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The absorption coefficient r of an alternating magnetic field polarized along the preferred 
axis of a uniaxial antiferromagnet is calculated. It is shown that for frequencies w close to 
w 0 = 2gH0 (where g is the gyromagnetic ratio and H0 is the external magnetic field) 
r ~ -./ w - w o ( w > w o) . In the Appendix the Hamiltonian of the antiferromagnetic is derived 
under some very general assumptions. 

As is known, the spin-wave spectrum of a uni­
axial antiferromagnetic placed in a magnetic field 
H0 parallel to the preferred axis consists of two 
branches, the dispersion law of which, neglecting 
small dipole-dipole interactions has the following 
form: 

(1) 

Here Eo is the activation energy of spin waves at 
H0 = 0 resulting from the presence of an anisotropy 
energy; ®c is a quantity having the dimensions of 
energy of the order of the Curie temperature; a is 
the lattice constant; k is the wave vector; J.L = g'l'i, 
where g is the gyromagnetic ratio. The equidis­
tant character of the spectrum of ( 1) shows that at 
a frequency w = 2gH0 = (E 2 - E1)/fi a resonant ab­
sorption of magnetic energy should be observed. 
However, a consideration of the dipole-dipole inter­
action between the magnetic moments leads to a 
dependence of the difference E 2 - E 1 on the magni­
tude and direction of the wave vector. Hence the 
absorption is possible at frequencies greater than 
ti- 1min(E2 - E1) =w 0. As it turns out, w0 = 2gH0. 

The present paper is concerned with the theory of 
a similar absorption. 

Consider a uniaxial antiferromagnetic placed in 
a steady and homogeneous magnetic field H0 par­
allel to its preferred axis, and the magnitude of the 
field is such that the magnetic moments are anti­
parallel in the ground state, i.e., 

flHo <eo. (2) 

As is shown in the appendix [see Eq. (A4)], the 
dispersion law for the spin waves, taking into ac­
count the dipole interactions, has the form 

where 

(4) 

and the other symbols are defined in the appendix. 
Neglecting dipole interactions corresponds to the 
elimination of all quantities containing angles as 
factors. To obtain the dispersion law ( 1) it is also 
necessary to introduce the following symbols: 

eo = flMo Jl211\, 8c = flM 0J/2r (a -ad I a2 (5) 

and to neglect terms {3 + (a + a 12 ) k2 in com pari­
son to y. Note that, according to [ 1J, the condition 
for the existence of antiferromagnetism is a> 0'12· 

It is known that for a number of uniaxial anti­
ferromagnetics Eo~ l0°K. This means that anti­
ferromagnetic resonance, i.e., excitation of spin 
waves with wave vector zero ( nw =Eo± J.LH0), in 
magnetic fields ~ 103 - 104 Oe can be observed 
only in the submillimeter and infrared region. 

Using the dispersion law (3) we show that 
min(E2 - E1) = 2J.LH0. For this, we consider the 
law of conservation of energy for the absorption of 
a photon of frequency w : 

(6) 

We take the momentum of the photon equal to zero; 
this is justifiable because of the large magnitude 
of the velocity of light ( c » vs; Vs = :fi-1 8E/8k is 
the velocity of the spin wave). Squaring Eq. (6) 
and substituting the accurate values for E 1 and E 2, 

we obtain 

(n2w2 - 4fl2 H6) [4 (A 2 - B2)-1i2w2 ] = 161 C 1~ (A - B)2 • 

From this it is clear that in order to fulfill the 
condition (6) it is necessary that the frequency 
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satisfy one of two conditions: or 
00 

(7a) Q=n(f1M0) 2 wVC~o r~ (a2k2 + ~3 )(N1-N2)k2dk 
4~t2HG > 1i2w2 > 4 (A 2 - 8 2 ). (7b) 

The latter inequality (7b) contradicts the condi­
tion (2), proving our assertion that absorption of 
the type considered here begins at frequencies 
equal to 2 J.t HoI n. Note that the right inequality in 
(7a) does not limit the upper frequency, since as 
the modulus of the wave vector k tends toward 
infinity, so does A2 - B2. 

In order to calculate the absorption coefficient 
r it is necessary to determine the probability W 
of absorption of a photon with energy nw by a spin 
wave of the first kind and its conversion into a spin 
wave of the second kind, as well as the probability 
of the reverse process. We shall make use of per­
turbation theory. 

The operator for the interaction of an electro­
magnetic field he-iwt ( h is its amplitude) with the 
magnetic moments has the form 

(8) 

It is easily seen that the matrix element of the 
transition corresponding to the process considered 
differs from zero only in case the alternating mag­
netic field is polarized along the axis of the anti­
ferromagnetic (chosen as the z axis ) , i.e., 

(9) 

As is shown in the appendix, in the representa­
tion of second quantization 

-- camp. conj . ( 10) 

and we are limited to the case of relatively high 
steady magnetic field ( H0 » M0 ( T /®c) ) . Since 
the transition probability equals 
27rn- 1 1 < i I df intI f> 12 0 ( Ei - Ef), the probability 
of the absorption of a photon as a result of the con­
version of a spin wave of the first kind into a spin 
wave of the second kind equals 

!Vf - 2~"-1' fN . " i"lP jN I· N WI:! .-=-:-_ .;~,ft I \ lk, 1\/ '2k 1Jbint Jk- ' 21~ 

(11) 

From this, considering the possibility of re­
verse processes, we obtain that the amount of ab­
sorption in units of magnetic energy equals 

1tf2 

x ~ sin50<'1(e1 + liw -- e2)dO. 
0 

Here 

(13) 

(14) 

is the equilibrium distribution function of the spin 
waves. It is most convenient to remove the o-func­
tion during the integration over the angle e. 

In the case cons ide red ( H0 » M0 T /®c) the ar­
gument of the o-function has the form 

e1 + liw - e2 = ti.w - 2flH 0 

2 (e2 + 82a2k2)2 
- (..::_) sin4 0 ° c 

I )lHo (ll~ + 8~a2k2 - fL 2 /f~) 

Hence the integral over angle in Eq. (13) (we shall 
call it J) equals 

--· ( I 13 (f!Ho)';, (e.~+ e~azk2- flzH~ )'/, (liw- 2rtHo)'lz 

J -- it) 4 (s~ + 8~a2k")'/, 
x { e~ + 8~a2k2 - (yIn) (flH0)'' (nw - 2flH o)''' 

(15) 

The limits of integration over the modulus of the 
wave vector are determined from the condition 
1 > sin4 e > 0. As we have already said, the activa­
tion energy in uniaxial antiferromagnets is relatively 
large; hence the region of greatest interest is that 
of relatively small fields J.tHo « Eo· In this case 
the limiting conditions for k will be 

= k>O 
for 0 < r ([tHo(' (fiw - 2[lH of'' I Jt < Eu, 

oo > k > [ (yin r ftH 0 (fiw - 2'!H 0 ) -- e~ 1'1'/ a8c 

for r (~tHo)'/, (!i(l) - 2!1Ho('j.-:'> Bo. (16) 

From Eqs. (13) to (16) we have: 

(17) 

where 
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A f 0 for 0 <I (ftHo)'/, (Ttw- 2ftH0)'/, In< Eo 

=~ l 0~1 [(I I n)2 fl-Ho (Ttw- 2ftHo) - f,~ ]'/, for l(~tHo)'/, (Ttw- 2ttH0)'/, In> Eo 

here c1, 2 are given by Eq. (1). 
Since 1-!Ho « c0, we can set 

el = E2 = e = V e~ + 0~a2k2 • 
If we now introduce a new variable of integration 
x = E>cak/T, and also symbolize 

r (1,1Ho)'1' (!iw- 21,1H0)'1' = zrcT, eofT = '1'], (18) 

then the expression (17) can be written in the fol­
lowing fashion: 

w V ( h \2 ( T , 3 Q = 4n (i3 Ho} 1,1Ho --e;) (I -e-liwJT) F(z, 'I']); (19) 

F (z, 11) 
co 

= z \ x'exp(V~) dx 

AJ 'fl) [exp ( V x 2 + 112)- 1 ]2 (x2 + 112)'!. [(x2 + 11')'/,- z]'/, ' 

r o, 
A (z, 'I']) =llfz2-11'• 

The particular points F ( z, 11) are, firstly, 
z = 0 ( w = w0 ), and secondly, 

(20) 

(21) 

z = 17 ( nw' = 2~-!Ho + rr2 c~/y 21-!H 0 ). That is, at these 
frequencies the function F ( z, 17) and the absorp­
tion coefficient have a break. 

The function F ( z, 11 ) characterizes the shape 
of the absorption line. We shall find approximate 
values for F in some special cases. First, let us 
consider the case of relatively high temperature 
( T » c 0, i.e . , 17 « 1 ) : 

a) close to the absorption threshold, i.e., for 
z«1J«1 

co 

F (z, '11) = z \ x exp ( "VX"+Yi"l dx = z In _!_ . 
;; (exp( V x2 + 112) - 1)2 11 ' 

(22) 

b) for 17 « z « 1 

c) for 17 « 1 « z 

The function F ( z, 17) is shown schematically in 
the figure. 

Let us now consider the case of low temperature 
( T « co, i.e., 1) » 1 ). The function F ( z, 17) here 
has the form 

co 

p (z, '11) = z \' __ e_,xp_('-;c;------'-V_x_2 _,_+_11-"c-2 )!,-__:_x::.._:•d=x:___ 
~ (x2 + 11') ;, [(x• + 11•)'/,- z]'/, . 

A(z. 1;) 

(25) 

. 
tv 0 w, U) 

We consider the limiting cases. We have: 
a) close to the absorption threshold, i.e., for 

z«1«1J 

This dependence continues also at higher frequen­
cies ( 1 « z « 17); 

b) on the "tail" of the absorption line, i.e., for 
Z»1)»1 

co 

F ( ~ e-x x'l•dx ,- 'I 
z, 'I']) = z = J! :rrz 'e-z. 

. Vx-z 
(27) 

z 

Equations (19) through (27) are the solutions of 
the problem. The absorption coefficient r is de­
fined as the ratio of the power loss Q to the mag­
netic field energy ( r = 87TQ/h2V). 

A characteristic peculiarity of the frequency 
dependence of the absorption coefficient should be 
noted: r ( W) ~ ( W - Wo) !/.! close to the threshold 
( wo = 2gHo) and dies out exponentially with rising 
frequency [see Eq. (24) and Eq. (27)]. In the most 
interesting case ( T » c0) the maximum in absorp­
tion is reached at z ~ 1, i.e., at 

!iw = 21,1Ho {1 + £ (:rrMofH0) 2 (T I 0c)2 }, 

where ~ is of order unity. In other words, the 
lower the temperature, the closer is the maximum 
to 21-!Ho, i.e., the finer the "line." 

The quantitytl dr/dw, according to these equa­
tions goes to infinity ( dr /dw = A/( w - w0 )112 for 
w ~ w0 ). To estimate the magnitude of dr /dw at 
w = wo we can use the following formula: dr /dw 
f':;j A( T) 112 ,where Tis the lifetime of the spin wave; 
in order of magnitude 1/ T agrees with the line 
width of the antiferromagnetic resonance. 

In conclusion, we take this opportunity to thank 
A. S. Borovik-Romanov, I. M. Lifshitz, and V. M. 
Tsukernik for helpful discussions. 

llin some experiments it is df'/dw (or, more precisely, df'/dH0 ), 

and not I', that is measured. 
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APPENDIX 

We shall write the Hamiltonian of a uniaxial 
antiferromagnetic in the following form: 

Here Ak, Bk, and Ck are defined by Eqs. (4). At 
the same time we find the amplitudes u and v: 

I U~1 12 = I C I 2 Y2 (I - a2) (~2 - a2) (I - al)2/VD, 

I u~2l2 =I C 12 Y1 (al- 1) (~1- a1) (I- a2)2/VD, 

I V~1 12 = rir2 (1 - a2) (~2- a2)/VD, 

I V~2 12 = Y1Y~ (a1- 1) (~1- a1)/VD, 

(Al) D = Y2 (1 - a2) (~2- a2) [I C 12 (1 - al)2 - ril 

Here M 1 and M2 are the magnetic moments cor­
responding to the two sublattices; y, a, a 12 are 
constants associated with the exchange interaction, 
the term in y describing isotropic exchange inter­
action in the system and those in a and a 12 the 
anisotropic. It can be shown that a > a 12 and that 
a, a 12 ~ ya2; y ~ ®c/J.!Mo » 1 (J.i is of the order of 
the Bohr magneton, M0 is the equilibrium value of 
the magnetic moment ~J.i/a3 ). Further, A and 6 
are magnetic anisotropy constants, and the terms 
corresponding to them are associated with small 
relativistic interactions (A, 6 ~ y ( v /c )2, where v 
is the velocity of the electrons and c is the velocity 
of light). The magnetic field H is made up of the 
external, steady homogeneous field H0 and the in­
ternal field of the spin waves, which is described 
by the magnetostatic equations: 

curl Hs = 0, div Hs =- 4:rt div (M1 + M2). 

In the Hamiltonian of the system (A1) we express 
M1 and M2 in the usual way by means of Holstein­
Primakoff operators: 

Mj = (2!1M0)'1• [1 - (!1/2M0) ajatf1• ai, 

Mj = (2!1M 0)'1• aT [1 - (!l/2M 0) ajaJ", 

Miz =- Mo (- 1/ + flaiai, (A2) 

where i = 1, 2; M± = Mx ± iMy, and the operators 
ai ( r), at ( r) obey the usual Bose commutation 
rules. 

We expand the operators ai and ai in Fourier 
series: 

2 

( ) 'V 'V { (i) (f) ikr *(i) + (f) -ikr} 
G; r = ..::::..J ..::::..J Uknakn e. +v knGkn e , 

n=l k 

(A3) 

utilizing the usual method for diagonalizing the 
Hamiltonian, in which only quadratic terms are 
retained, we find the energy of the two possible 
branches of oscillation: 

- Y1 (1 - al) (~1- al)[l C 12 (I - a2)2 - r~J. (A5) 

The quantities a, {3, and y are, respectively, 

8kn + fl.Ho + Ak- Bk 

CXkn = skn + flHo- Ak + Bk' 

We shall write out the values of the amplitudes 
in two limiting cases. 

1. Eo> MHo» I C I (A- B)/(A +B). In this 
case the dispersion law is quite simple: 

ek(1. 2> =VA~- B~ + flHo, 

and the amplitudes u and v acquire the following 
form (n, m = 1, 2): 

n =f=m, 

For ( A2 - B2 ) 1/ 2 » J.!Ho » I C I (A- B )1/ 2/( A+ B )112 

it is possible to simplify these expressions further: 

1 ( Ak + Y A~- B~ )'/, u1 - u2 ---
1 k2 I - I kll - (2V)'i• vAt- B~ ' 

1 2 -'/, (Ak- VA~,- B~ )'/, I Vkl I = I Vk2 I = (2V) I • Y A~----' B~ 
(A8) 

2. Magnetic field equal to zero ( H0 = 0 ) . In 

(A4) this case 
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ul = e2iXm (Ak + (-1)m I ck I + ekm )'/, 
km 2V'1' 8km ' 

uLn =(-I )me 21'Pku~m. 

If, in addition, 1 C 1 « ( A2 - B2 )112, then 

um = _1 __ ( Ak +VA~- B()'h 
I kn I 2V'/, \ y 2 2 ' 

Ak- Bk 

vm = -~ ( Ak - Jl A~- B~ )';, 
I kn r 2V'/, y A~ - B~ . 

(A10) 

Consider Eqs. (AS) and (A1 0). In getting them 
we ignored magnetic interactions among the mo­
ments and between the moments and the external 
magnetic field. However, in the first case [Eq. 
(8) 1 it was assumed that the magnetic interaction 

between the moments played a greater role than 
the interactions with the external field and in the 
second case, the opposite. As can be seen from 
the equations, the limiting values of the amplitudes 
are therefore not in agreement. 

The Hamiltonian for the interaction of the sys­
tem with the alternating magnetic field [see Eq. 
(9) 1 in the second-quantization representation is 
written in the form 

l'{'e _ h v -twt ......, ( •2 2 •r r + •2 2 
"' int - - 1-l. e .L..J u),2u"AI - u~,2u1-I v"A2v1-r 

), 

where u and v in the case considered are defined 
by Eqs. (A5). Substitution leads to Eq. (10). 

1M. I. Kaganov and V. M. Tsukernik, JETP 34, 
106 (1958), Soviet Phys. JETP 7, 73 (1958). 

Translated by L. M. Matarrese 
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