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Pion interaction via an intermediate vector meson is considered. The model describes 1r1r 

resonance and yields asymptotically a constant total cross section and the diffractional 
angular distribution. Other properties of the model are likewise not in contradiction with 
experiment. 

1. INTRODUCTION 

A model of the 1r1r interaction resulting from ex­
change of a vector particle-the p meson-has al­
ready been mentioned in the literature (see [ 1] 

and the references cited there). An advantage of 
this model is the simplicity with which the exist­
ence of rrrr interaction is deduced from it. 

If only MP > 2f-t the interaction 

( P I rut) = yep. (pl - P2)P. ( 1) 

leads to the decay p - 2rr with probability 

(2) 

( p = p-meson mass, q = ~ p2/4 - f-!2 =pion mo­
mentum). The transition rrrr - p - rrrr is regis­
tered as a resonance pion interaction. It is inter­
esting to note that owing to Bose statistics of the 
pions, the state rrrr) with J = 1 has an isospin I 
= 1, i.e., the p meson is an isovector particle. 

The mass and the coupling constant of the p 
meson with the pions are determined by the posi­
tion and the width of the rrrr resonance [2 J : 

W, = 750 MeV, r = 150 MeV 

(it must be recognized that r = 2w). We assume 

y2/4rt = 1.50. (4) 

These parameters (together with the quantum num­
bers I= J = 1) enable us to determine the ampli­
tude of the rrrr scattering ( see Sec. 2) and gain an 
idea of the energy dependence of the cross section, 
the angular distribution, etc. 

2. PARTIAL AMPLITUDES 

The pole part of the amplitude \DC = ( rrrr jrrrr) is 
due to the p-meson exchange and can be repre­
sented in the form 

(5) 

(the notation is the same as in [3] ) • From this we 
can obtain the scattering amplitudes in states with 
specified isospin ( cf. [ 1]): 

wc<ol = 2 2 ( I - s + !!. - s ) 
-~ y p" - u p2 - I ' 

wc'11 = r~ (2 1 - !' + 1-, _ !!. - < ) ::v. (2) = - _I_ :1.\ (0). 
p2 ·-.) [.1:!- i1 p'l ~ t t 

Since 

s= W2 =4(q2 +f12), t=-2q2 (1-cose), 

u=-2q2 (1 + cose), 

. 

we (O ,2) and m ( 1) are even and odd functions of 

(6) 

( 7) 

cos e, respectively (this calls for pion Bose statis­
tics). Therefore the expansion into partial waves 

(8) 

contains only even Pz when I = 0 and 2 and only 
odd ones when I = 1. The corresponding partial 
amplitudes are expressed by the formulas 

( Qz are Legendre functions of the second kind). 
We see from this that with increasing energy 

( q - oo) all the amplitudes increase logarith­
mically: 

( 10) 

in contradiction to the unitarity condition. This 
cannot be excluded in the study of the pole part­
the unitarity condition is imposed only on the cut. 
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The amplitude 

(11) 

has cuts q2 :::: 0 and q2 ::s -J.J-2 and is analytic in 
the remainder of the complex q2 plane[4J On the 
right-hand cut 

Im Mt = q I Mt 12 , (12) 

i.e., the unitarity condition is satisfied. It is pos­
sible to verify with the aid of crossing symmetry 
that the unitarity is satisfied on the left cut, too. 
Mz "' q2 l+t for small q and satisfies all the require­
ments imposed on the scattering amplitude in dis­
persion theory. From the uniqueness of the ana­
lytic functions we can conclude ( within the frame­
work of the two-particle unitarity condition) that 
Mz is the sought amplitude. 

We can now obtain with the aid of the equation 

(13)* 

the phase shifts and the partial cross sections 

a1 = 4n (2l + 1) I Mt 12 = 4n (21 + 1) q-2 sin2 61• (14) 

As q- oc we have 6z- 1T/2, ( l"" 1), i.e., 
each cross section goes to its unitary limit. This 
leads to the constancy of the total cross section 
and to the Pomeranchuk theorem. 

3. ENERGY DEPENDENCE OF THE CROSS 
SECTIONS 

Figures 1 and 2 show plots of u( q) calculated 
with the aid of (9), (13), and (14). 

When I= 0 and 2, the total cross section is due 
to the S wave only up to q = ( 3 - 4) J.J-. Only at 
higher energies do the remaining waves begin to 
contribute and to raise the cross section to a pla­
teau near 7 mb. The plateau is the same in both 
states, owing to the Pomeranchuk theorem. The 
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FIG. 1. u0 - scattering cross section in state with isospin 
T = 0, u2 - the same for T = 2, dashed line- unitary limit for 
the S wave. 
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FIG. 2. Scattering cross section for T = 1, dashed curve­
unitary limit for P wave. 

maximum of u( q) in the vicinity of q "'11 is due 
to the kinematic factor in formula ( 13). 

When I = 1 the cross section depends in more 
complicated fashion on the energy. This is due 
essentially to the behavior of the P wave, which 
dominates up to q"' 6J.J-. It passes through reso-
nance at q = 2.55 J.J- ( s = 3 0 J.J-2 ) , and the resonance 
curve is almost symmetrical about the maximum 
( r ~ J.J-). This is due to the interference between 
the resonant and nonresonant parts of the amplitude. 

At s = 71 J.J- 2 both parts of the amplitude cancel 
each other, and the amplitude vanishes. In disper­
sion theory this calls for the introduction of the 
Castillejo-Dalitz-Dyson ( CDD) pole[5J. Unfor­
tunately, we do not know as yet how to find the 
position and the residue of this pole within the 
framework of the dispersion formalism. There 
are no CDD poles in any of the remaining ampli­
tudes, so that there are no interfering terms in 
them. 

With increasing q, the role of the resonant am­
plitude decreases, the higher waves are turned on, 
and the cross section goes to a plateau of the same 
magnitude as in the case when I = 0 and 2. It can 
be calculated by the optical theorem 

a= 4:n; Im A. 
q 

(15) 

Here A is the forward-scattering amplitude: 

1 qiJRI 
A = q ~ (2l + 1) At (1 - iAt)-I, Az= S:rtW. ( 16) 

l 

The series for A turns into the integral [s] 

1 ~ AI :rt :rtl A= -2 -. -1 .A -2 tg --:;-·(2l + 1) dl. 
:rttq • -l l '" 

(C) 

( 17) 

An expression is given here for I = 2, when the 
summation in (16) is only over odd l. For I= 0 
and 2 it is necessary to replace tan ( 1r Z/2) by 
cot(1Tl/2). The contour C is shown in Fig. 3. 



1278 A. A. AFONIN and Ya. I. GRANOVSKrl 

5. CONCLUSION 

c 

FIG. 3 

If the integral (17) is approximated by the con­
tribution from the pole of the partial amplitude 
Az ( 1 - iAz )-1 ( Regge pole [ 7]), it assumes a value 

A=_!_ AL :rl t :rtL 2 I (18) 
q -idAddL 2 gT. ( L, !), 

where L is the root of the equation A L = - i or 
cot <'>L = i[sJ. 

When q2 » p2 we have Az ~ ( ·y2 /2rr) K0 ( pl/q). 
By solving the equation 

(19) 

we get 

L = qz/p. (20) 

Substituting these expressions in ( 15) and ( 17) 
we get 

4n2 zKo (z) 
Cl = fl2 Im Kt (z) = const. (21) 

The same result is obtained also by direct 
graphic summation of the partial cross sections. 

4. ANGULAR DISTRIBUTION 

Since the mesons are identical, the angular dis­
tribution is symmetrical about IJ = rr /2. It stays 
constant up to relatively high energies 
( s ~ 40- 60J.L 2 ), remains isotropic in the states 
I = 0 and 2, and is proportional to cos2 (} when 
I= 1. 

However, as the higher waves enter, the distri­
bution becomes more and more peaked for (} equal 
to 0 and rr. It can be asymptotically represented 
by the formula 

a (8) ~I Ah (cos e) 12 , (22) 

where A is the forward scattering amplitude ( 18). 

We have considered a model of pion interaction 
via an intermediate vector p meson, in which it 
becomes possible to satisfy the main requirements 
imposed on the scattering amplitude: crossing 
symmetry (elastic), unitarity in all channels, etc. 
This model leads to the following results: a) the P 
wave has a resonance accompanied by a CDD pole, 
b) the cross section reaches asymptotically a pla­
teau, the Pomeranchuk theorem holds, and the 
cross sections are independent of the isospin, 
c) the angular distribution acquires a diffraction 
character with increasing energy, and d) the P 
phase has the properties necessary for the descrip­
tion of the electromagnetic form factor of the nu­
cleon (see [ 9] ). 

It seems to us, however, that this model must 
be refined still further. This is indicated by: 
1) the low value of a( oo) ( cf. [ 1o]); 2) the small­
ness of the electromagnetic radius of the pion 
( ( r;) ~ y /4rrp2 ); 3) the contradictory data on the 
rrrr resonance obtained from the analysis of the nu­
cleon structure and from the reactions rrN - rrrrN. 
It is apparently necessary to take into account the 
low -energy resonances ( t; meson). 
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