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Zero-sound electron oscillations in an anisotropic metal are studied on the basis of the theory 
of Fermi liquids. Spin as well as non-spin oscillations are possible. The latter apparently 
exist in any type of metal and possess a linear dispersion law throughout the whole frequency 
range. Spinless waves can exist if some restrictions are imposed on the magnitude of the 
Fermi-liquid interaction; these restrictions can be appreciably relaxed for symmetric direc
tions in the crystal. The non-spin oscillations have two linear dispersion regions in the radio
frequency and infrared ranges. The possibility of observing zero sound in metals is discussed. 

ONE of the most important results of the Landau the electron liquid. The expected zero-sound os-
theory of the Fermi liquid [1] was the existence of cillations in He3 (see also [S]) are accompanied 
the so-called "zero" sound oscillations in He3• It by changes of the density and therefore cannot ex-
has turned out that ordinary acoustic oscillations ist in a metal. Zero sound in a degenerate iso-
of the Fermi liquid attenuate at sufficiently low tropic electron plasma was investigated by Silin[4J. 
temperatures. Instead, waves with a linear disper- Unfortunately, Silin's result cannot be ascribed to 
sion law and with a speed higher than that of ordi- a real metal, since the presence of anisotropy, as 
nary sound can propagate in He3 at T = 0. The will be shown below, leads to a whole series of 
existence of zero-sound oscillations is connected essential singularities. We shall also discuss the 
with the self-consistent interaction of the excita- possibility of observing zero sound in metals. 
tions. Let us consider the kinetic equation for elec-

Accordingto [t], the energy change oE( p) of tronic excitations in a metal: 
an excitation with momentum p, resulting from 
variation of the distribution function on(p' ), is 
equal to 

0£ (p) == ~ f (p, p') On (p') dT'. (1) 

The function f, which is connected with the ampli
tude of the mutual zero-angle scattering of the ex
citations [2], determines the propagation velocity 
of the zero-sound oscillations. 

Owing to experimental difficulties, zero sound 
has not yet been observed in He3• In the present 
note we discuss the possibility of producing zero
sound oscillations in metals whose conduction elec
trons also form a sort of Fermi liquid. In addition 
to general physical interest that attaches to this 
phenomenon, the study of zero sound in metals is 
attractive also because one can attempt to excite 
it by radio-frequency and optical methods. 

A specific feature of the electron Fermi liquid 
in metals is the presence of Coulomb interactions 
between the electrons and between the electrons 
and the ions. This creates a situation wherein 
there are no low-excitation-energy oscillations, 
accompanied by electron-density oscillations in 

!!!!:_+_il!:_!!!!:__~!!!!:_-J 
dt dp dr or dp - st• 

which we write for small deviations on from the 
equilibrium state: 

o6n + v o6n _ on0 v d6s_ --1- cEv r1no = O. (2) 
dl or de dr de 

We have neglected in (2) the collision integral, as
suming henceforth that the range of the excitations, 
due at low temperatures to the scattering of the 
electrons by the impurities or by the phonons, is 
large compared with the wavelength of the zero
sound oscillations. 

The term with B0E/8r, first introduced by 
Landau, where OE is given by (1), is the result 
of the interaction of the excitations in the Fermi 
liquid. For simplicity we assume for the time 
being that the function f(p, p') does not contain 
a dependence on the electron spins. 

E is the electric field, which accompanies the 
oscillations of the electron liquid in a metal. As 
already mentioned, the variation of the electron 
density should be equal to zero, for otherwise the 
oscillation frequency would be of the order of the 
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plasma frequency w0 ( w0 ,..., 1 e V in metals ) . In 
this region of frequencies, (2) is no longer valid. 
We shall determine the longitudinal part of the 
field E in (2) from the condition that the charge
density oscillations be equal to zero. The trans
verse part of the field E is connected with the 
transverse-current oscillations, which generally 
speaking cannot vanish, as will be shown presently. 
Let us change over to Fourier components in (2) 
and represent on in the form 

bn(p) = vanrJae, 

where v depends only on the position of p directly 
on the Fermi surface itself. For v we have 

wv - kvL (v) + ieEv = 0, (3) 

where L( v) = v + J f(p, p') v(p' )dS, and dS is the 
Fermi "surface element": 

(4) 

The expressions for the charge density p and 
for the current j are obviously 

p c=- e ~ vdS, j =- e ~vi (v) dS. (5) 

Let us eliminate E from (3), expressing the 
transverse field E1 in terms of the current with 
the aid of Maxwell's equations, and using the con
dition p = 0 for the longitudinal field Ell. For this 

ieEj_ [~~2 + ~ ~ (vL (v)) dS J = we2 ~ v_J(X)dS. (10) 

Thus 

v =X_ u 11 S u 11 i. (X)dS _ 4ne2v ~ S vJ_f (X)dS 

1/a S vL (v) dS w~ + c2k2 

where 

w~ = 4~e·~ (vi (v)) dS 

is of the order of the square of the plasma fre
quency. 

(11) 

Substituting (11) in (7), we arrive ultimately at 
the following equation: 

(12) 

It is seen from (12) that if the equation has a solu
tion, then the spectrum w = w ( k) has two linear 
parts at low and high frequencies, respectively. In 
fact, if c 2k2 « w5, (12) is transformed into 

wX- kvi (X) + (kv) ( L(v) ~ v) L (X) dS I~~ (vL (v)) dS 

=0, (13) 

purpose we introduce 

wv + ieEv =W X. 

that is, it has the form of an ordinary equation for 
(6) zero-sound oscillations in a Fermi liquid: 

We then have in place of (3) 

wX = kvL (v). (7) 
... 

We apply to (6) the operator L, multiply by v, 
and integrate over the Fermi surface. As a result 
we obtain 

-wji + ie~Ek ~. (v,L (v")) dS =we~ v,L (X) dS. 

For the longitudinal field E11 we obtain directly 
from the condition of vanishing of the longitudinal 
current 

ieEu =w ~vuL(X) dS ~~ v 11 L (v 11 )dS 

= w ~ v 11 L (X) dS I+~ vi (v) dS. (8) 

(To be specific, we confine ourselves to a crystal 
of cubic symmetry. ) 

From Maxwell's equations it follows that 

(9) 

hence 

wX - kv X- kv ~ F (p, p') X (p') dS = 0, 

where, however, the function F(p, p') is connected 
with f(p, p') in the following manner: 

F (p, p') = f (p, p') - (i (v) i' (v)) I~~ (vL' (v)) dS. (14) 

In this case, according to (9) and (10), h is 
proportional to k2, and consequently, as k- 0 
the transverse current vanishes, like the longitudinal 
one. The condition c 2k2 « w5 can be written in 
the form 

Together with the condition kZ » 1 ( wT » 1 ), it 
determines the region of radio frequencies in which 
the anomalous skin effect occurs in metals [5•6]. 

In the opposite limiting case c 2k2 » wij, the 
transverse current is not small, but, in accordance 
with (9) and (10), the transverse field is small. We 
can neglect in (12) the last term 

wX- kvi (X)+ (kv)i (v 11 ) ~ v 11 L (X) dS I+~ (vL (v)) dS 

= 0. (15) 
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This region of frequencies w0v I c « w « w0 cor
responds to the infrared part of the spectrum [s]. 

So far we have simply assumed that Eqs. (13) 
and (15) have a solution. Let us now discuss the 
requirements for making this possible. Even in 
an isotropic Fermi liquid (see, for example, [3]) 

it is impossible to obtain a solution for zero-sound 
oscillations in general form. One can see, how
ever, that this solution must exist if the function 
f(p, p') is sufficiently large and positive. The 
same holds true in the anisotropic case, too. 

In the absence of anisotropy, f(p, p') depends 
only on the angle between the vectors p and p' and 
can be expanded in Legendre polynomials. In the 
general case we can write instead 

f (p, p') = ~ "AJi (p, p'), (16) 

where fi(p, p') are functions which transform in 
each variable in accord with the i-th irreducible 
representation of the crystal symmetry group. To 
be specific, we assume that we are dealing with 
the Oh group. Let one of the components in (16) 
be large, "-io- oo. For simplicity let i0 -.e- Fm 
(see [7] ), that is, fi0(p, p') and v(p) transform 
in accordance with different representations. Then 
Eq. (13), for example, assumes the form 

(ro- kv) X- (kv) {'A;,~ f (p, p') XdS 

- ( v ~ v') XdS / + ~ v2dS } = 0. (17) 

Making the substitution X = ( kv) xl ( w - kv), we 
see immediately that x has the form 

X= Xt,- vc, 

where the unknown function Xio transforms in ac
cordance with the representation i0, and c is 

c = ~ vXdsj ~ ~ v2dS. 

If "-io - oo , then it is obvious from (17) that w 
» kv. Therefore 

.5....\ v2dS = (' v(kv) dS 
3 .\ ~ ffi - (kv) X,-, · 

(18) 

(19) 

For our purposes it is convenient to choose for 
i0 a representation such that when v ( kv) I ( w - ( kv)) 
is expanded in kvlw, it appears first only in terms 
of sufficiently high order in kv I w. Then c will be 
small. For example, the representation of F 1g in 
the expansion of v(kv)l(w- (kv)) enters, as can 
be readily verified, with a factor ( kv I w )3• Then 
c'""' v-1(kvlw )3 xF1g and we can neglect the term 
with c in (17). 

We obtain for the determination of Xio an inte
gral equation of the Fredholm type: 

(20) 

which, according to the general theory, has posi
tive eigenvalues w2 '""' k21A.i0• In fact, when "-io is 
sufficiently large, the variation in energy upon de
viation from equilibrium is determined by a term 
quadratic in the energy 

6£ c-.::> 'A;,~ f;, (p, p') v (p) v (p') dS. 

The oE should be positive (from stability consid
erations ) , from which it follows that the kernel of 
the integral equation (20) is positive definite. Of 
course, this analysis applies also to Eq. (15). 

Thus, if the function f is sufficiently large, the 
equation for the zero-sound oscillations must have 
a solution. The question therefore reduces to 
whether this quantity is sufficiently large in the 
given specific metal. Unfortunately, however, no 
information whatever is available on the function 
f in metals; it is clear from general considera
tions that the value of this function is of the order 
unity. 

The foregoing pertains to zero sound with arbi
trary direction of propagation. If we choose as the 
propagation direction one of the preferred direc
tions in a crystal, then zero sound, subject to some 
limitations on the Fermi surface, can exist also for 
a positive function f(p, p') which is as small as 
desired. To prove this we turn to the equation for 
zero-sound oscillations in the form (3): 

(w- kv) v- kv ~ i (p, p')vdS + cv = 0. (21) 

We consider first the simpler case of frequen
cies in the infrared region vw01c « w « w0• As 
was already noted above, in this limit the vector 
c, which is proportional to the electric field, has 
only one longitudinal component c11, which should 
be determined from the condition that the density 
oscillations be equal to zero. The transverse cur
rent is in this case different from zero. 

If f is very small, then, as can be seen from 
(20), v can be large only at those points, at which 
w - kv is small. The latter denotes that the prop
agation velocity u of the wave is close to the ve
locity of the electrons at some point on the Fermi 
surface 1>. In the vicinity of this point, kv has a 
maximum 

kv = (kv)0 {1 - [a11 (0- 00) 2 + 2a12 (0- Bo) (<p- <p0) 

+ a22 (<p - <po) 2l}, 

where (kv )0 is the value at the point p0, while the 

l)Obviously, I u I is always larger than I v 1. Otherwise the 
excitation corresponding to zero sound would attenuate rapidly 
because of decay into an electron and a hole. 
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quantity in the square brackets is a positive-defi
nite quadratic form, with the function v having 
near p0 the form 

v (p) = Al(ro - kv). (22) 

If the vector k has an arbitrary direction and 
does not lie on any of the symmetry elements of 
the crystal, then, generally speaking, only one 
maximum of the quantity kv exists. The condition 
for the absence of density oscillations immediately 
yields, with logarithmic accuracy, 

bp = - hek:t. LA (p0) = 0, 
o Vo 

L - I canst (22a) 
- n (I) -kvo ' 

where ( kv )0 = kv0; h0 is the Gaussian curvature 
of the Fermi surface at the point p0: dS = h-1dQ; 
a is a numerical coefficient that depends on the 
logarithmic integration. 

From (21) it follows, with the same accuracy, 
that 

We thus obtain A(p0 ) = c = 0, and there are no 
oscillations for arbitrarily small f. 

Oscillations with arbitrarily small f are pos
sible only if k lies on some one of the symmetry 
elements of the crystal (or close to it). Then 
Eq. (21) itself becomes invariant relative to the 
symmetry group of the vector k. In this case, as 
is well known, the equation has several solutions, 
each of which transforms in accordance with some 
representations of its symmetry group. Let us 
consider for simplicity the symmetry plane ( Cs 
group). It has two representations, A' and A" 
(see C7J for the notation). The components of 
the vector lying in the plane transform in accord
ance with the first representation, and the perpen
dicular component transforms in accordance with 
the second. 

Let us denote the two solutions by v A' and v A"· 
The equation for these solutions has the form 

(ro - kv) v.l' - kv \ fxVA·dS = cv 11, ,, 

(ro - kv) v A" - kv ~ rl"v A''dS = 0. 

The first equation must be solved with the condition 
op = 0, while the solution of the second equation 
satisfies this condition by definition. However, 
neither equation has solutions with arbitrarily 
small f if the maximum of kv is itself in the sym
metry plane. In the former case this is connected 
with the need for satisfying the additional condition 
(22a), and in the latter case with the fact, which 
can be readily verified, that any function fi which 
transforms in accordance with a non-unitary rep-

resentation vanishes at a point lying on the sym
metry element. 

Solutions will exist if the maximum of kv does 
not lie on the symmetry plane. Then kv has two 
identical maximum values at the points P1 and p2. 
In the vicinity of these points v A" has the form 

and A2 = -A1 by virtue of the symmetry. Substi
tuting this in (21), we obtain with logarithmic ac
curacy 

A1 = ah.~1L (f~·- f~") A1, 

where fik = f(pi, Pk). (We recall that by virtue of 
the symmetry f22 = f11 and f12 = f21 .) A solution of 

A" A" this equation exists when f11 - f12 > 0, and has 
the form 

A"' A"' ro =kv0 +const.kexp{-hofa(/11 -/12)}. 

It is easy to verify in exactly the same way that a 
solution of the type A' with the additional condition 
op = 0 exists when f{f - fl\' > 0. 

An analogous situation remains at infrared fre
quencies for the vectors k that lie on any symmetry 
element. Thus, in a crystal with arbitrarily small f 
the zero-sound of infrared frequency can propagate 
along directions that are close to all the symmetry 
elements, provided that the maximum of kv does 
not lie on these elements. 

In the case of radio frequencies it is necessary 
to take into account not one but three supplementary 
conditions (j = 0 ). Without repeating the perfectly 
similar considerations, we cite the results. Oscilla
tions at arbitrarily small f are possible in this case, 
too, if k lies near one of the symmetry elements, 
and the maximum of kv does not lie on any of the 
symmetry elements. In this case oscillations of all 
types are possible along the three-fold and four-fold 
axes (corresponding to the representations of the 
C3v and C4v groups ) . Only oscillations of type A 2 
are possible along the two-fold axis (group C2v). 

The foregoing analysis shows that zero sound 
must be sought predominantly along directions lying 
on the symmetry elements of the crystal. The prob
ability of finding it is, roughly speaking, 50 per cent. 

So far we have left out everywhere the spin
dependent terms. Assume now that we have in place 
of (1) 

'\' ',d3p' oe = ) f (p, p ) on (2:n:la , (1') 

where the function 

f (p, p') = f (p, p') + ~ (p, p') a a' (23) 
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has an exchange part t(p, p' ). (Here a are Pauli 
matrices, while o€ and on in (1) are two-row mat
rices with spin variables. ) 

In place of equation (3) we obtain 

rov + ieEv - r (kv) (Ha) 

(3') 

(in a magnetic field <5E = yHa ), which can be written 
in the form of two equations for the two components 
of the function v: 

We have 

rov0 + ieEv- kv [v0 + ~ f (p, p')v~ dS] = 0, 

w11 - y (kv) H - (kv) [ v1 + ~~ (p, p') v;dsJ = 0. (24) 

The oscillations v0 and v1 are generally speak
ing coupled with each other, since the fields E and 
H, in accordance with Maxwell's equations, are ex
pressed in terms of a current j, equal to 

( 25) * 
" 

v0 =X- v 11 ~ v 11 L (X)dS j ~ ~ vL(v) dS 

- 4n . { e2(vj_\v~)f(X)dS +if1ec(vj_ ('[kY]dSlJ, 
~+~ ) ~ 

v 1 = y - i 4ncr (kv) ~ {e [kv] L (X) + if1C [k [kY l]} dS. 
w (w~ + c"k2) • (30) 

Estimates show immediately that v1 ::::; Y, and that 
the cross terms can be neglected, since their or
der is kwij/mv(wij + c2k2 ). Thus, the equation for the 
spin oscillations has in the entire frequency interval 
the usual form: 

rov1 - (kv) L (v1) = 0. (31) 

An analysis similar to that of the spinless oscil
lations above, shows that (31) has a solution both 
for very large values of t(p, p') and for small ones. 
Moreover, in the latter case the solutions exist also 
for arbitrary direction of k. Indeed, since unlike 
(21) no additional conditions are imposed on the so
lution of (31), in order to obtain a solution for small 
t it is sufficient to have only one point Po at which 
the function kv has a maximum. 

Substituting in (31) the function v1 in the form 
(22), we obtain, with logarithmic accuracy, 

(Here and below we use the symbols L( v0 ) and L( v1 ) 
ro- kv0 ~ kvo exp {- a/~0 }, for the operators in the square brackets in the first 

and second equations of (24), respectively.) We shall 
now show that this coupling is very weak and there
fore zero sound not accompanied by spin oscillations, 
and spin waves of a special kind, can propagate in 
a metal independently[1, 3J. 

For this purpose we transform (24) in the same 
manner as in the derivation of (12) above. We put 

rov 0 + ievE = roX, rov1 - y (kv) H =roY. (26) 

Then we have in place of (24) 

roX = kvL (v0), roY = (kv) [ (v1). (27) 

With the aid of (26), using the definition (25) for 
the current and Maxwell's equations, we can express 
the intensities of the fields E and H in terms of in
tegrals of X and Y. For the longitudinal electric 
field E11 the previous expression (8) holds true. 

In place of (10) we obtain 

ieE. = - 4nw \ {e2vj_L (X) + if1Ce [kY]} dS. (28) 
-'- w~ + c2k2 ~ 

In addition 

H = (c/ro) [kE]. (29) 

After substituting (29), (28), and (8) in (26) we obtain 

* [ k v,1 = k x v, 

where to= t(p0, Po) > 0 should have the antiferro
magnetic sign. Therefore, in our opinion, spin zero
sound oscillations should exist in practically any 
metal. 

Without citing the corresponding formulas, we 
note that in a weak external magnetic field the law 
governing the dispersion of both spin and spinless 
oscillations begins with a certain constant frequency, 
proportional to the magnetic field and dependent, 
generally speaking, in a rather complicated manner 
on the function f and on the direction of the vector 
k. Unlike the isotropic case [4], it is impossible to 
obtain simple formulas here. 

Let us proceed now to the question of the possi
bility of observing zero sound. These oscillations 
are connected with the appearance of electromag
netic waves propagating in a metal, so that it is 
most natural to attempt to excite them with the aid 
of electromagnetic radiation. The excitation mech
anism will be essentially different for the radio and 
for the infrared frequency intervals. The case of 
low frequencies is less convenient in this sense. We 
have already mentioned that the current in a zero
sound wave is very small in the case of long waves, 
and therefore these waves are weakly excited by the 
electromagnetic field. If we deal with the excitation 
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of a spinless wave, then in the radio-frequency re
gion the current in such a wave is proportional to 
the square of the frequency. 

In a spin wave (31), the current is proportional 
to k for small k- 0. It must be borne in mind 
that in this case a contribution is made to the cur
rent (25) not only by the part with Vt. but also by 
the spinless part v0, which accompanies, in accord
ance with (30), the v1 oscillations. Indeed, although 
v0 is small in such a wave, 

k w2 
'V -~- o Vr 

o mv w~ + c'k' 

it makes in the region wa » c 2k2 a contribution of 
the same order of magnitude to the current. 

Let us consider normal incidence of radiation 
on a semi-infinite metal. In order to determine 
exactly the amplitude of the zero-sound wave pene
trating into the metal, it is necessary to solve a 
rather difficult electromagnetic problem, which is 
further complicated by the presence of anisotropy. 
One can, however, estimate rather crudely the 
order of magnitude of the transmitted radiation. 
For this purpose we note that the zero-sound wave 
is formed at distances on the order of the wave
length A"' v/w. In the radio-frequency region, re
flection of radiation from the surface of a pure 
metal is accompanied by anomalous skin-effect, 
where the field inside the metal decreases rapidly 
with distance from the surface. The characteristic 
depth of penetration is o «A "'v/w. The amplitude 
of the transmitted wave can be estimated from the 
condition that the field in the wave becomes com
parable with the field of the skin layer at distances 
on the order of A. Inasmuch as at distances r » o 
the field in the skin layer decreases as H - H0( o/r) 
where H0 is the field on the surface, we have 

H),- H 0 (<'I/A) 2 - H 0 (c,'v) 2 (<'1/Ao)\ 

where A is the wavelength of zero sound and Ao is 
the length of the corresponding electromagnetic 
wave in vacuum. This, of course, is a very small 
quantity. 

It is therefore much more convenient to excite 
zero sound in the region of the infrared spectrum. 
Even from the preceding estimate we see that if 
A - o the field in the wave becomes of the order of 
the field on the surface. Let us discuss this case 
in greater detail. At these frequencies the field in 
the zero-sound wave is small in the sense that its 
influence on the particle-number oscillations can 
be neglected. In this case, however, the current 
does not vanish. For example, in the spin wave,* 

*rot = curl. 

j = - flC rot~ '~JdS, H = - 4rt~-t ~ v1dS. 

v1 itself satisfies the equation 

- iwv1+vzdL (v1) /dz = 0. (32) 

In infinite space this equation has sinusoidal solu
tions with a dispersion law w = uk. The solution 
of (32) in a bounded metal depends on the boundary 
conditions. In the case of specular electron reflec
tion from the metal surface the sinusoidal solution 
can be used directly, after which it is easy to deter
mine the transmission coefficient 

D = E0/H 0 = wjck- vjc. 

Of course, reflection from a metal surface is 
always close to diffuse [5•6]. The solution of (32) 
goes over therefore into a sinusoidal wave only at 
distances on the order of the wavelength, but the 
transmission coefficient, naturally, has the same 
order of magnitude. The same pertains to the spin
less oscillations described by equation (15). 

We note, however, that with zero-sound oscilla
tions impossible in the infrared region the field 
attenuates at distances on the order of o - c/ w0 

» vI w ( o "' 10-5 ) and the reflection coefficient R 
is very close to unity [6], with 

1- R ~vic. 

To verify the existence of zero-sound waves, it 
would be most convenient to study indeed the pas
sage of radiation through a plate of thickness d 
» c/ w0• In the infrared region, zero-sound waves 
would lead to transparency of such plates. The frac
tion of the transmitted radiation would be of the or
der of v2/c2 "' 10-3-10-4, and would be independent 
of the thickness of the plate. Unfortunately, this is 
true, of course, only so long as the dimension of 
the plate d is small compared with the mean free 
path of the electrons in the metal. Actually, two 
mean free paths enter into the problem: the damp
ing of the spinle.ss oscillations is characterized by 
the ordinary electron mean free path l, which is 
involved in the conductivity in a constant field; in 
addition there is the mean free path ls needed to 
flip the electron spin. 

At infrared frequencies l"' v/®"' 1o-5-1o-6, 

where ® is the Debye temperature. To observe 
spinless zero sound it is therefore necessary to 
satisfy the condition v/® ~ d » c/w 0• This is 
a very difficult condition even for a substance with 
a relatively low Debye temperature. 

For spin zero sound, the conditions of observa
tion are much more favorable. One can expect that 
in this case the non-spin mean free path ls = al 
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(with a » 1) would be important here, with a 
determined by the smaller of the two quantities, 
Z (the charge of the impurity) or ( c/v )2 (the latter 
is connected with the fact that the spin flip can be 
caused by two factors: exchange interaction, which 
is of the order of z-1 compared with the non-ex
change interaction, and the spin-orbit interaction, 
which is of order (vIc) 2 ). The corresponding limi
tation on the plate thickness are then weaker 

av.'8 ~ d ~c/w 0 • 

In the region of lower frequencies, the limitations 
connected with the mean free path are much weaker, 
but the transmission coefficient decreases much 
more significantly. From the foregoing we canes
timate that the coefficient of transmission through 
the plate has in the radio-frequency region an order 
of 2> (v/c)2(o/A.)4 ,... (c/v)2(o/A.0 ) 4• At the same time 
the mean free path in this region is proportional to 
l,... v®/w3 [BJ, if the scattering by the impurities can 
be neglected. 

2)It might appear that, on the other side of the plate, the 
fraction of the transmitted radiation would be reduced by an
other factor (o/A)4 • This d~es not occur, since there is no 
solution to the problem of the anomalous skin effect for field 
that increases with increasing depth in the metal. 

Zero-sound oscillations could also manifest them
selves in many other effects, such as the line width 
in electron diffraction, the characteristic losses of 
charged particles upon passage through a metal plate 
in a magnetic field, etc. It seems to us that it would 
be very interesting to observe this phenomenon in 
metals. 

1 L. D. Landau, JETP 30, 1058 (1956), Soviet Phys. 
JETP 3, 920 (1956). 

2 L. D. Landau, JETP 35, 97 (1958), Soviet Phys. 
JETP 8, 70 (1959). 

3 A. A. Abrikosov and I. M. Khalatnikov, UFN 66, 
177 (1958), Soviet Phys. Uspekhi 1, 68 (1959). 

4 V. P. Silin, JETP 35, 1243 (1958), Soviet Phys. 
JETP 8, 870 (1959). 

5 G. Reiter and E. Sondheimer, Proc. Roy. Soc. 
A195, 336 (1948). 

6 V. L. Ginzburg and G. P. Motulevich, UFN 55, 
469 (1955). 

7 L. D. Landau and E. M. Lifshitz, Quantum 
Mechanics, Pergamon, 1958. 

8 A. B. Migdal, JETP 34, 1438 (1958), Soviet Phys. 
JETP 7, 996 (1958). 

Translated by J. G. Adashko 
264 


