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Non-linear one-dimensional magnetohydrodynamic motions involving variation of the mag-
nitude as well as the direction of the transverse magnetic field are considered. Correspond-
ing solutions for the simplest cases are obtained.

].. One-dimensional unsteady motion has been
thoroughly investigated in magnetohydrodynamics
for the case of propagation of small perturbations
(linearized theory). As far as the nonlinear mo-
tion of a compressible fluid is concerned, only a
few special solutions are known, in which either
the plane of polarization of the magnetic field
vector H and the velocity of the medium v (mag-
netic-sound waves) or the moduli of these vectors
(Alfven waves) are invariant{!=%), The relevant
limitations are imposed on the initial and boundary
conditions of problems that reduce to a considera-
tion of such waves.! In the present work some
solutions of the magnetohydrodynamic equations
are found which permit both the moduli and the
orientations in the transverse plane of the vectors
H and v to vary, and consequently one can con-
sider initial and boundary conditions of a more
general type.

The equations of plane one-dimensional isen-
tropic motion can be written in the form,
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Here p is the density, p the pressure, and H| and
v| are the transverse components of H and v.

We consider here waves having a transverse
magnetic field (Hz = 0) and make use of the con-
dition for ‘‘freezing-in’’ of the magnetic field which
follows from Egs. (1) and (2),
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DFor example, when a conducting piston moves with a con-
stant velocity, only waves of the type mentioned can occur,
besides discontinuities[s].

If the vector b = H/p is constant, then (2) and
(3) lead to the problem of ordinary gas dynamics,
in which p is replaced by ppy = p + b%?/8ntl],

It is readily seen, however, that this latter asser-
tion is fully justified even if only b2 = const; this
assumption has been made below.

The angular orientation of H in the transverse
plane is ¢ and can vary (evidently, this possibility
has not been considered previously ); then, in addi-
tion to the system (2) and (3), which enables vy, p,
and H? to be evaluated, we have, according to (5),
the following equation for ¢:

0@/ot + v,09/0z = 0. (6)

Finally, Eq. (4) is identical in form with (5) and
(6), i.e., in the general case transverse motions of
the medium are permissible, in which v| is an ar-
bitrary function of ¢.

As expectedz), @ and v are ‘‘entropic’’ quan-
tities which are conserved in Lagrangian coordi-
nates. A significant simplification as compared to
problems of one-dimensional, non-isentropic mo-
tion arises from the fact that Eqs. (2) and (3) can
be treated independently of (4) and (6) (since p in
Eq. (3) varies with the entropy S).

2. We assume for example that the quantities
Vg, P, and H? form a simple wave, i.e., they de-
pend on the variable

EZZ—(vzicm)ty vz:+gcm dp

—Jr
(cy = dpm /dp). It is then not difficult to integrate
Eq. (6), changing from the variables z and t to the
variables ¢ and t:
g
¢ = F(tocn & pdt), (7)

<o

2 Actually, for H, = 0, all forces (Lorentz and elastic) are
directed along the z axis and are independent of ¢ and v, . In
particular, the assertion that when v is perpendicular to H the
polarization of H remains fixed (see for example [']), is wrong.
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where F is an arbitrary function. A similar ex-
pression is also valid for vj.

In so far as H? is propagated with a speed vy
+ cy # Vg, the ¢-wave is displaced relative to the
H’-wave, and is at the same time deformed. For
perturbations of finite extent, the regions over
which the modulus and direction of H are variable
become completely separated; following this, the
¢ -wave is no longer deformed and represents a
special case of Alfven waves with H, = 0.9

If there is a discontinuity (shock wave) in the
H%-wave then no discontinuity is produced in ¢
itself (the so-called rotational discontinuity ), but
only discontinuities in the derivatives of ¢. This
result applies, provided the discontinuity in the
H2?-wave is formed before the two waves referred
to above (¢ and H?) separate from each other.
An analytic solution which describes the variation
of ¢ in the vicinity of the shock wave can be read-

ily obtained if the wave is assumed to be stationary.

In fact, by setting ¢ (t = 0) = £(z) at the initial in-
stant, we obtain,

20
0L 2L 0ol . (8)
z> vyt
Here vy, are respectively the values of vy in
front of and behind the discontinuity (which in the
chosen coordinate system is located at z = 0).

In the case of waves of finite extent, the solu-

f(z—uit),
¢ = !f [(z — vat) 1/02],

\f (2 — vat),

31n contrast to the linear problem, this separation does not
always occur in an unlimited time: in the case where a discon-
tinuity is formed, disturbances reflected from it once again
reach the region over which ¢ is variable.

1069

tions considered describe, in particular, the inter-
actions between transverse magnetic-sound waves
and Alfven waves (and also interactions between
the shock wave and the rotational discontinuity at
H, = 0). As is evident from the discussion, such
an interaction results in rotation of the plane of
polarization of the magnetic-sound wave.

In conclusion we note the analogy which exists
between the propagation of magnetohydrodynamic
waves on the one hand, and the propagation of elec-
tromagnetic waves in nonlinear media on the other.
Without presenting any solutions in the present
work, we mention only that waves similar to the
ones considered above can occur in a longitudi-
nally magnetized ferrite, with different propaga-
tion velocities of the modulus and angular orienta-
tion of the transverse magnetic field.

The author is greatly indebted to A. V. Gaponov
and V. P. Dokuchaev for discussing the results.
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