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The formalism of Kubo [3] developed for the analysis of irreversible processes in systems 
close to thermodynamic equilibrium is generalized to the case of essentially nonequilibrium 
periodically-nonstationary systems. General expressions are obtained for the response func­
tion and for the admittance of such systems and their fundamental properties are investigated. 
In particular, the generalization is obtained of the symmetry relations for the Onsager kinetic 
coefficients to the case of periodically-nonstationary systems. A possible generalization of 
the fluctuation-dissipation theorem as applied to classical nonstationary systems is also con­
sidered. The results obtained have direct relation to the problem of obtaining and using non­
equilibrium systems for the amplification and generation of electromagnetic oscillations. 

1. INTRODUCTION 

THE general quantum theory of irreversible proc­
esses in stationary systems has by now attained a 
level of development marked by considerable sue­
cess (cf., for example, [iJ). The stationary nature 
of the system is manifested in the fact that its Ham­
iltonian H0 (in the absence of a possible external 
variable perturbation acting on the system the re­
sponse to which is of interest) is independent of 
the time, while the statistical operator Po describ­
ing the state of the system has the form Po = C x 
exp ( - ,BH0 ) (it is assumed that the system is in 
thermal contact with a heat bath). 

In the papers of Callen et al [ 2] and of Kubo [3] 

quite general expressions were obtained for the 
linear response functions (or the aftereffect) of 
the system to an external perturbation variable in 
time. It was shown that the complex admittance 
matrix (the Fourier transform of the response 
functions) satisfies symmetry relations which 
should be regarded as the generalization of the 
symmetry principle for Onsager's kinetic coeffi­
cients.C4,sJ Moreover, it was shown that the ma­
trix for the admittance of the system can in the 
general case be related to the matrix for the spec­
tral intensity of fluctuations in a state of thermo­
dynamic equilibrium of appropriate (correspond­
ing to the chosen admittance) physical quantities 
(the fluctuation -dissipation theorem). 

At the same time, while the successes noted 
above have been achieved with stationary systems, 
there exists no general theoretical development 
with reference to irreversible processes in non-

stationary systems. We take the latter to be such 
systems in thermal contact with a heat bath whose 
Hamiltonian explicitly depends on the time: H0 

= H0 ( t). The dependence of H0 on the time physi­
cally means that the system is situated in an ex­
ternal variable field which is treated classically. 

In the present paper we give a generalization 
of the formalism of Kubo [3] to the case of period­
ically-nonstationary systems, i.e., systems which 
are situated in a periodic external field [ H0( t) 
= H0(t+T)]. The results of this paper in addition 
to being of general physical interest are also of 
direct interest for the problem of obtaining and 
utilizing nonequilibrium media for the purposes 
of amplification and generation of electromagnetic 
oscillations ("the problem of quantum and para­
metric amplifiers and generators"). 

In all those cases when the deviation from equi­
librium of the medium utilized in quantum or pa­
rametric amplifiers is due to the action on this 
medium of a strong external alternating field (for 
example, in the so-called three-level quantum am­
plifier or in the optical parametric amplifier pro­
posed by Akhmanov and Khokhlov[6]) from the 
point of view of macroscopic electrodynamics we 
are dealing with electromagnetic processes occur­
ring in a medium with properties which are vari­
able in time. 1> Of fundamental practical interest 
in this connection is the case of a periodic external 

1lFrom this point of view it is, in general, not meaningful 
to subdivide such systems (media) into "quantum amplifiers" 
and "paramagnetic amplifiers" (as has been the custom until 
now). This has already been pointed out earlier [7 ]. 
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perturbation (monochromatic "pumping"). 
The connection referred to above of the topics 

discussed in this paper with the problem of quan­
tum and parametric amplifiers 2> consists of the 
fact that in this article we have essentially ob­
tained a general form of the material equation for 
periodically-nonstationary media and have investi­
gated its fundamental properties. 3> In particular, 
a generalization of Onsager's symmetry relations 
has been obtained. At the end of this paper some 
problems are discussed dealing with fluctuations 
in classical nonstationary systems. 

2. RESPONSE AND ADMITTANCE OF A NON­
STATIONARY SYSTEM 

We consider a macroscopic system described 
by the Hamiltonian H0(t) = H0(t+T) (T = 27!/U) 
which is in thermal contact with a heat bath. In 
deriving the symmetry relations (Sec. 3) we shall 
take into account the fact that the dependence of H0 

on the time is due to an external variable electro­
magnetic field, and that, therefore, the time t ap­
pears in H0 only through the vector potential A ( t) 
of this field: 4> H0 = H0(A(t)). For the purposes of 
the present section this fact is not essential. 

We first of all establish the general properties 
of the statistical Po ( t) which describes the state 
of the system. By definition 

Po (t) = Sp1 p (t), (2.1) 

where p ( t) is the statistical operator of the "large 
system," i.e., of the system under consideration 
and of the heat bath with which it interacts. The 
subscript 1 carried by the trace symbol denotes 
that the operation Sp is performed only with re­
spect to the variables which refer to the heat bath. 
The operator p ( t) satisfies the Schrodinger equa­
tion: 

(lip= [Ho (1) + H 1 + pV, p), (2.2) 

where H1 is the Hamiltonian of the heat bath, while 
J-!V is the interaction Hamiltonian. We assume that 

2lin speaking only of amplifiers we wish to emphasize that 
we are dealing only with the properties of a nonstationary 
system with respect to small perturbations (the domain of 
linear electrodynamics of nonstationary media). 

3lSome other properties of such media have been in­
vestigated earlier and by means of a different approach in a 
number of articles[•-u]. 

4lWe adopt that gauge for the potentials for which the 
scalar potential cp = 0. 

the operators H1 and V do not explicitly depend on 
the time. 5> 

Further, we assume that in the case of a peri­
odic Hamiltonian H0 ( t) the operator p ( t) is also 
periodic: p ( t) = p ( t + T). This condition means 
that there is no accumulation with time of infor­
mation (positive or negative ) with respect to the 
"large system" and in the case of a sufficiently 
large number of particles in the heat bath this con­
dition can, evidently, always be considered to be 
satisfied. In accordance with (2.1) the operator 
p 0( t) will also have the same property of periodic­
ity, and this will hold independently of the magni­
tude of the interaction J-!V. The magnitude of this 
interaction can affect only the rate of establish­
ment in the system of the periodic state p0(t). 

Since we assume that the external perturbation 
has been applied to the system at t = - co , and 
that, therefore, we do not discuss transient proc­
esses, then we have at all times for arbitrarily 
small J-l 

Po (f) = Po (t -1-- T). (2.3) 

For a macroscopic system the steady state op­
erator p0(t) which satisfies condition (2.3) is fun­
damentally determined by the properties of the 
system itself, and its dependence on the interac­
tion with the heat bath is negligible. Therefore, 
with the same justification which holds in the case 
of the establishment of Gibbs' canonical distribu­
tion for stationary (equilibrium) systems we shall 
assume that the periodically-nonstationary system 
under consideration is described by the limiting 
(for J-l - 0) expression for the statistical oper­
ator Po ( t), which also satisfies condition (2.3). The 
role played in this case by the transition to the limit 
consists of selecting the correct "zero order ap­
proximation'' to the exact expression for the op­
erator p0(t). 6> 

The "zero order approximation" itself (the 

5lPhysically this means that the external variable field 
A(t) is strong with respect to the system H0 , but is weak with 
respect to the heat bath H, (i.e., it does not lead to signifi­
cant deviations from the equilibrium state of the latter). It is 
just such situations that are of principal practical interest. 

G) A similar situation exists in the case of stationary sys­
tems for which we must take the interaction with the heat bath 
into account only in order to obtain in the "zero-order approxi­
mation" Po = C exp(-,8H 0 ) the correct value of the constant 
,13 = 1/kT. We note that the relevant mathematical problem of 
finding the "zero-order approximation" to the periodic solu­
tion of a system of nonlinear differential equations which are 
close to linear equations with periodic coefficients has been 
discussed by Mandel'shtam[12]. 
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limiting operator Po ( t)) must satisfy the Schrod­
inger equation 

inro = [H o (t), Pol (2.4) 

and correspondingly must satisfy the relation 7l 

Po (t) = So (t, t') Po (t') S;;-1 (t, t'), 

I 

So (t, t') = T1 exp {- f ~ H 0 (t1) dt1}. (2.5) 
I' 

From the compatibility of (2.3) and (2.5) it follows 
that the following commutation relation holds 

[Po (t), So (t + T, t)] = 0. (2.6) 

We now assume that in addition to an external 
field which determines the dependence of the Ham­
iltonian H0 on the time the system is also acted 
upon by a small external "force" Fa(t) the effect 
of which can be described by the perturbation op­
erator 

H' (f) = - 2,; X a Fa (f), (2. 7) 
a 

where xa is the operator which refers to the sys­
tem under consideration. We shall be interested 
in the reaction of the system to this force in the 
linear approximation. 

The statistical operator p0( t) describing the 
behavior of the system in the presence of the per­
turbation H' ( t) satisfies Eq. (2.4) in which the 
operator H0 must be replaced by H0 + H'. On as­
suming 

7)The question can be raised whether the limiting operator 
p0(t) satisfies "its own" Schrodinger equation (2.4). This can 
be proved in the following manner. On the basis of (2.1) and 
(2.2) we have 

I 

Po (I)= Sp1T1exp {- ~ ~(Ho (l1) + H1 + !1V)}di1P (t')L1 
t' 

I 

X exp {-td (Ho (11) + H1 + fLV) dt1}. 

I' 

Utilizing the Feynman technique of "disentangling" the 
operator (/lV) from the Tt-exponential[13 ] and expanding in 
powers of 11 we obtain 

Po (I) = So (1,1') Po (I') S~1 (l,t') 

I 

+ i~ So (l,t')Sp1 ~ (V (l1), p (t')] di1S;;1 (1,1') + ... , 
t' 

v (t) = s-1 (t) v s (t), inS= (Ho (t) + H1)S. 

From this it follows that for 11 -> 0 the operator p0(t) actu­
ally does satisfy (2. 5), and consequently also (2. 4). 

P~ (t) = Po (t) +- .1p (t), 

we obtain in the case of a small increment D.p ( t) 

in.1p = [H0 (t), .1p]- 2,; [xa, Po (t)] Fa (f). (2.8) 
a 

The solution of this equation in the case when the 
perturbation is switched on adiabatically at t = - co 

has the form 
I 

.1p (f) = ~ + ~ S 0 (t, t') [xa, Po (t')] S~' (t, t') Fa (t') dt'. 

a -co (2.9) 

The reaction of the system, defined by the 
change D. ( Xb) t in the average value of a certain 
physical quantity Xb, is given by 

.1(xb)l = Sp (.1p (t) xb)· 

On the basis of (2.9) we obtain from this 
I 

.1 (Xb)t = ~ ~ Kba (f, f') Fa (f') df' 
a -co 

co 

= ~ ~ Kba (f, 1') Fa (f - 1') d-r, (2.10) 
a 0 

where the response functions (or the aftereffects) 
Kba(t, t') and Kba(t, T) are determined by the fol­
lowing expressions: 

Kba (t, t') = i~ Sp {Po (t') [Xa, Xb (f, t')l}, (2.11) 

Kba (t, -r) = Kaa (t, I- -r), 

Xaa (t, t') = S~1 (t, t') XbSo (t, t'). 

(2.12) 

(2.13) 

The formulas (2.10)-(2.13) provide a direct gener­
alization of the corresponding formulas of the paper 
by Callen et al [2] which define the response func­
tion for stationary equilibrium systems. 8> 

In the transition to stationary systems the func­
tion Kba ( t, t') begins to depend only on the differ­
ence t -t', while the function Kba(t, T) becomes 
independent of t. In the case that the system is 
periodically nonstationary, when the operator Po ( t) 
satisfies (2.3), the function Kba(t, T) is periodic 
with the same period T with respect to the vari­
able t. 

Just as in the case of stationary systems, a 
convenient characteristic of the dynamic proper­
ties of nonstationary systems is provided by the 
concept of admittance ( cf., [8- 11]) which is defined 

8lWe note that formulas (2.10)-(2.13) are consequences of 
the solution of equation (2.8) in which the operator p0 (t), gen­
erally speaking, can be arbitrary [i.e., it need not satisfy re­
lations (2.3) and (2. 5)], and are therefore valid for arbitrary 
nonstationary (not necessarily periodically-nonstationary) 
systems. 
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by the equation 

00 

Xba (w, t) = ~ Kba (t, T) e1"'' d-r. (2.14) 

Such a definition of Xba ( w, t) directly generalizes 
the commonly adopted concept of admittance for 
stationary systems. Indeed, for Fa(t) = Re Foa x 
exp (- iwt) we have in virtue of (2.10), (2.12), and 
(2.14) 

~ (Xb)t = .2,; Re Xba (w, t) F0ae- 1"'1. (2.15) 
a 

However, formula (2.14) requires a somewhat 
more precise restatement. The point is that in 
the case of periodically-nonstationary systems the 
function Kba ( t, T) can both decrease as T - oo 

(in analogy to the case of equilibrium systems ) , 
and also it can increase. In the case of increas­
ing Kba ( t, T) the function Xba ( w, t) can be de­
fined for real values of w as the analytic continu­
ation along the real axis of w of the integral (2.14) 
in which the quantity w is complex and satisfies 
the condition Im w > a0, where a0 indicates the 
rate of increase of Kba ( t, T). 

Such a formal definition of Xba< w, t) in the case 
of increasing Kba(t, T) has an entirely clear phys­
ical meaning. The fact that Kba(t, T) increases as 
T - oo means that at least in a certain range of 
frequencies w the system has a negative absorp­
tion for the perturbing energy -1: xaF oa exp (- iwt), 
i.e., the value of the energy losses 

Q., = - ~ ~ (Xb)t F b (t) 
b 

= i: .2,; IX~a (w, t) - Xab (w, t) I Fob F~a, (2.16) 
a. b 

where Xba ( w, t) is evaluated by the previously in­
dicated method (the bar over the formula indicates 
averaging with respect to time), turns out to be 
negative over a certain frequency range. 

The formula (2.16) agrees with the correspond­
ing formula which defines energy losses in station­
ary systems [ after replacement of Xab ( w, t) by 
Xab(w )]. Just as in the case of the latter systems 
the sign of the losses Qw is determined by the be­
havior of the function Xab(w, t) on the real axis. 
For isotropic systems we have 

Qw = (w/2) .2,; I Fr,a [2 Im Xaa (w, f) 
a 

and the sign of Qw is determined by the sign of 
Im Xaa ( w, t). From the point of view of macro­
scopic electrodynamics of media with variable 
properties the case of increasing Kab(t, T) cor-

responds to media with negative absorption. In 
this case the system as a whole, i.e., the material 
medium (described by the polarizability tensor 
Xik ( w, t)) and the electromagnetic field determined 
by Maxwell's equations, can be either stable or un­
stable. In the former case we are dealing with an 
amplifier, and in the latter case with a generator 
of electromagnetic oscillations. Obviously, it is 
not possible to restrict oneself to linear electro­
dynamics in analyzing the latter case. 

3. BASIC PROPERTIES OF THE RESPONSE 
FUNCTION AND OF THE ADMITTANCE 

First of all we establish the symmetry rela­
tions of the function Kab ( t, T ) which follow from 
its definition (2.12) and from the invariance proper­
ties of the Schrodinger equation with respect to 
time reversal. 

By utilizing the obvious property of the S­
matrix: S0( t, t') = S01 ( t', t) we have for the function 
Kba(t, t') on the basis of (2.11) and (2.5) 

Kba (t, t') =- rfi-l Sp {Po (t') lxa, So (t', t) XbS~1 (t', t)l} 

= tli-1 Sp {So (t, t') Po (t') S~1 (t, t') [xb, S~1 (t', t) X a 

So (t', t) I} = - Kadt', t). (3.1) 

From here in accordance with (2.12) we obtain for 
the function Kab ( t, T ) 

Kab (f, T) =- Kba (f- T, - T). (3,2) 

Further, as we have already noted, the Hamilto­
nian H0 depends on the time through the vector po­
tential A(t) of the external field, which we shall 
represent in the form of a sum of a symmetric part 
As (As ( t ) = As ( - t)) and an antisymmetric part Aa 
( Aa ( t) = - Aa ( - t)) (the constant magnetic field is 
included in As). Since a simultaneous reversal of 
the sign of t and transition to the complex conju­
gate Hamiltonian does not alter the sign of the 
antisymmetric part Aa, the symmetry properties 
of operators under time reversal in the case of 
nonstationary systems under discussion have the 
following form: 9> 

Po (- t, -A.) = p~ (t, A.), 
Xa (- As) = x: (A.), 

S 0 (- t, -A.) = S~ (t, A.). (3.3) 

On the basis of (2.11)-(2.13), (3.3) and of the 
reality of the function Kba ( t, T) we obtain 

Kba (- f, - T; -As) =- Kba (f, T; As)· (3.4) 

9lJt is assumed that the classical quantities corresponding 
to the operators Xa are even functions of the velocities. 
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If we take properties (3.2) and (3.4) into account at 
the same time we obtain 

Kab (i, T; As) = Kba (- i + 't', -r; -A,). (3.5) 

This last symmetry relation should, evidently, 
be regarded as a generalization of the principle of 
the symmetry of Onsager's kinetic coefficients [4 •5] 

to the case of periodically-nonstationary systems. 
In spectral form it has the following appearance: 

X~'b> (w; A,) = 'Xb~n) (w + nQ; -A,), (3.6) 

where x~r:l ( w) is the Fourier coefficient in the 
series expansion of the admittance Xab( w, t) i.e., 

T/2 
1 (" 

X~'b) (w) = T .\ 'Xab (w, t) einD.t. 

-T/2 

(3. 7) 

For stationary systems n can assume only the one 
value n = 0 and the symmetry relation (3.6) reduces 
to the usual Onsager's symmetry relation. 

In concluding this section we shall establish sev­
eral other properties of the functions Kab ( t, T) 

which are analogous to the sum rules well known 
in dispersion theory. From (2.11) and (2.12) it can 
be seen that if [ xa, Xb 1 = ilixba. then 

Kab (t, 0) = Sp (Po (t) Xab) = (Xab)f. (3.8) 

Using the well known result from the theory of 
Fourier integrals (Abel's theorem): 

- i lim W'Xab (w, t) = Kab (t, 0), (3.9) 
w-co 

we obtain 

'Xab (co, t) ~ i (Xab)tiW, (3.10) 

where the symbol "' denotes that equality holds 
asymptotically as w- oo. 

For example, for the components Mx and My 
of the magnetic moment per unit volume of the 
medium we have 

(3.11) 

where liz is the component of the angular momen­
tum of the i-th particle associated with the mag­
netic moment ( 'Yi is the gyromagnetic ratio). The 
formula (3.10) for the magnetic susceptibility ten­
sor of a nonstationary medium yields in this case 

(3.12) 

while Xii ( w, t) is a small quantity of order higher 
than 1/w; (Mrz )t is the magnetization of the me­
dium at the time t due to the external field A ( t) 
and associated with the r-th component of the sys­
tem. 

Applying formula (3.8) to the problem of the 
electrical conductivity of a nonstationary medium 
(for example, of a plasma in a strong variable 
field[B,s]) and correspondingly assuming that 

1 { e, }2 H 0 (1)='2J-2- p. --Av(r;, t) 
i mi t·; c 

we obtain 

(3.13) 

where nr is the density of the current carriers of 
the r-th kind of mass mr. We thus obtain for the 
electrical conductivity tensor (with respect to the 
total current) a J-LV ( w, t) the same asymptotic rep­
resentation (for w - oo) as i~ the case of station­
ary media 

(3.14) 

4. FLUCTUATIONS IN CLASSICAL NONSTATION­
ARY SYSTEMS 

For stationary systems (in thermodynamic equi­
librium) the fluctuation-dissipation theorem holds, 
one of the many possible forms of which consists 
in establishing a relation between the relaxation 
function of the system and the correlation function 
of the equilibrium fluctuations of corresponding 
physical quantities [3]. It can be easily shown that 
a similar relation holds for nonstationary systems. 
However, our discussion will now be restricted 
only to classical systems characterized by positive 
absorption of energy along the whole axis of fre­
quencies w (so that the response function Kab ( t, T) 

always dies away for T - oo ) • 

We introduce the concept of the relaxation func­
tion 'Pba(t, s) for a nonstationary system as are­
sponse to the force Fa(t) which is constant and 
equal to unity until the time s and is equal to zero 
for t > s. In accordance with (2.10) we have 

00 

C{Jba (t, s) = ~ Kba (t, T) dT, t > s. (4.1) 
t-s 

For periodically-nonstationary systems, when 
Kba(t, T) = Kba(t+T, T), the function 'Pba(t, s) 
satisfies the condition 

({Jab (t, s) =({Jab (t + T, s + T). (4.2) 

The correlation function 1/ba ( t, T) of nonstation­
ary fluctuations of the quantities xa ( t) and Xb ( t) 
is by definition equal to 
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1Jlha (t, T) = < /',.xb (t + T) /',.xa (t)) 

(4.3) 

where the notation ( ... j6xi ( t)) denotes averaging 
corresponding to the time t+T, under the condi­
tion that at the time t the quantities 6xi ( i = 1, 2, 
... , n) have given values; the notation ( ... hxj(t) 
denotes averaging over all posible values of the 
fluctuations 6xj at time t. 

Just as in the development of the phenomenolog­
ical spectral theory of fluctuations in equilibrium 
systems, we shall utilize for the determination of 
conditional averages Onsager's postulate with re­
spect to the regression (decay) of fluctuations [4•5], 

and, in particular, we shall assume 

< /',.xb (t + T) I /',.x1 (t)) = ~ cpb1 (t + T, t) cp~1 (t, t) /',.xi (t). 
i,j (4.4) 

Here 1:jcpij1(t,t)6xj(t) is, evidently, that value of 
the constant force Fi acting until the time t which 
produces at the time t the given values of the re­
sponses 6xj (j = 1, 2, ... , n). 

On substituting (4.4) into (4.3) and on averaging 
over 6Xj ( t) we obtain the desired relation between 
the correlation function for the fluctuations in a 
nonstationary system and its relaxation function: 

1jlba (f, T) = ~ cpbi (t + T, f) cpjf (t, t) 1jlja (t, 0); T > 0. 
i,j (4.4') 

This relation, naturally, does not have the same 
universal character as in the case of equilibrium 
systems since its right hand side contains the ma­
trix of the intensities 

•h. (t, 0) = (/',.x. (t) /',.x (t)), (4.5) ~,, l 1 

which in the case under discussion, generally 
speaking, depends on the time and can be evaluated 
only on the basis of a specific kinetic model of the 
fluctuations. Thus, the relation (4.4') enables us 
only to calculate the correlation function of the 
nonequilibrium fluctuations in the system for T > 0 
if we are given its dynamic properties (i.e., 
Kba(t, T) or <Pba(t, T)), and also the intensity 
(4.5) of these fluctuations at each instant of time. 

The correlation function if!ab ( t, T) for negative 
T can be defined in accordance with the obvious 
relation which is valid for any arbitrary nonstation­
ary fluctuations [9]: 

1Jlab (f, - T) = 'f"" (f- T, T). (4.6) 

The combined relations (4.4') and (4. 6) enable 
us to determine the spectral intensity Gab ( w, t) of 
the fluctuations in a nonstationary system if we are 
given the total (integral) intensity (4.5) of these 

fluctuations. For this we need only use the natural 
generalization of the Khinchin-Wiener [9] formula: 

1 ':' . ~ {r 
Gab (r•l, t) = 2n ~ 1l'ab (t, T) e'"'~ dT = 2n .l [1Jlab (t, T) 

-00 0 

+ 'lPha (f- T, T)] COS WT dT 

+ i ~ [1Jlab (f, T)- 1J'ba (f- T, T)] sin WT dT}. (4. 7) 
0 

In going over to systems in thermodynamic 
equilibrium when <Pab(t, s) depends on the differ­
ence ( t- s), while the correlation function 1/Jab 
does not depend on t, we have [14] 

, a2s ) -· · a's \ 
1Jl,k (O) = kT I at:,x atlx ' cp£l (O) = 1 a~x a~x . I ' 

\ 't k Axj~O \ l k .. ::,Xj=O 

(4.8) 

where S = S ( 6x1o 6x2, ••• , 6xn) is the entropy of 
the system. Substitution of (4.8) into (4.4') leads 
to the fluctuation-dissipation theorem [3]. 

The author is grateful to V. N. Lugovoi and K. K. 
Svidzinskil for discussions of certain problems re­
lating to this paper. 
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