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The basic equations of anisotropic relativistic magnetohydrodynamics are formulated. The 
problem of the attenuation of weak magnetic-sound waves is considered on the basis of these 
equations and the relation between the attenuation coefficients of weak magnetic-sound waves 
and the width of weak shock waves is derived. 

WITH the decrease in density of conducting ma
terial and the increase in the intensity of the mag
netic field, it can happen that the Alfven velocity 
will be of the order of the light velocity. In this 
case, fast magnetic-sound waves which are prop
agated in a nonrelativistic medium become rela
tivistic. Therefore, the development of the rela
tivistic theory of magnetic-sound waves is of im
portance. 

In the present work, the attenuation of magnetic
sound waves will be considered in relativistic mag
netohydrodynamics; it is kept in mind here that the 
material located in the magnetic field is aniso
tropic. The width of weak shock waves will also 
be calculated. 

1. First of all, let us write down the basic equa
tions of relativistic magnetohydrodynamics with 
account of dissipative processes in the anisotropic 
medium. These equations were previously obtained 
for the isotropic case, [1] and now we need only 
generalize them. In the generalization, it is nee
essary to replace the anisotropy condition of [1] 

by the condition that the resultant equations will 
transform in the nonrelativistic limit to the cor
responding equations of nonrelativistic anisotropic 
magnetohydrodynamics, [2] and, for symmetric 
form of the dissipation tensors, the equations will 
transform into the corresponding equations of rela
tivistic isotropic magnetohydrodynamics. These 
conditions are satisfied by the equations 

ariklaxk = o, 
an,.;ax, = 0, 

aFjaxk = 4rrc-1j 1, 

aF,k/ax1 + aFkzfax, + aFu!axk = 0, 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1. 6) 

a fl. 
- T (Aik + U;UtAtk + UkUtAi/ + U;UkUsUpAsp) axk T ' 

(1. 7) 

v,. = - (A 1k + u,.u1A 1k) (jk- ukcpo) 

-(Kik + u,u,Ktk + ukutKil + UiUkUsUpKsp) a~ ~ '(1. 8) 
k 

Tik '== - (IJikml + UiUplJpkmt+ UkUplJpiml + U!UplJikmp 

+ UkUsU/UplJsipm + UiUkUsUplJspml + UiUsU!UplJskmp 

a urn + UiUkUsUtUIUpl]stmp) ax/ ' (1.9)1) 

F; = c-1 F,kuk. (1.1 0) 

In these expressions Tik is the energy-momen
tum tensor, ni is the 4-vector of matter flux den
sity, Fik is the 4-tensor of the electric field, ji 
is the 4-vector of the electric current density, p 
is the pressure, w is the enthalpy of a unit of char
acteristic volume of the material, Ui is the 4-
velocity, n is the number of particles per unit 
volume, c is the velocity of light, Rik. Aik· Kik 
7Jiklm are 4-tensors associated with the dissipa
tive properties of the material, Po is the density 
of electric charge in the characteristic system, 
J1. is the relativistic chemical potential, and T is 
the temperature. 

The system (1)-(10) transforms into the cor
responding system of equations of isotropic rela
tivistic magnetohydrodynamics [1] for the case 

{jik nY.u8ik K Xn (nT\~" 
Rtk = ccro, Aik = CW, ik = 7 w) Uf!?, 

I]ikml =Cflo(0im0kt + 0u 0km) + C (s-fflo) 0ik0tm" (1.11) 

1lit is also assumed here that 1Jiklm has the following 
symmetry property: 1Jiklm = 1Jkiml = 1]kilm· 
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2. For an investigation of the attenuation of weak 
magnetic-sound waves, we shall work in a system 
of coordinates x, y, z attached to a fixed medium. 
The x axis is directed along the external magnetic 
field H0, while the y and z axes are so chosen 
that the component kz of the wave vector is equal 
to zero. The waves are assumed to be weak. 
Therefore the quantities ua, Ea, ha = Ha- H0<'>xa 
(a= x, y, z ), p' = p -p0, w' = w -w0, etc., are 
small parameters (the zero index here refers to 
the unperturbed medium). The dissipation coeffi
cients are also assumed to be small. Neglecting 
all terms above second order in these small quan
tities, we shall look for a solution of the system 
(1.1)-(1.10) in the form f = f0e-i(wt-k·r>. The 
homogeneous linearized system of equations ob
tained in this manner has a non-trivial solution 
when 

2 ( w2 ) w2 w• w2 

- U 1 - c2k2 · c2k2 + c"k4 - c~ c2k2 

• w {Hocc~B [( w" ) '] + tCk 4i/l 1- c'k' A 2 - Az . ( w' ' Sill 6 + 1 - c'k2 } 

. w" 
x sill 6 cos 6 + Nyy cos2 0] + ~k3 (N xx + N yy) 

cw 

Here 

H 
u = --=· 

f4nw 
ca 

~zz = 4Jt Rzz, 

(2.1) 

Vo 

Co= c' 

v0 is the velocity of sound, e is the angle between 
k and H, 

N a.~ = k;Y)xa.!lx + kxky (Y)ya 13x + Y)xa!ly) + k~Y)ya.~y 
(a, ~ = X, y, z), K = Kxxk; + Kuuk!, 

On the basis of Eq. (2.1), we get the following 
for the attenuation coefficient, in linear approxi
mation of the dissipation coefficients: 

{ KwB2c2c 
r =- Im ffi = - R ck2 (1 - u2) (u2 - c2)- -.-0 

1-'zz ± ± o kn 2T 

Hc2c2 Bk 0 , 

x l (1- u~) U2 - u~ l --,;;:;~- [(1 - u±_) A 2 - A 2 ] sin 6 

+ u~ (Nxx + Nuu) c- cc~ [Nxx sin2 0- (Nxu +Nux) 

X sin 6 cos 6 + N yy cos2 6] (1 - u~) cU 2Nxx} 

X {2w [(1 + u;) c~ - (2u~ + 2U2u~ - U2) ]} -1. (2. 2) 

Here u± = c-1k-1 Re w and, in accord with (2.1), 
satisfies the following well known [3- 5] equation in 
the linear approximation in the dissipation coeffi
cients: 

u~ (1 + U2) - (U 2 + c~ + U!c~) u~ + u;c~ == 0. (2.3) 

On the basis of (1.11) we have from (2.2), for an 
isotropic medium, 

r =- {x0TB2c~ [(1 + U2) u~ - U!l + ~0 (1 - u~) 

X (u~ - c~) w f1 0C2 [u\ - (1 - u~) U! - c~] 

+ (+flo+ ~) C2 [u~ (1 + u;) - u;J} 
X {2w [(1 + U!) cg - (2u~ - U2 + 2U2u;)]} -1• (2.4) 

Comparing Eq. (2.4) with the expression for the 
width of the weak shock wave in isotropic relativ
istic magnetohydrodynamics (which was calcu
lated previously[1J), we can note that the behav
ior of the attenuation coefficient of weak magnetic
sound waves and the width of weak shock waves do 
not depend on the dissipative properties of the 
material: 

8v± [(1 + V!) (1 + v;) cg- (2v~ + U2v~- U2)] w 

(2.5) { w2c4 (U2 v2 ) a'V 3 } ' ck' o x- ± (-) _ [c'u u + c2 (U2 _ 0 2_ )' _ 0 2_ U2] b.p v ap' s U'-v~ 0 X y 0 X :r: :!: y 

where vi = ui I ( 1-ui ), V = 1/n, S is the entropy 
of the volume V, 6.p is the pressure jump at the 
shock front. 

equation for the width when the medium is aniso
tropic. As a result we get 

The relation (2.5) is also valid in the case in 
which the medium is anisotropic. Therefore, on 
the basis of Eqs. (2.2) and (2.5), we can write the 
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--- c (p .. -'- 'A ) v" - (1 -1- v2 ) c2c'A - U2 
l .U: 1 XY I I ± Q XU 

[p cos2 e - ('A + p ) sine cos e + 'A sin26] ~ X xx xx xy xy J 

(2.6) 

Here the coefficients Kxx, f3zz• aaf3• Paf3• and ll.af3 
are chosen in correspondence to their nonrelativ
istic definitions. [2] 

3. The principal interest lies in waves which 
are propagated in a nonrelativistic plasma for 
U ~ 1. In this case, U » c0 and only the fast wave 
is relativistic. In accord with (2.6), the expression 
for the width differs appreciably from the nonrela
tivistic expression [2] only for U2 » 1. In this 
case, in the region of isotropy, 

l - 4cc~ [uz (I + sin2 e ) _L ~oW -l- 4xoTU4 l· (3.1) 
+ - 3U b.p 3 f1 ° 1 c' ' 9c2 _ 

In the anisotropic region, (2.6) is simplified only 
for U2 » 10-2 Co2 and then 

16x0TU3c~ 2 
l+ ~~ 27ct1p cos e (3.2) 

Therefore, in very strong magnetic fields l+ in
creases as H3 with the strength of the magnetic 
field. Corresponding to (2.5), for cij « 1 ~ U2, 

y + = 3Uck2 l+l1p!&~ (I + U2) 2 w (3.3) 

and therefore the attenuation coefficient decreases 
as H-2 with increase in H, and tends asymptotically 
to 

2x0Tw2 cos2 6 
Y+ = 9pc2U2 

(3.4) 
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