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Experimental data for the 37r decay mode of the K+ meson are compared with formulas ob­
tained on the assumption that the ~ T = % rule holds and that a0, a2 ~ 1 ( a0 and a2 are the 
s-wave scattering lengths of pions in states with isotopic spin 0 and 2, in units of .5/pc ). It 
is shown that these formulas agree with experiment if a0 and a2 satisfy the relations I a0a2 I 
~ 0.25, aij- a0a2 + 0.5 a~~ 0. 7 ± 1. No more precise information about a 0 and a2 can be ob­
tained from the presently available experimental data. An integral equation for the decay 
amplitude is written without the assumption that a0 and a2 are small. This integral equation 
has a unique solution and can be solved numerically. 

THE attention of many authors has been attracted determined constants not expressible in terms of 
to the K- 37r decay reactions in the hope of ob- the aT (the effect of only this type of terms was 
taining information on the 1r1r scattering amplitudes. considered by Alles [lOJ ). In the papers [7 - 9] the 

In the work of Thomas and Holladay[!] and rule ~T = 1/ 2 is not invoked and consequently the 
MitraC2J a strong interaction was assumed between produced mesons are in a superposition of states 
the produced pions in the s state with isotopic spin with isotopic spin 1, 2, and 3. 
T = 2. The effect of this interaction was evaluated In the present paper a comparison is carried 
by means of the Watson-Migdal formalism. [3] How- out of the formulas for the probabilities of the 
ever it will be seen from the analysis below that K+- 37r decays[7- 9] with the experimental data[H] 
the effect of a strong 1r1r interaction in the T = 2 on the assumption that the rule ~T = % holds. 
state does not reduce to just the appearance of the The formulas for the K+ - 37r decays derived on 
multiplicative factor ( 1 - ika2 ) - 1 ( k being the rela- the assumption that a0 and a2 ~ 1 are qualitatively 
tive momentum of the pair of particles). in agreement with the experimental data. However, 

Dispersion relations for the K - 37r reaction, owing to the large experimental errors it is not 
in which the interaction of pions produced in s yet possible to draw conclusions about the magni-
states was taken into account, were written by tudes of a0 and a2• From experiment it follows 
Khuri and TreimanC4J and Sawyer and Wali. [S] only that 
The solution of the resultant equations was ex­
pressed in the form of a power series in the mo­
menta of the produced particles. This power series 
expansion, however, was obtained incorrectly-a 
number of terms which contribute substantially in 
the approximation considered was left out. We shall 
discuss the work of Khuri and Treiman [4] in more 
detail in Sec. 2 in connection with the integral equa­
tion for the K-decay amplitude. 

In the papers [G-9] the amplitude for the K+ - 37r 
decay was expanded in a power series in the mo­
menta of the relative motion of the pions. The ex­
pansion was carried up to terms cubic in the mo­
menta. The parameters in the expansion were the 
quantities a0kil and a2ki[. The expansion is valid 
if a0 and a2 are sufficiently small: a0, a 2 ~ 1. The 
decay amplitude contains, in addition to the terms 
arising from expansion in the quantities aTkil, 
also quadratic terms akiz where the a are un-

In Sec. 2 we write a dispersion relation for the 
K-decay amplitude without assuming a 0 and a 2 to 
be small (this is necessary in view of the appear­
ance of experiments indicating that a0 is large [12]). 

This relation can be reduced to an integral equation 
for the decay amplitude of the Skornyakov-Ter-Mar­
tirosyan type. [13] Such equations were studied by 
Danilov. [14] The equation here obtained has a 
unique solution and can be solved numerically. 

1. COMPARISON WITH EXPERIMENT OF THE 
FORMULAS FOR THE K+ - 37r DECAY OB­
TAINED ON THE ASSUMPTION THAT a 0 AND 
a2 ARE SMALL ( a 0, a 2 ~ 1 ) 

An expression for the probabilities of the K+ 
- 37r decay accurate to terms quadratic in the 
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momenta was obtained by Gribov. [8] If it is as­
sumed that the K+ decay satisfies the 6. T = Yz 
rule then the produced mesons can be only in 
states of total isotopic spin equal to unity. In order 
to obtain expressions for cross sections in this 
case it is necessary to set the parameter p that 
appears in Gribov's work[8] equal to - Yz (the 
minus sign arises from the definition of the charge 
exchange amplitude for the pions: ae = 2/a (a2 -a0 ), 

where aT = k-1ei0T sin OT for k- 0 ). In addi­
tion, the undetermined constants a± appearing in 
the expressions for the probabilities will no longer 
be independent. 

Let us rewrite for this case the expressions for 
the probabilities of the decays K+ - 21r+ + 1r- and 
K+- 21r0 + 1r+: 

dW!df = 4A.2 { 1 + ~ 1 lk12 (k13 _:__ k23) + 21 Ck12) 

-+- J (kd '-- J (kz3) 1 + ~2 [k13k23 --1-- J (k13) + J (k23) l 

~- ~3 !J (k1~ + J (k 2~] 

+ 2aki2 + [a + b - ~: (a0 - a2) 2 ] (k;3 _;_ k~3)}, (1a) 

dW'!df = A2 {1 + y1 [k12 (k13 + k23) + 2J (kl2) 

--1-- J (k13) -'- J (kz3) J 

+ Yz [k13k23 + J (k13) + J (kz3)] _:_ 2y3J (kl2) 

(1b) 

Here kil are the momenta of the relative motion 
of the i-th and Z-th pion. The subscripts 1 and 2 
refer to the identical particles, 

J (k) = _ 13 x 2 x arc cos~ (I _ + xz) = xZJ (x), 
n (l-x2)·' 9 

X = k/x, x2 = MK - 3 = 0.56, (2) 

MK is the mass of the K meson, the mass of the 
pion is taken to be unity. A., a, o are real numbers 
to be determined from experiment. f3 i and Yi are 
numbers that can be expressed in terms of the pion 
scattering lengths a0 and a2: 

~ 1 = 1.67 a0a2 + 0.33 a~, r 1 = 3.33 a0a2 - 1.33a~, 

~ 2 = 1.39 a~ + 0,56 a2a0 + 0.06 a~, r 2 = 2 a~, 
~3 = - 0.28 (a0 - a 2) 2 , y 3 = 1.11 (a0 - a 2) 2 • (3) 

As already mentioned above, formulas (1a) and 
(1b) without the 6.T = Yz rule taken into account 
were obtained by Gribov. [8] 

A derivation of analogous formulas from dis­
persion relations is contained in [15]. The prin­
ciple on the basis of which they are derived will 
also be explained in Sec. 2 in connection with the 

derivation of the integral equation for the K - 37r 
decay. 

Corrections to the formulas (1a) and (1b), cubic 
in the momenta of the produced particles, were ob­
tained in [9]. For p = - Yz at the point ki2 = kia 
= k~3 = %K2 these corrections are equal to zero. 
It is clear that also at other points in the physical 
region of the K - 37r decay these corrections will 
be small. Indeed, one can convince oneself that 
they contribute no more than 0.1 of the contribu­
tions from the quadratic terms. 

Making use of the formulas (1a) and (1b) one 
can obtain expressions for the total probabilities 
for the processes K+- 21r+ + 1r- and K+- 21r0 

+ 7r+: 

+ 0.04 ~1 + 0,02~2- 0.42~::1}. (4a) 

W' = A.2 Q' {1 + x 2 [2a + I)+ 0.04 Y1 

+ 0.02 Yz- 0.42 y3]}. (4b) 

where Q and Q' are the phase space volumes of 
the produced pions. Because 2J..t.rr+- 2fJ.7rO ::::; 9.2 
MeV, Q' is slightly larger than Q. 

Accurate to terms of order 0.1 a~ the ratio of 
the decay probabilities is equal to 

W'jW = 0.31. (5) 

In this formula the difference in the phase space 
volumes of the produced pions is taken into account 
in terms of order unity. [16•17] Terms of order 
0.01 a~ are not included in Eq. (5)-they contain 
contributions from terms cubic in the momenta 
and the mass difference of the pions affects them 
significantly. 

From Eqs. (1a) and (1b) one may also obtain the 
energy distribution of the produced pions: 

+ ~ (a - a )2 x 2 _!_ (a - b) x 2 J 36 Q 2 I ' 
(6a) 

W,+ = I + x 2 !~1 (+ F1 (x) + Fz (x)) + +~zF1 (x) + ~3 (! (x) 

+-%- F 3 (x)) - ~} (a 0 - a2) 2x2 -%-(a- b) x2 ], (6b) 

W~+ = 1 + x 2 [y1 F1 (x) + y"Fz (x) + 2ral (x) 

(6c) 

x 2 is related to the energy E of the meson consid­
ered by K2 = K2x2 + 3E/2. 

In Eq. (6) all constant terms of order K2 may 
be omitted since after their inclusion into the nor-
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malization coefficient they will affect only terms 
of order K4• The functions F 1(x), F2(x), and 
F 3 ( x) were obtained in [8] [ in the expression for 
F3(x) given in [8] the term 2x2/3/3rr was left 
out]. In the region 0 < x < 1 the functions F 1 ( x), 
F 2 ( x), and F 3 ( x ) are well approximated by the 
following polynomials in x2: 

F 1 (x) =- 0.33 + 0.74 x2 , F 2 (x) = 0.42- 0.74 x 2 , 

F3 (x) = - 0.33- 0.16 x 2 . (7) 

If one introduces E = E/Emax then Eq. (6) may 
be rewritten as follows: 

- 0.5 (a- o)l, 

+ 0.25 (a- o)l 

-0.2 (a0 - a 2) 2 [I (VI- e)+ 0.11, 

The energy spectra in the reactions under 
consideration were measured by a number of 
authors.[l1] The experiment gives 

W "- = 1 -'- (c- 1/ 2) (0.53 ± 0,07), 

W r.+ = 1 - (e- 1/ 2) (0.26 ± 0.09), 

l\7~+ = 1 - (e - 1f2) (1.0 ± 0.4). 

(Sa) 

(8b) 

(9) 

One a priori unknown constant a - o enters Eq. 
(8) so that a study of the energy spectrum of one 
pion is not sufficient to yield information on a0 

and a2• Since I I(~)+ 0.11 :5 0.1 for 0 < E 

< 1, the last term in Eq. (Sb) is of the order of 
10-2• Therefore approximately (Wrr- -1 )/(Wrr+ -1) 
i'::! - 2, which is in agreement with experiment. In 
order to obtain information on a0 and a2 from en­
ergy distributions it is necessary to study both the 
reaction K+ - 2rr+ + rr- and K+ - 2rr0 + rr+. 

The experimental data on the energy distribution 
of the rr+ from the reaction K+ - 2rr0 + rr+ are 
rather rough. They allow only to estimate a com­
bination of the quantities a0 and a2• The last term 
in Eq. (Sc) is of the order of 0.1. If it is ignored 
one can convince. oneself that it follows from a 
comparison of Eqs. (8) and (9) that a5- a 0a2 + 0.5 a~ 
i'::! 0. 7 ± 1. 

One may also obtain the distribution in z [the 
difference in the energies of the identical pions 
divided by its maximum value z = 13 K - 2( E1 - E2 )]. 

For the reaction K+ - 2rr+ + rr- this distribution 
is of the form [8] 

W(z) = 1 + z2 (0,04 ag + 0,4 a0a2). (10) 

Experiment yields [1!] 

W(z) = 1 + z2 (0.0 ± 0.1). (11) 

From here it follows that I a5 + 10 a 0a 2 1 :::: 2.5. If 
a0 is not very much larger than a2 then I a 0a2 I 
~ 0.25. 

And so it follows from the above analysis that 
the experimental data on the K+ - 3rr decay are 
not in contradiction with the formulas derived 
under the assumption that a0 and a2 are not large. 
The accuracy of the experiment, however, does 
not as yet allow one to determine a 0 and a2 from 
an analysis of the K - 3rr decay. 

There exist, however, experimental data that 
indicate that a0 is large. [12] If that is so then 
kilao - 1, and Eqs. (la) and (lb) are not valid. In 
that case the amplitude for K- 3rr decay consists 
of a complicated function of ki[. The fact that Eqs. 
(la) and (lb) are in qualitative agreement with ex­
periment may not yet mean much, in view of the 
large experimental errors. In this connection it 
becomes necessary to find the amplitude for the 
K - 3rr process without assuming a0ki[ to be 
small. In the next section we shall write an inte­
gral equation for such an amplitude. 

2. DERIVATION OF THE INTEGRAL EQUATION 
FOR THE K- 3rr DECAY WITHOUT ASSUM­
ING a0 AND a2 TO BE SMALL 

In this section we take exactly into account the 
interaction of the produced pions in s states with 
isotopic spins T = 0 and 2. 

In the derivation of the integral equation, as in 
previous papers, [9•15] dispersion diagrams are 
utilized. Let us briefly recall what is involved. 
For example, the amplitude for the scattering of 
two particles on each other near threshold is sim­
ply given by the scattering length a 12 ; the corre­
sponding diagram is shown in Fig. la. The cor­
rection of the order of the momentum of the scat­
tering particles is given by iai2k12 as can be seen, 
for example, from the dispersion relation for the 
scattering amplitude ( k12 stands for the relative 
momentum of the particles 1 and 2 ). This term 
may be represented by the diagram of Fig. lb. The 
diagram of Fig. lc describes the term a~2 (ik12 ) 2 , 
etc. 

The sum of the diagrams, Fig. la, lb, lc, etc., 
gives the well known expression for the amplitude 
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for s-wave scattering near threshold when a12 is 
not small: 

a12(1 - ik12a12)-1 • 

This formula takes into account the singularities 
of the amplitude near threshold. 

The regular part of the amplitude cannot be ob­
tained in this way (it is determined, for example, 
by three-particle and four-particle intermediate 
states which have not been here taken into account), 
In this approach the regular terms of the amplitude 
for 1 + 2 - 1 + 2 near threshold can only be ex­
pressed as a power series in k2 with undetermined 
coefficients. This manifests itself in the fact that 
the scattering length near threshold depends ana­
lytically on k2 and may be expanded in a power 
series in k2. 

The amplitude for the decay of one particle into 
three, when the kinetic energy of the produced par­
ticles is not large, may also be expressed in terms 
of analogous diagrams. At that, as in the process 
1 + 2- 1 + 2, we shall obtain that part of the am­
plitude that is singular near the physical region 
for the decay (near kiz = 0). The regular part 
can only be expanded in a power series in k{z with 
undetermined coefficients. In the zeroth order ap­
proximation in the momenta the decay amplitude 
equals simply a constant A.. This term is repre­
sented by the diagram of Fig. 2a. Taking into ac­
count the interaction of only particles 1 and 2, say, 
gives rise to the appearance of diagrams of Fig. 2b, 
2c, etc., which correspond to terms A.ik12a12 , 
A.( ik12a12 )2, etc. The sum of the diagrams, Fig. 2b, 
2c, ... , results in the quantity A.ik12a 12 ( 1 - ik12a 12 ) -1. 

In addition to the diagrams that take into account 
the interaction between some pair of particles there 
exist diagrams in which all three particles interact. 
The simplest diagram of this kind is shown in Fig. 
2d. This diagram is expressed in the form of a dis­
persion integral 

(12) 

One subtraction has been carried out in this inte­
gral in accordance with the fact that for krz = 0 the 
decay amplitude is given by the constant A.. 

The absorptive part in the dispersion integral, 
Eq. (12), consists of a product of two amplitudes 
-the amplitude ikha12A. corresponding to the dia­
gram which in Fig. 2d lies to the left of the lines 
marked by crosses, and the amplitude a 23 corre­
sponding to the part of the diagram to the right of 
these lines. Integration over the phase space vol­
ume of particles 2 and 3 in the intermediate state 
gave rise to the appearance of the factor k;b and 
of the integration over z (the cosine of the angle 
between the momentum of the relative motion of 
particles 2 and 3 in the intermediate state k:b and 
the momentum of the first particle ) . It can be 
shown that if the masses of particles 1, 2, and 3 
are equal to unity then 

k'2 = _1_ k'2 _;_ 2 (x2 _ k'2) + 2 V3 k' J! 2_k'2 
12 t n ' 4 23 2 Z 23 X 2a· 

(13) 

For z = ± 1 (which corresponds to the limits of 
integration over z in the absorptive part) the ex­
pression (13) goes over into 

k' - 2 k' -L 1 V3 v 2 k'2 
12± -- ± 2 23 I 2 ')(, - 23" (14) 

A more detailed discussion of questions con­
nected with these diagrams may be found in [8,9,15]. 

It is seen from the diagrams of Fig. 2 and other 
analogous ones, that the decay amplitude consists 
of a series of terms each depending on one invari­
ant only. The decay amplitude has the form 

A± (k12k13k23) = 'A.+ + A( (k2:J) + Ag= (k13) + Af (k!2}. 
(15) 

The plus sign refers to the reaction K+ - 21r0 + 1r+, 
the minus sign to the reaction K+ - 21r+ + 1r-. 

If the decay satisfies the .6. T = 1/2 rule then the 
produced mesons must be in a state of total iso­
topic spin T = 1. In that case it is easy to show 
(see, for example, [4• 17]) that 

'A.- = 2'A., A; (k) = 2A (k), A~ (k) = A; (k) = A (k) + D (k); 

(16a) 

~~ f' ·~' 
J ~J J 

b c z 
d J 

a 

FIG. 2 
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A+ = - A, A; (k) = - D (k), Ai (k) = A; (k) = - A (k). 

(16b) 

A ( k) and D( k) vanish for k = 0. The minus sign 
in Eq. (16b), as was already mentioned in Sec. 1, 
is due to the choice of sign in the pion charge ex­
change amplitude. 

If a 0 and a 2 are not small one must sum all dia­
grams analogous to those shown in Fig. 2. All dia­
grams may be divided into three kinds: 1) the pro­
duced particles in the final state do not interact, 
2) only one pair of particles interacts in the final 
state, 3) all three particles interact in the final 
state. Only one diagram belongs to the first kind, 
that shown in Fig. 2a. This diagram describes the 
constant term (A.+ or A.-, depending on the reac­
tion). Diagrams of the second kind are shown in 
Fig. 2b, 2c. The sum of all diagrams of this kind 
is represented, depending on the type of the reac­
tion and the type of particles considered, by a cer­
tain superposition of expressions of the form 
A.iki[aT( 1- iki[aT) - 1• Diagrams of the third kind, 
depending on k12 , are shown in Fig. 3. The cross­
hatched blob in Fig. 3a and 3b represents the total­
ity of diagrams of the second and third kind in which 
particles 1 and 3 come out at one point. 

~J 

~I 
a Z 

FIG. 3 

In the diagrams of Fig. 3 particles 1 and 2 can, 
while interacting, form various chains of the type 
shown in Fig. 1. The summing of diagrams with 
such chains will result in the multiplication of dia­
gram, Fig. 3a, by the factor ( 1 - iki[a T) - 1• In ad­
dition to the diagrams shown in Fig. 3 one also has, 
of course, diagrams in which ·particles 1 and 2 are 
interchanged in the intermediate state. From Eq. 
(15) it is seen that A(k) and D(k) are expressed 
in terms of diagrams of the second and third kind. 
It is easy to show that 

A(k) =A ika" 
1- tka2 

00 

+ 1 _1 ika, ~ ~ dk'2 k'' (k'' ~~'- iro) L4(k') + D(k')], 
o (17a) 

D k __ _3_A~_c__!!_A~ 
( ) - 3 1 - ika2 ' :3 1 - ikao 

--L- __ 1_ k' (- dk' 2 k'a, [-2:4 (k')/3-2D(k')/3J 
' 1 - ika2 n J k'' (k''- k2 - iro) 

0 

1 _1_ ~ f dk'Z k'ao [SA (k') 3 + 2D(k')/3] (17b) 
T 1 - ika0 n J k'2 (k'2 - k 2 - iro) 

0 

The functions A ( k' ) and D ( k' ) are obtained 
from A(k) and D(k) by averaging over z. For 
example 

1 

A (k') = + ~ dzA (k"). (18) 
-1 

z is related to k' and k" by Eqs. (13) and (14) 
(it is necessary to replace in these equations kb 
by k" and k2J by k' ) . 

In the derivation of Eq. (17) the following for­
mulas for the amplitudes for scattering and charge 
exchange of pions were used 

a+_ = aj3(1 - ika2) + 2a0;3 (1 - ika0 ), 

a00 = 4a2/3 (1- ika2) -+ 2a0i3 (] - ika0 ), 

a~(~ = 2a2;3 (I - ika 2 ) - 2ao 3 (I - ikav)- (19) 

In summing the various diagrams of the type 
shown in Fig. 1 we have taken into account the 
singularities of the amplitude for s-wave scatter­
ing near threshold. In addition, aT depends near 
threshold on the square of the relative momentum 
in a certain analytic way. The reason for such a 
dependence may, for example, be due to distant 
singularities of the s-wave scattering amplitude 
arising from the contributions of three-particle 
intermediate states, etc. For the same reasons A. 
depends analytically on k~2 • k~3 and k~3 near kh 
= 0. In order to take this circumstance into account 
one must replace in Eq. (17) aT by aT( k2 ) and A. 
by A.(k~2 , k~3 , k~3 ). The aT appearing in the inte­
grand should be replaced by aT ( k' 2 ). 

Equation (1) may be obtained by expanding Eq. 
(17) in a power series in k up to quadratic terms 
(more precisely up to terms of order K2 ). The 
terms with the undetermined constant a and o 
arise from both the expansion of A(k) and D(k), 
as well as from the expansion of A.±(kb k~3, k~3 ). 
The latter terms, for example, enter with undeter­
mined coefficients and therefore in such an ap­
proach a and o cannot be expressed in terms of 
a 0 and a 2 or in terms of any other known quanti­
ties. Equation (17) is expressed as a series in k 
with the help of successive iterations-the terms 
of order k are obtained from the free term, the 
terms of order k2 from the free term and from 
the dispersion integrals in which A and D are 
expressed as being linear in k, etc. 

Khuri and TreimanC4J started out from disper­
sion relations in principle equivalent to Eq. (17). 
They expanded the K- 37f amplitude in a series 
in the momenta up to quadratic terms. The result 
of their expansion does not agree with Eq. (1). At 
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the present time there exist a number of papers 
devoted to the determination of a0 - a2 from the 
experimental data on the basis of the Khuri­
Treiman formulas, or to the discussion of the 
results of such a determination. For this reason 
we shall discuss this work in more detail. 

The principal role in the determination of a0 - a2 

in the work of Khuri and Treiman is played by 
terms of the type yk2, where the coefficient y is 
related to a0- a2• As can be seen from the above 
analysis the terms obtained by Khuri and Treiman 
are not unique-quadratic terms are obtained, for 
example, from the expansion of A.± ( kr2, ki3• k~3 ). 
There is no a priori basis for the belief that these 
terms are for some reason small. The fact that 
a0 - a2 cannot be determined from the Khuri­
Treiman formulas follows already from the work 
of Alles, [10] who showed that there can be present 
in the decay amplitude terms quadratic in the mo­
menta with undetermined coefficients. 

Let us return to the integral equation for the 
K- 371" decay when a0 is large and a2 is small. 
In that case the amplitudes have in zeroth approx­
imation ( a2 = 0 ) the form 

A~ (k12k1ak2a) = 2A. +Do (k13) +Do (kza), 

A; (k12k1ak23) =-A.- D 0 (k12), 

(19a) 

(19b) 

where D0(k) is defined by the following integral 
equation: 

Keeping in Eq. (17) terms of order ka2 and expand­
ing a0( k2 ) in a power series in k2 one may obtain 
an equation for the decay amplitude to first order 
in K, etc. 

Upon averaging of the left and right hand sides 
of Eq. (2) one obtains an integral equation for 
D0(k). After it has been solved numerically one 
can find D0(k). It is more convenient, however, 
to obtain directly an equation for D0(k). To that 
end we rewrite the integral in Eq. (20) as follows: 

00 

k2\ dk'2 k' Do ( k') 
.\ k'2 (k'2 - k2 - ie) 
0 

A 

k2\ dk'2 k' 
- .) k' 2 (k'2 - k2 - ie) 

0 

y 3k, y x' _ k'• ~ dk" 2D (k"). (21) 
h''3 

We have made use here of Eqs. (13) and (14). 
The limit A - oo will be taken in the final for­
mulas. 

Let us now vary K2 + iE. We make K2 negative. 
For K2 < 0 kt varies in a certain complex region 

of k' 2, with I [{,±2 1 < A. Equation (21) may be re­
written in the form 

A 

k2 ~· dk'2 k'' (k'2 :_·k"- t"") -v _ _:._ __ J c 3h' Y x2 :..... k' 2 
0 

(22) 

The contour of integration C is shown in Fig. 4. 
The integration over the large circle proceeds in 
such a way that I s I > A. The dashed line shows 
the cut drawn from the singularity of D( s) at 
s = 0. 

Having performed the integration over k' 2 and 
k" 2 we proceed to deform the contour C by making 
it narrower. Then after taking the limit A - oo 

we obtain in place of Eq. (22): 

(23) 

0 

FIG. 4 

In Eq. (23) one may, by varying K2 + iE, go over 
to K2 > 0. Introducing the notation 

D 0 (k) (1 + k2a~) = A.d (p), 

we obtain finally 

(1 + iV x2 - 3p2/4a0)-1 d (p) = 5- i Vx2 - !l...p2 a0 3 4 

00 

+ ~ (' dp'2 ' d <:') . . 
3rt .) 1 + x 2a 2 - 3p'2a 2 ·4- tB 

0 () 0' 

' [ l p'2 + p2 + pp'- x2- is 
X p ln p'' + p'- pp'- x'- is 

Y3 --In 
2x 

1 -v-p'2 + ;1, x2 + 2p'x/ :> 
----c--

1 r-
p'2 + 3 x2 - 2p'x/) 3 

This is an integral equation of the Skornyakov­
Ter-Martirosyan type [13] with one subtraction. 

(24) 
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Such equations were studied by Danilov. [l4] It has 
a unique solution. The method for the numerical 
solution of equations of this type is contained in the 
work of Danilov and Lebedev. [l8] 

The author is deeply grateful to A. A. Ansel'm 
and G. S. Danilov for useful discussions. 
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