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The "hole" and "electron" spectrum in a magnetic field is considered for metals of the bis
muth type. The paramagnetic energy increment is calculated on the basis of a quasi-classical 
approximation. It is characterized by a g-factor which depends on the quasi-momentum. Cal
culation of the diamagnetic levels is carried out completely only for "holes" in the case in 
which the magnetic field is directed along the trigonal axis of the crystal. 

l. The spectrum of bismuth in a magnetic field 
has been the subject of a large number of experi
mental investigations and one theoretical paper. [l] 

In the latter, the paramagnetic increment to the 
energy of the electron had been computed by start
ing out from model assumptions on the existence 
of the near zone. 

The electron energy spectrum of a bismuth type 
metal in the absence of a magnetic field has been 
determined by Abrikosov and the author [2] (this 
work is cited below as I). It was shown that the 
small deformation which transforms the simple 
cubic lattice into a lattice of the bismuth type leads 
to the appearance of a small number of "holes" and 
"electrons" close to certain points of the reciprocal 
lattice space. The "holes" and "electrons" arise 
in a mutually-dependent fashion, and their spectrum 
(with account of the equality of the number of 
"holes" and of "electrons") is entirely deter
mined by seven constants (the same number as 
in the universally adopted ellipsoidal model). 

In the present work, beginning with the results 
obtained by us previously, [2•3] we consider the en
ergy spectrum (of "holes" and "electrons") of 
Bi in the presence of a magnetic field. Fundamen
tally, we shall be interested in the g-factor, and 
we shall not be concerned with the de Haas-van 
Alphen effect in not-too-large magnetic fields 
(where the quasi-classical quantization is valid) 
and in cyclotron resonance, inasmuch as the fre
quencies of the corresponding oscillations are 
connected with the extremal cross sections and 
the masses of the Fermi surface, i.e., they are 
determined by the parameters of the spectrum in 
the absence of the magnetic field. 

The experimental investigation of paramagnetic 
resonance reveals a difference in the g-factor from 
two (by 10-100 times) and its large anisotropy. [4] 

This means that the g-factor in metals of the bis
muth type depends essentially on the quasi-momen
tum. From the calculation given below, it is evident 
that the dependence arises because of the appre
ciable spin-orbit coupling, which plays an impor
tant role also in considering the spectrum in the 
absence of the magnetic field. 

2. The energy spectrum of Bi must be known 
in the vicinities of the points 

ko = {- M + b~ + bg), k1 = { (- b~ + b~ + b~), 
k2 = ~(b~- b~ + b~), ka = i(b~ + bg -- b~) 

in the reciprocal lattice space (b~ is the lattice 
spacing). Close to the first point there are "holes," 
close to the other three, ''electrons.'' Prior to the 
deformation which transforms the cubic lattice into 
a lattice of the Bi type, each of these points has the 
symmetry C3v. For the same reasons as given in I, 
we consider only two-dimensional representations 
of the groups C3V• SUCh that for determination Of 
the spectrum from the deformation it is necessary 
to compute the principal values of the second-rank 
matrix D. We expand the matrix D in a complete 
set of linearly independent matrices of second 
rank. These four matrices are chosen in the fol
lowing fashion: E is the unit matrix, and 

The coefficients Ji of expansion of the matrix D 
in E are functions of K = k- ki and H. Inasmuch 
as we are interested in small values of K, we can 
limit ourselves to the first terms in the expansion 
of these functions in IC and H. 

In the discussions given here, electron spin has 
not been taken into account. For account of the 
effect of spin it would generally be necessary to 
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use the double-value representation group. Assum
ing, as in I, the energy of the spin-orbit coupling 
6. to be small in comparison with the character
istic electron energy in the cubic lattice, we can 
take the spin into account by assuming the expan
sion coefficients Ji of D in E to be dependent on 
the operators CTi of the projection of the spin, and 
limit ourselves to the first order in 6.. The pro
cedure set forth coincides formally with the tech
nique developed primarily for semiconductors by 
Pikus. [5] 

Under these assumptions, and with account of 
the requirement of spatial symmetry, time inver
sion and hermiticity, we get 

+ ib [x+J- -x_l+], 

X±= Xg ± ixx, (1) 

where JJt is the Bohr magneton, while a, b, 6., and 
JJ2 are real constants. The z axis is directed 
along the C3 axis and the x axis is perpendicular 
to one of the symmetry planes of the small group. 
The components Ki are operators connected by 
the well-known commutation relations: 

{xx, xu} = ien H.lc etc. (2) 

In the construction of D, it is taken into ac
count that in transformations of the group Csv the 
matrices Ji are transformed as components of an 
axial vector. In order to find out what invariant 
combination is permitted in D, one must make use 
of formulas developed in [5]. 

Going over to the matrix elements Ji, we get 

-I ax2 + !11 (a H) + llcr2 + JlzH 2 bx+ I 
D - bx_ ax2 + 111 (a H)- llcr2 - JlzH 2 • 

We describe D in terms of the spin matrices: 

Dn bx+ - iJ11H+ 

D= 
bx_ D22 

iJ11H- 0 

0 iJ11H-

Here 

D11 = ax. + !! + ((l1 + ~t2) H., 

D22 = ax. - !! + (!ll - !l2) H., 

Das = ax. - !! - (!ll - !l2) H., 

0 

D33 
bx_ 

0 

- iJ11H+ 

bx+ 
D44 

The spectrum before deformation is found by di
agonalization of the matrix D. 

For the determination of the spectrum after de
formation, the matrix D' is diagonalized, for the 
construction of which it is necessary to take it 
into account that the deformation, although small, 
nevertheless doubles the volume of the elementary 
cell. New elementary vectors appear, and the 
points k0 and - ko. ki and - ki become pairwise 
equivalent. Now it is necessary to combine two 
two-dimensional representations, corresponding 
to the points k0 and - ko (and similarly also for 
the points ki). Thus, in order to obtain D', it is 
necessary to combine D with the matrix obtained 
from D by means of inversion (inasmuch as - ko 
is obtained from k0 by inversion). Moreover, 
terms proportional to the deformation appear ex
plicitly in the elements of the matrix D'. After the 
permutation of several columns and rows, D' can 
be written in the form 

D'-1 A - tiC* ~I· 
An bx++[3 i tl 

bx-+[3 A2z tl i (3) A= 
i tl Ass -bx++[3 
tl i -bx-+[3 A44 

Here A11 = D11 ; A22 = D22 ; Ass = - aKz + 6. 
+ (JJt + JJ2)Hz; A44 = -aKz -6. + (JJt-t-t2)Hz. The 
matrix A' is obtained from A by the substitution 
JJ1- - JJt, 6.- - 6.; JC = - it-ttH+E, E is a unit 
matrix. The notation is the same as in I. The 
terms appearing on the main diagonal, which are 
proportional to the deformation, can be added to 
the energy w. Here they are omitted. 

The energy spectrum is found from the equation 

Det jD' -Ew I= 0. (4) 

Equation (4) calls for an explanation, because D' 
depends on the operators Ki. As was shown by 
Abrikosov, [S] the spectrum is determined by the 
poles of the matrix Gik satisfying the equation 

(5) 

However, for estimating the poles Gik• it is suffi
cient to find in place of the solution (5), the non
trivial solution of the system 

(D' - Ew),i'IJli = 0. (6) 

Thus Eq. (4) must be understood to be the condition 
for the existence of a non-trivial solution of the set 
(6). 
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3. The solution of (4) with account of the com
mutation relation (2) is a difficult problem. How
ever, it is materially simplified for holes ( {3 = o 
= 0 ) and for a magnetic field along the C3 axis. 
In this case, 

{x+, Xz} = {x_, Xz} = 0, {x_, x+} = 2e1iH!c. (7) 

The matrix elements of the operator satisfying the 
relations (7) are lmown: 

(xJn-1, n = V2e1iHn!c. 

Inasmuch as the magnetic field is directed along 
the z axis, the matrix JC = 0. The equation (4) di
vides into two. The first part takes the form (for 
n = 1, 2, ... ); 

Au-W b V2eliHnjc r 0 

b V2eliHnjc A2a-W 0 r 
Det 

r 0 Aas-W b V2eliHn(c 

0 r b V2eliHn(c A44-W 

and (for n = 0 ) 

I Au- w r I Det A = 0. r aa-W 

Here the function 1/Ji is sought in the form 

c11Pn 

'ljlt = 
c21j!n-1 

Cslj!n 

C41Pn-1 

Equation (8) reduces to the following substitu
tions (see I) in the expression for the spectrum 
W = w0(Kz, Kl ): 

x3_ = x;+ x~ ___, 2e1iHn!c, n = l, 2, ..• 

=0, 

(8) 

(9) 

The solution of the second equation, which is 
separated from (4), is obtained from (9) by the sub
stitution J.l.i - - J.J.1, .6.- - .6.. We see that in this 
case the exact condition for quantization is identical 
with the quasi-classical one. This leads to the re
sult that the oscillations of the magnetic suscepti
bility (for H along C3 ) on the "hole" part of the 
Fermi surface are periodic in 1/H also for large 
magnetic fields, for which n ~ 1 is important. 
For n = 0, we have 

w = ± (L\ + ~t 1Hz) +~2Hz ± Vr2 + a2x;. 
4. Inasmuch as it is not possible to solve Eq. (4) 

in the arbitrary case, we shall limit ourselves to 
the region of not-too-large values of the magnetic 
field J.J.H « E; J.l., E are of the order of the magne-

ton and of the Fermi energy in bismuth (for Bi 
this corresponds to H « 104 G). Then one can 
regard the operators Ki as numbers, and take the 
explicit dependence of D' on the magnetic field 
into account by perturbation theory. 

The spectrum in zero order in the magnetic 
field was obtained in I. In the subsequent linear 
approximation it is possible to consider Hz and 
H+ in turn. First we set H+ = 0. Then Eq. (4) 
splits into two parts, reducing to the part already 
solved in I by the substitution w- w- J.J.1Hz, 
.6.- .6. + J.J.2Hz in the first and w- w + J.J.1Hz, 
.6. - - .6. + J.J.2Hz in the second equation. Assuming 
J.l.iHz « w, J.J. 2Hz « .6., and taking it into account that 
w0 if even in .6., we get 

w (x, Hz) = Wo (x) ± (~1 + ~2 awD!8L\) Hz. (10) 

We now set Hz = 0 and use the well-lmown iden
tity from matrix theory[6] 

Det j ~ ~ j = Det [AD -AcA-1B j. 

Here A, B, C, and D are matrices. Then 

Det I D' - Ew I = Det I (AD - Ew) (AD' - Ew) - ~~H3_E I 

= Det I (AD -Ew) (AD' -Ew) I -~~H3_au = 0, 

where aik are the co-factors of the element 
[(A0 -Ew)(A0' -Ew)Jik; 

AD =A (Hz = 0), AD'= A' (Hz= 0). 

We set w = w0 +ow, where w0 satisfies the 
equation 

Det I (AD - £w0) (A 0 ' - Ewo) I = [Det (A 0 - Ew0)J2 = 0. 

We then find 

<'lw = ± ~1Hj_ Vau I a!o Det (A 0 - Ewo)· (11) 

It is easy to compute the derivative in (11) by using 
the value of Det (A0 - Ew 0 ) computed in I. We have 

___j_ Det (AD- Ew) = 4w (w2 - y2 - 62 - A2 - L\2 - b2x2 ow0 ° 0 D I' l 

It is not difficult also to compute the sum aii: 

au = 16 {<:p2 - 4L\2 [(axzwo + bxy~)2 + (yw 0 + ~1\)2 

+ b2x;l\2 )}. 

Combining (10) and (11), we get the following ex
pression for the paramagnetic increment to the 
energy of the "electrons": 
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1-1 (x) = ± [J-.13_ (x) H3_ + 1-1; (x) H;]'l•, 

f.lz = !11 + f12Ll (w~ - 62 - ~2 + "(2 - Ll2 - b2x3_ + a2x;)/<p, 

f.lj_ = !11 Jla;d4<p, W0 = w- /(1). (12) 

For the "holes," Eqs. (12) lead to 

• 2>g2 ,2 b22 22 
u wg -r 1 - u - x _1_- a xz 

fl>z = !11 + !12 - 2 9 2 , 2 b2 2 2 2 ' 
w8 wg- 1 - '-' - x _1_- a xz 

f1 _1_ = f1 1abxzx _1_ [aWx;x3_ + ll2 (9r2 + a 2x;)J-'i•, 

Wg = w- f(o); 

for the expressions for f<1> and f< 0>, see I. 

(13) 

As expected, J.Lz = J.Ll = J.Li for ~ = 0. Thus, in 
the absence of spin-orbit coupling, the g-factor 
does not depend on the quasi-momentum and does 
not differ from the g-factor of the free electron. 
For a spin-orbit coupling energy different from 
zero, the g-factor depends upon IC in a rather com
plicated way. In this case the symmetry of the g
factor corresponds to the symmetry of the Fermi 
surface. These considerations are confirmed by 
experiments. [4] 

A detailed comparison of Eqs. (12) and (13) with 
experimental data cannot be given here for the fol
lowing reason. It follows from (12) and (13) that 
the paramagnetic increment to the energy is deter
mined both by the seven constants of the spectrum 
in the absence of the magnetic field and also by 
two new ones: J.Li and J.L2• From data on the 
de Haas-van Alphen effect and cyclotron resonance, 
it is possible to derive the seven constants men
tioned and to establish the spectrum completely in 
the absence of the magnetic field. Turning then to 
paramagnetic resonance, one can also determine 
the constant J.L2• However, in bismuth, the ratio 
of the minimum to the maximum mass (and also 
the ratio of the cross sections) is mmin/mmax 

:::o %5• This requires that the accuracy of meas
urement of the absolute value of say mmax be 
known to exceed the value of mmin· Even in very 
sensitive experiments, [ 7] such an accuracy has 
not yet been achieved. The situation is much 
worse with the accuracy of experiments on para
magnetic resonance . 

After achievement of the desired experimental 
accuracy, the finding of all constants of the spec
trum reduces only to a solution of seven algebraic 
equations; that is, it is completely solvable with a 
computer. It will then be possible to make a quan
titative comparison of Eqs. (12) and (13) with ex
perimental data. 

In conclusion, I want to express my deep appre
ciation to A. A. Abrikosov for valuable comments, 
and to L. P. Gor'kov and I. M. Khalatnikov for a 
useful discussion. 
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