Schrodinger 
equation in the region r :s r 0 (see [6]) that the R­
matrix is analytic in the energy and has only sim­
ple poles on the real axis. The branching in ( 6) is 
due only to the Coulomb functions, which we there­
fore express in terms of the functions -.J1 and 4>, 
which are regular in E when r 0 = const [S] · 

Gt (P) = (21 ~~~) Cz [ 'Yt (p) 

+ p21+Ipt(T]) (ln2p+ ;;i~; )<t>t(p)J. 

21 Co 
C TI (s2 _.)... '1'12)'/,' 

I = (21 + 1)! ' ., 
C _ f 2nYJ )'/, 
o- \ e2~-n-1 , 

S=l 

Pt = 2TJ (21 + 1) Cl !C~. t (TJ) = 1/2 [\jl (iT])+ \jJ (- iTJ)l· 
(7) 

qz ( 1J) /pz ( 1J ) - f ( 1J) is a rational function of 7J 2, 

which tends to a constant as I 11 12 - oo. 

Substituting (7) in (6) we obtain 

kt+'l. (21 + 1)!! CtK.-1Cz (21 + 1)!! klJ'I, 

- M (21 + 1)! !2 21+1 (1 k f ( )) 
- - (21 + 1) k Pz n + 11 • 

where 

(21 + 1)!! { 'I' 
M = r~+'!, - (21 + 1) <D 

(8) 

- d 
<Dz(p) = (l + 1) <l>z (p) + PTp <Dz (p). (9) 

The terms k2Z+1 pz and qz(ry)/pz(1J)- f(1J) 
contained in (9) are rational functions of k2 and 
finite when k2 = 0. The matrix M, which is sym­
metrical and real on the real axis, is therefore 
analytic in the vicinity of the threshold. 

It follows from ( 3) and ( 8) that 

T = k~+'· (21 l)ll C1 - 2i + M -(21--:---1 )-! !-2 p_1..:.k~2~1,..,..+-1 -,_-(2_1_..,-_1) 

X Ct (2[ + 1)!! kt+'/,, (10) 

-r = Ink + f (TJ) + i:n/(e2""- 1). (11) 

The factor (2Z + 1) ! ! has been singled out because 
(2Z + 1) ! ! C = 1 in the absence of a Coulomb field, 
when (10) goes over into formula (22) of Ross and 
Shaw [aJ. 

The only term with a branch point in (10) is the 
diagonal matrix T. The only elements of this 
matrix not analytic near the threshold are those 
corresponding to the new channels. They are all the 
the same and in the direct vicinity of the threshold 
they are equal to ( a I kt I « 1) 

a l 1 . 
'l'tt = n a - tJt (£ < Et), 

n• 
a= 2 /Z z ' me bt >'t I 

y = ctg __::~_ , k1 = ix for E < £ 1• ax 
( 12)* 

*ctg =cot. 
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2. BEHAVIOR OF CROSS SECTIONS NEAR THE 
THRESHOLD OF ONE NEW CHANNEL 

In this section and in the following we consider 
the region of energies near threshold, where M 
can be regarded as constant and equal to Mt, the 
value at threshold, and where formula (12) can be 
used for Ttt· Eliminating Mt from (10), we relate 
T below threshold ( Tb) with T above threshold 
( Ta): 

Tb = [Ta-I + iT]C~2 ('ra - '"Cb) ]-I. ( 13) 

All the elements of the matrix ~ - Tb are 
proportional to E - Et, except Tft - T ft 
= -1r ( y + i). Neglecting the former and assuming 
that lim 2rJtC02 ( 77t) = -1/7r, we obtain 

E-Et 

( 14) 

The matrix Y contains only one nonvanishing 
element Ytt = i ( y + i )/2, enabling us to simplify 
(14): 

b a T'ftT~i T/tT~i -2i (15) 
T fi = T11- ------:ra- + (Ta )2 y + i _ ?i (Ta )-1 

ti ti - ti 

The quantity y is a periodic function of 1/a 
= l'i/a ..J 2mt ( Et - E). Therefore Tb and all the 
cross sections oscillate near threshold, assuming 
identical values at those energies for which 1/aK 
differ by an integer. The form of the cross-sec­
tion curve depends on Ta. If Re Tft « 1, then the 
values of Tfi are constant and approximately equal 
to Tfi at energies for which y differs noticeably 
from -2 Im( Tft)- 1• The cross sections are then 
equal to the corresponding cross sections above 
threshold. When y ~ -2 Im (Tft)- 1, the cross 
sections vary rapidly. The width of the resonance 
r and its shift b. (if the latter is small) with re­
spect to the value of Et- E = n2 (2mta2n2 )-1 are 
given by the expressions 

r 1 2 R Ta I Ta 12 1 'l" I Ta 12 D = 2n [ e tt- tt ] = 2n Li ti ' 
j 

t. 1 I Ta D = 2l1 m u, (16) 

where D = 2 ..J 2mt a ( Et - E) 312/n is the distance 
between resonances. 

The resonances are very close together near 
threshold, so that interest attaches to the cross 
sections averaged over the resonances 

E+D/2 +co 
Q=~ ~ Q(E)dE=+ ~ Q(y) 1 ;y2 • (17) 

£-D/2 -oo 

Formula (16) expresses Tfi in the form a+ {3/( y 
- y) and ( 1 7) reduces to the integral 

+co * 
1 \ ( ~ ) ( • ~ ) dy n J a+ y-r \1)( + y-r· 1+y2 

-co 

lmy = 21 T~t[-2 ReT~t- 1 =I Tft I-2 _L" I Tfil 2 > 0. (18) 
f 

Using (2), (15), and (18), we obtain 

I Ta [2 [ T" [• 
QbJ (i _f) = QaJ (i _f)+ ~ 2J + 1 ft" ti 

k~ 2st+1 ~;[Tfi[• (19) 

= QaJ (i-f) + QaJ (i-;- /) QaJ (t- f) . 
~i QaJ (t- j) 

Expression (19) shows that all averaged cross 
sections decrease abruptly at the threshold with 
increasing energy. The distribution of the jumps 
between the cross sections does not depend on the 
initial state and is equal to the distribution of the 
inelastic jumps in the averaged cross sections in 
scattering, where the new channel is the initial 
one. The behavior of the jumps in the averaged 
cross sections is analogous to their behavior in 
the compound-nucleus model. The sum of all the 
jumps is equal to the cross section of the new 
channel, i.e., the total cross section is continuous 
on the threshold. The latter was proved by Baz'[1J 
and by Fonda and Newton [2- 4] by averaging the 
imaginary part of the scattering amplitude. 

3. BEHAVIOR OF CROSS SECTIONS NEAR THE 
THRESHOLD OF SEVERAL NEW CHANNELS 

If the particles bt and Yt have proper momenta, 
then, for the same threshold several ( n) channels 
with different particle momentum for a constant 
total momentum J open up immediately. This case 
differs but little from the case considered in Sec. 
2. Formula (14) remains in force, but the diagonal 
matrix Y now contains n equal non-zero elements 
i ( y + i )/2. Expression (15) assumes the form 

T7t = Tft- .L' Tfm [T-1 lmm'T::,.i 
mm' 

(20) 

Here T is a symmetrical matrix of rank n, con­
taining the Ta-matrix elements relating the new 
channels only. Using the orthogonal matrix B that 
diagonalizes T 

(21) 

we transform (20) into 
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Tb ya ~~ ya r'-1 ya 
fi = fi- .LJ fm { lmm' m'i 

mm' 

(22) 
m 

The consequences of (22) are similar to those 
of (15): near the threshold the cross sections os­
cillate and assume identical values when 1/aK 
differ by integers. If Re tk « 1, then for energy 
values when y differs appreciably from all the 
-2 Imtk 1 the cross sections are approximately 
equal to their values above threshold. When 
y "" -2 Im tk1 resonances are observed. Their 
widths and shift are 

fj.k 1 
D = 2n Imtk. 

(23) 

(24) 

As in the case of one new channel, all the averaged 
cross sections decrease abruptly on the threshold 
with increasing energy, inasmuch as the right half 
of (24) is always positive. This can be readily 
verified by representing it in the form 

and expanding the denominator in a series. The 
sum of all the jumps is equal to the sum of the 
cross sections of the new channels. The form of 
(24) is more complicated than that of (19) because 
of the superposition of the neighboring resonances. 
In the important case when the sections of the new 
channels are small, i.e., the elements Tjk relat­
ing the old and the new channels are small and, in 
accord with (23), the resonances are narrow, Eq. 
(24) simplifies greatly. The terms with k ,o K in 
(24) are then much smaller than the terms with 
k = K, and 

2J + 1 '[8. 121 8· 12 
QbJ (i-f)- QaJ (i-f) = ::..._ -- ~ ,',k Tk • (25) 

k~ 2si + 1 k ~ I e,k[2 
I 

4. THRESHOLD BEHAVIOR OF THE EXCITATION 
CROSS SECTIONS OF HYDROGENLIKE IONS 
BY ELECTRONS 

Owing to the degeneracy of the levels of the hy­
drogenlike ion with different momenta, a strong 
polarization interaction exists between the elec-

tron and the ion in the excited state. This interac­
tion decreases as 1/r2 with increasing distance 
between the electron and the ion.1) It is therefore 
impossible to choose r 0 such that the electron­
ion interaction reduces to a Coulomb interaction 
when r > r 0, and the derivation presented above 
for the threshold behavior does not apply. We 
shall show that an account of the polarization in­
teraction does not change the threshold behavior 
of the ion excitation cross sections, in contrast 
with the case of the excitation of hydrogen atoms, 
where the threshold behavior depends essentially 
on the polarization. 

In analogy with [9] we choose r 0 such that Eq. 
(4) of [9] reduces when r ~ r 0 to 

(~-~ (l + 1_) + rJ. + ~ + k2) 'ljJ = 0, (26) 
dr 2 r 2 r 

where z is the ion charge. The solution of (26) 
has the form 1/J = Acp, with two systems of inde­
pendent solutions existing for q;: 

h.=- ie-""fl12e-iP (2d+l U2 (J.. + 1- iT], 2A + 2, 2i p) 

~ exp {- i (p- nJ../2- 1J ln2 p)}, 
P-+00 

Ot. = ie-""fll2 e-1P (2p)"+l U1 (J.. + 1- iTJ, 2J.. + 2, 2ip) 

~ exp { i (p- nA/2- 1J In 2p)}. 
p-+00 

(27) 

We use for the hypergeometric functions the 
notation of Morse and Feshbach [to] and the expan­
sions of [5' tt] 

F (J.. + 1- iTJ, 2~ + 2, 2i p) = (- 2TJf2"-1p-2"-1e1Pf (2A+2} y1 , 

F(-J..- iT], -2J.., 2ip)= f(-2A)e1Py2, 

00 

Y1 = ~ ap (2Zr)<P+2t.+I)/2Jp+2l.+I (2V2Zr), 
P=O 

00 

p=O 

a0 = b0 = 1, 

ap =- [(p + 2J..) ap-2- ap-al/(2~)2 p, 

bp =- [(p- 2}..- 2) bp-2 - bp_3]j(2TJ)2p. (28) 

If we represent 1/J for r ~ r 0 in the form 

'ljJ = k-'1• A (I-OU'), (29) 

we obtain for the matrix U an expression similar 
to Eq. (12) of [9]: 

u = eirtl/2 Ae-i (rtA/2+o,) U' e-i (rrA/2+o,) A -1 eirtl/2, ( 30) 

We express, in accord with (5), (27), and (28), 

1>For the formulation of the problem and for the definition 
of the quantities a, A, and A. used here see [•]. 
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the matrix U' in terms of R and Dt. and U2 from 
(27) in terms of Y1 and y2 from (28), obtaining the 
expression 

V'= r (/. + 1 + iTJ) _ 2i r (/. + 1 + iTJ) k"-+'f, 
r (/. + 1- iTJ) r (1. + 1) e"~/2 

r (I. + 1 + iTJl k"+'f, 

X r (/. + 1)e"~i2 ' 
(31) 

which replaces (1 0) 2), where M [which differs 
from that given by (9)) depends on E only through 
R and y1 and y2, so that it is analytic near the 
threshold Et· In the region near the threshold, 
where M can be regarded as constant and the 
asymptotic expansion can be used for r ( A.t + 1 
+ i7Jt), it follows from (30) and (31) that 

Uf1 = U'f1 - ~~ U/m [ D _ exp {i (~I- 2:rrfax)}] , U'/n';, ( 32) 
mm' mm 

where U is a symmetrical matrix of rank n, con­
taining the matrix elements of ua connecting new 
channels only. Upon substitution of (4) Eq. (32) 
coincides with (20), so that the results of Sec. 3 
are applicable also in the case of excitation of 
hydrogenlike ions by electrons. 

2)For diagonal elements with integral A it is necessary to 
go in the square brackets to the limit A ~ integer, since M 
also contains the term (sin 2rr Ar'. We then obtain the expres­
sion in the denominator of (10). 
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