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In the case of short-range forces the cross sections for inelastic transitions near the thresh
old (provided that one particle is charged in the final state) depend on the energy as ki1f+ 1 

where kf and lf are the momentum and the angular momentum in the final state. [11] If lf = 0 
the cross sections in the old channels at the threshold energy possess a singularity of the 
peak or step type. [G] It is shown that upon excitation of the hydrogen atom by electrons these 
laws are violated because of the strong polarization interaction between the electron moving 
away and the hydrogen atom in the excited state. The cross sections near the threshold oscil
late. The inelastic cross sections tend to zero only at energies of the order of the relativistic 
splitting between the levels. 

INTRODUCTION 

FoR a given total angular momentum L the cross 
sections which we are considering are given by 

QL (i - f) = ~ 2L + 1 I T . 12 (1) k2 2( + 1 fr I ' 

where l' is the angular momentum of the atom in 
the initial state and ki is the momentum of the in
cident electron. If the interactions of the particles 
in the channels attenuate exponentially with the dis
tance, then the T matrix can be represented in the 
form ( cf. [1]) 

(2) 

where k and l are the diagonal matrices of the 
momenta and the angular momenta in the channels, 
and M is the symmetric matrix which has no 
branch points as a function of the energy. 

Near the threshold energy Et, M can be ex
panded in powers of E - Et. Confining ourselves 
to two terms, we obtain the effective-radius ap
proximation which has been previously investigated 
for eH scattering. [2] Confining ourselves to the 
first term only, we obtain the law of the threshold 
behavior of the cross sections 

(3) 

which follows from the left-hand factor in (2), and 
the existence of a peak or step for lf = 0, which 
follows from the numerator in (2). 

Equation (2) breaks down for eH scattering; 
this is a direct consequence of the existence of the 
linear Stark effect in the hydrogen atom. 

Because of the degeneracy of the excited states 
of hydrogen with respect to l' the hydrogen atom 
in the excited state takes on, in the field of the 
scattered electron, a constant dipole moment which 
is independent of the distance of the electron from 
the atom. The interaction energy of the electron 
with the dipole moment depends on the distance of 
the electron r as 1/ r 2• It is added to the centrifu
gal energy l (l + 1 )/r2, and a term A. (A.+ 1 )/r2 with 
nonintegral A. appears in the Schrodinger equation 
instead of the usual centrifugal term. For small L, 
A. is complex. Expression (2) is replaced by an
other expression in which nonintegral (or complex) 
A. appear instead of l. 

1. FUNDAMENTAL EXPRESSIONS 

Let us obtain the analog of (2) for eH scatter
ing. To find the cross sections it is necessary to 
solve a Hartree-Fock type system of equations. [a] 

(4) 

with the following boundary conditions at infinity: 

•h ( ) 1 -i(kr-7el/2) 1 i(l:r-"1•2 S (5) 
'~' r ~ fk c - yi/ ' 

T = 1- S. (6) 

In (5) 1/J is a quadratic matrix whose columns 
are different linearly-independent solutions 
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::£ = d2 jdr 2 -l (l +I) jr 2 + k2 • (7) 

The matrix of the potentials V contains terms 
of two types. First, terms which decrease expo
nentially with increasing r, including all exchange 
terms. Second, multi pole terms of the type {3/rs. 
Let us choose r 0 such that for r ;::: r 0 we can as
sume all exponentially decreasing terms in V and 
all rows in 1/J corresponding to closed channels 
(with the exception of those whose threshold we 
are considering t>) to vanish. We assume that an 
exact solution of the system (4) is known in the 
region r ::S r 0 and investigate the matching of this 
solution with that for r ?: r 0• For r ?: r 0 the sys
tem (4) will be of finite order, owing to the vanish
ing of the functions corresponding to the closed 
channels. The matrix of the potentials V will con
tain only multipole terms. These will include di
pole terms - Ot/r2 connecting channels with equal 
k2• The remaining terms will either themselves 
decrease faster than 1/r2 or will be dipole terms 
d/r2 connecting channels with different k2, and will 
therefore contribute to the polarization potential 
which decreases faster than 1/r2•2> In order to 
explain the role of the terms Ot/r2, we discard 
for r ?: r 0 all the remaining terms which decrease 
much faster. Then, for r ?: r 0, (4) reduces to 

From (10) we can obtain the more general solution 
of (8) in the form 

1¥ =A(~! -~OS'). Vk Vk. , (11) 

Multiplying (11) from the right by exp (- hrA./2) A-t x 

exp ( hrZ/2), we obtain a solution which for large r 
behaves like (5) with 

The matrix S' can be found by smoothly matching 
(11) at r = r 0 with the solution of (4) in the region 
r ::S r 0• It is convenient to take the matching con
dition in the form of a matrix equation which is 
satisfied at r = r 0 by an arbitrary solution of (4) 
in the region r ::S r 0: [s] 

d "¥ (ro) = R fo dr"P (r) 1r~r0 ' (13) 

The function (11) must also satisfy Eq. (13). 
Substituting (11) in (13), we express S' in terms 
of R: 

S' [ e-ir.<'-+'!,) - k-).-•;,Mk-1.-'f·]-l 
= sin :n (A + 112) 

(14) 

(8) where 

Here Ol is a symmetric matrix which connects 
only channels with equal energy. Its diagonal 
elements are zeros. The.1values of Ol are cited 
in Seaton's paper. [4] 

A more general solution of Eq. (8) can be found 
(cf. [4J). We introduce the matrix A which diago
nalizes l (l + 1) + Ol: 

A -l [l (l -:- I) + a] A = a = 'A ('A + 1), (9) 

where a is a diagonal matrix. Then 1/J = Acp, 
where for cp we have two systems of independent 
solutions: 

I = - i V nkr ;2 H~~·;, (kr) ,.__,--;;;; e·-i(kr-r.l,f2 ), 

0 = i V nkr/2 H\:~•;, (kr) ~- f'<kr-"'- 12). 
T-+00 (1 0) 

!)Channels whose threshold is being considered are called 
new, while open channels below the threshold are referred to 
as old. 

2lThis is strictly true in the adiabatic approximation. If an 
electron is at rest at a distance r from an atom in state a, 
then its energy in the second approximation is 

~ (d~b) 1 ( d~a) _ ~· 
b7"'a r E a - E b r r 

Dipole terms connecting channels with equal energies 
should not appear here, and must therefore be considered 
separately. 

M =- k2Ml J -1.-'/, (kro) ' 2 
sin :n (1. + 1/2) Jl.+'/, (kro) 1 :n -J-1_~-··,-(-kr-0 )-J--,.-;.-+'-f,-(k-ro-) 

-L- . ' R ~---
2 e-+'/, [ Jl+'! (kro) -- ]-l k1-+", 

' :n 1;,+'/, (kro) J;,+'/, (kr0 ) - J;.+'!, (kr0) ' (15) 

J;,+", (p) = :i-JI.+'', (p) -:- p :, h~•, (p), (16) 

R=A-1RA. (17) 

The values of k,\+ 1/ 2J_A._112 (kr0 ), k-A.-1/ 2 x 

h+1/2 ( kro), and k-A.-112 J~ + 112 ( kr0 ) as functions 

of k2 have no singularities for finite k2• The 
matrix R as a function of the energy has only 
simple poles on the real axis, since according 
to [s] 

(18) 

For this reason it is possible to expand the sym
metric matrix· M as a function of the energy near 
the threshold Et in powers of E - Et (if I E - Et I 
is less than the distance from Et to the nearest 
pole of the matrix M ) . 

Substituting (14) in (12) and (6), we find 

T = I - eir.t:~Ae-i")A - 1ei"l'2 

-+ /"1/2 Ae -ir.l./~ kl.+'h 
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(19) 

Expression (19) is the analog of (2) for eH scat
tering. 

In deriving (19) we have neglected the relativ
istic splitting LlE of the energies of the new chan
nels. If this splitting is taken into account, the 
functions (10) will be solutions of (8) only in the 
region r « r 1 where the difference between the 
terms l ( l + 1 )r-2 for different channels is consid
erably larger than LlE: 

r~ .~ 2 (L + 1)/ ~e. (20) 

Eq\lation (12) remains in force if it is possible 
to replace the functions (10) at the boundary of this 
region by exp [ 'f i ( kr - 11" A./ 2 ) ]. The condition for 
the latter is: 

(21) 

where k is the momentum of the electron in the 
new channels. From (20) and (21) follows the con
dition for the applicability of (19): 

21 k'2 1 /~e ~ L + I. (21') 

2. BEHAVIOR OF THE CROSS SECTIONS NEAR 
THE THRESHOLD 

Let us consider the range of energies near the 
threshold, where condition (21') is fulfilled. The 
first term in (19) does not depend on the energy 
and differs from zero only for transitions between 
degenerate states. It is caused by the constant 
phase shift in the asymptotic behavior of the Hankel 
functions of the type exp [ i( kr -7r.A./2 )] relative to 
exp [ i( kr -7rl/2 )]. 

The threshold behavior of the cross sections 
depends on the magnitudes of the eigenvalues 
a = A. (A.+ 1) of the matrix l ( l + 1) + a for the 
new channels. If among the a there are no nega
tive values less than - %. then all 

(22) 

are real and the excitation cross sections of all the 
new channels near the threshold depend approxi
mately equally on the energy as 

(23) 

independently of the angular momenta in each of 
the degenerate channels. A.min is the smallest A. 
for the new channels. If -% < A.min < 1/ 2 all the 
cross sections of the "old" channels will have 
discontinuities-a peak or a step, the shape of 
these being, however, different than in the paper 
of Baz'. [6] Whereas in [6] the peak or the step 
are produced by the tangency of two parabolas 

( Et - E ) 1/ 2 ( E < Et) and ( E - Et) 112 ( E > Et) at 

E = Eto here the curves ( Et- E )A.min+1/ 2 and 

( )A.mi"n+ 1/2 E - Et · are tangent. 
If the a include values smaller than - %. the 

behavior of the cross sections changes consider
ably. The corresponding A. +% = iv is an imagi
nary number I k'A.+ 1/ 2 1 = 1, and no element of the 
T matrix tends to zero at the threshold. At the 
same time all the cross sections near the thresh
old are different from zero. Their threshold be
havior is affected by the term which enters in (19) 

k'21.+I = exp (2iv ln k'), 

which oscillates as a function of In k'. This gives 
rise to oscillations of all cross sections both above 
and below the threshold. 

If only one a< -%. then the cross sections 
near the threshold take on equal values for E for 
which 

v In IE -Et I= 2nn + const (24) 

both above and below the threshold (with different 
constant terms; n is an integer ) . 

The oscillations of the cross sections below the 
threshold are caused by the presence of an infinite 
set of bound states in the attraction field, which 
at large distances is of the form a/r2 with 
a< - 1/ 4 [ 7]. 3> The energy spectrum of these 
states for small Et - E is of the form (24), inde
pendent of the behavior of the field at small r. To 
each of these bound states on the cross section 
curves there corresponds, in accordance with [B], 

a resonance maximum (and minimum). If the 
matrix elements of the M matrix connecting the 
old and new channels are small, then the resonance 
maxima are narrow and have the shape given by the 
Breit-Wigner formula. Between neighboring reso
nances there exists a plateau where the cross sec
tions change little. The oscillations of the cross 
sections above threshold are caused by the oscilla
tions of the elastic scattering cross sections in the 
field which has at large distances the form a/r2 

(a< -% ), since in accordance with Levenson's 
theorem [9] at small energies the phase o tends 
to n7r, where n is the number of bound states. 

3. BEHAVIOR OF THE CROSS SECTIONS NEAR 
THE EXCITATION THRESHOLD OF THE 2s 
AND 2p STATES 

In this case the eigenvalues of the matrix 
l ( l + 1 ) + a corresponding to the new channels 
are ( cf. [4]) 

3>Because of condition (21') the number of oscillations in 
the cross sections is finite, since (24) is not applicable when 
I E - Et I - (L + 1)~ e: and smaller. 
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a0 = L (L + 1), a+= L (L + I)+ I± Y(2L + 1)2 + 3o. 

(25) 

If L = 0, there is no value a 0. For L :.s 2, a_ < - Y4. 
Therefore, all partial cross sections QL with L 
:.s 2 near the threshold oscillate. For L :::::: 3 all 
a are positive, !..min > %. The cross sections 
QL( Is - 2s) and QL( 1s - 2p) near the threshold 
tend to zero following the law (23). The elastic 
scattering cross section QL( 1s -Is) has no dis
continuities of the peak or step type at the thresh
old. 

When L :.s 2 the cross sections for transitions 
between the degenerate states 2s and 2p oscillate 
near the threshold. For L :::::: 3 they tend to 

QL (.-f) = ~ 2L + 1 I T(O) 12 (26) 
0 l k'2 21; + 1 ft ' 

where 

is independent of the energy. Utilizing (25) and the 
explicit expressions for the matrix A, we find that 
for L » 1 

Q~ (2s- 2p) = 72 ;, [++ 0 U,)], 
Q~ (2s- 2s) = 648 k~ [ 1" + 0 ( 1.)] · (27) 

Summing QL over L, we obtain the total cross 
sections 

Q (i -f) = k~ Q (i - f). (28) 

Making use of (28) and (2I') for Q( 2s- 2p) for 
k' 2/ .6-E »I, we obtain Seaton's formula[to] 

[ 4k'2 J Q (2s- 2p) = 72 In L\s -p. · (29) 

When k' 2 I .6-E » I, the values of Q ( 2s - 2s) and 
f.L near the threshold are almost constant, since the 
sum Qt with L :::::: 3 is considerably larger than 
the oscillating QL with L :.s 2. With increasing 
principal quantum number n, the matrix elements 
of the dipole moment connecting the new channels 
increase, and the number of angular momenta L 
for which the cross sections QL oscillate in
creases. For n = 3 the cross sections oscillate 
when L :.s 4. 
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