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The validity of the vector current conservation hypothesis in weak interactions is limited 
similarly to that of the isotopic invariance and hence, generally speaking, one should expect 
that in the decays of strongly interacting particles the vector coupling constant (which is 
linear in the particle-mass difference in isotopic multiplets) should be renormalized. In 
the first part of the paper a proof is given of the theorem (which, in strong interactions, is 
valid in all orders) that there is no such renormalization for the neutron and I: hyperon f3 
decay, and for the rr±- rr0 + e± + v decay. The second part of the paper is devoted to a 
calculation of the probability of the rr+- rr0 + e+ + v decay with radiative corrections taken 
into account. The use of the above theorem narrows greatly the limits of the theoretically 
predicted value of the probability. 

1. VECTOR CURRENT CONSERVATION AND THE the field system can be written as the sum 
MASS DIFFERENCE 

1. The vector current conservation hypothesis [t ,2] 

which was evoked to explain the lack of renormali­
zation of the vector coupling constant in strong in­
teractions has a strictly defined sense only when 
the mass difference in isotopic multiplets is neg­
lected. The quantity ojUYoxJ.L' where 

·(/) - _!_ ill . '¥ ltk - 2 't" 'Tt1p. 

i (acp* 7' ·r acp \ 
- -c- - ·<:p- <:p ·-) + terms corresponding 2 dX1, I l dX1k 

to other strongly 
interacting particles and leptons 

(1) 
(here lJ! and cp are the Heisenberg operators of 
the nucleon and rr-meson fields) does not vanish 
if we take the terms linear in the mass difference 
into account. 

We shall assume that in this case, too, the weak 
interaction can be written as Gj"Mj 1-L; we would then 
in general expect a linear (in the mass differences) 
renormalization of the constant G in the decays of 
strongly interacting particles. It will, however, be 
shown in what follows that at least in the f3 decay 
of the neutron and of the I: hyperon, and also in 
the rr±- rr 0 + e± + v decay, the violation of the 
isotopic invariance and the related renormaliza­
tion of G are effects quadratic in the mass dif­
ference. 

2. We assume that the total Hamiltonian H of 

(2) 

where H1 is the isotopically invariant part which 
includes the free Hamiltonian and all strong inter­
actions, Hw is the weak interaction, V is the term 
containing the operators of the mass shift in iso­
topic multiplets (which, acting on the functions of 
physical states, produce the experimentally ob­
served mass differences). 

Two points of view are possible concerning the 
nature of this term. The accepted one is that the 
mass difference is due to electromagnetic interac­
tions. From this point of view V represents the 
mass effect of electromagnetic interactions, in the 
form of a counterterm which permits the mass re­
normalization. However, by taking V into account, 
we do not in fact take into account all effects of 
electromagnetic interactions. 

The remaining term Hez describes the inter­
action of particles with a physical mass, and leads 
only to vertex effects and to the renormalization of 
wave functions. We can assume that these effects 
will be correctly taken into account by calculating 
the radiative corrections, and in the first part of 
the paper we do not consider them at all. 

Since such an approach is not fully justified, we 
propose in the following another interpretation. 
Since the radiative corrections are very small 
( ~ 1-2%), then the degree to which the isotopic in­
variance is violated in the decay of strongly inter­
acting particles can be determined from the mass 
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differences in isotopic multiplets (which are very 
large in mesic and hyperonic multiplets ). Disre­
garding the problem of the origin of the mass dif­
ference we shall take it into account phenomenologi­
cally [ (term V in Eq. (1) l . Our thesis is that 
there is no linear effect in V. 

We take the interaction in the form 

V = + bmn, P ~ W (T13 + CN) 1I'd3x 

+ 6f.t2""· ,± ~IP· (Ti +en) qJd3x terms corresponding 
to mass differences 

of other isotopic multiplets 
(3) 

where omn,p = mn- mp, OJ..L~O,rr± = 1-L! -~-Lt eN and 
err are arbitrary constants related to the indeter­
minate values of the unperturbed multiplet masses 
(these constants determine the center-of-mass 
shift of the multiplets ). The crucial assumption is 
that the perturbation theory can be applied to the 
interaction V. 

3. Let us consider the rr+- rr0 + e+ + v decay. 
The matrix element of this process is 

Let us introduce the notation 

In:+> = "If <+> (O) = w<+>, 

j~> (x, 0) = J~> (x). 

where J~) (x) is the current operator in the 
Schroedinger representation, and if(+> ( t) and 
w< 0>(t) are the stationary single-meson states of 
the Hamiltonian H1. It should be noted that 

j~> (x, t) = e' <H,+V> t J~> (x) e-i(H,+V> t. 

The quantity eiHttJU>(x) e-iH1t which represents 
the current (in the V -interaction representation) 
is at the same time a Heisenberg operator with 
respect to the isotopically invariant interactions 
included in H1• We have therefore 

..}--- [elH,t J~> (x) e-tH.t] = 0. 
vXl'-

In terms of the current JU 1 ( x), this relation 
becomes 

div J<'>(x) = i [H1, J~>(x)l. (7) 

\ Integrating over the whole space we obtain the 
M = (2:rti) 6 (£+ - £0- qo) Gll'- .l (:rt0 li~-> (x, 0) l:rt+) e-tqxdax, basic relation 

(4) 
(8) 

~<n°1j~-) (x., 0) 1 ;t+ )e-iqx d 3 x where t<-> = J Jb-> (x) d3x. Finally we obtain: 

= llp+, P'+q It (q2) (p+ + pO) + h (q2) q ]. 
V4£+£0 l'- l'-

(5) f (0) = ("\f(O), f(-)"\f(+l), {9) 

where p+ = ( E+, p+) and p0 = ( E0, p0 ) are the mo­
menta of the rr+ and rr0 mesons, q = ( q0, q) is the 
momentum transferred to leptons, ZIL = u 11y/.L ( 1 
+ y 5 ) ve is the leptonic part of the current, and 
·<- > _ 2-112< ·<1> ··<2> > J /.L - J /.L - 1) P: • 

If the current j~> is conserved, then f ( 0) = 1 
and h ( q2) = 0. In general h ( q2) ~ om, where om 
is the generalized symbol for the mass differences 
in Eq. (3). 1> 

The time-like component of Eq. (5) for q = 0, at 
the point where Op+,pO+q = 1, in the rest-mass sys­
tem of the rr+ meson is: 

~ (:rt0 I jr>(x, 0) In+) d3x 

= fl+ +flo [f (0) + h (0) fl+- flo]= f (0). 
V 4fl+flo fl+ + flo 

Eq. (6) is correct to terms quadratlc in the mass 
differences. 

(6) 

!)It should be noted that the term with h(q2) in Eq. (5) is 
not important in the expression for the decay probability since 
in addition to being small ("'om) as compared to the first term 
in Eq. (5), it contains the additional parameter me/ ll+ (where 
me is the electron mass) which is due to the action of qf' on 
the leptonic bracket. 

where the whole dependence on the mass differ­
ences (or the interaction V) is contained in w< 0> 
and 1¥<+>. It is evident that 

(Hl +'V) "\f(+); (O) = f.l+; o "\f(+);(O). (10) 

Let us consider the complete set of states <Pn 
of the unperturbed Hamiltonian H1. We have then 
the general formula of the perturbation theory for 
stationary states: 

'f(+) = cp(l) + "\:1' (<Dn, V<lJ(l)) cp (11) 
LJ E n• 
n n-1-1 

'(<!> V<!>(O)) 
"\}"(0) = cp(O) + ~ n• <I> (11 1) 

n En-1-1 n• 

where q,O> and q,<O> are the rr+ and rr0 meson 
states (for p+;O =.0) of the Hamiltonian H1. (The 
indices <1 > and <O> characterize the z component 
of the isotopic spin.) The summation L:;' in Eq. 

n 
(11) is carried out over the complete set <Pn ex-
cluding the rr+ -meson state q,O >. Correspondingly, 
the summation in Eq. (11') does not include the 
rr 0 -meson state q,<O>. 

Since the interaction V is ·diagonal in the charge 
states, then the rr 0 and rr- mesons are also absent 
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in Eq. (11); accordingly, there is no rr- or rr+ 
among the n states in Eq. (11'). Consequently, 
single-meson states are absent in Eqs. (11) and 
(11') among the n states, and the denominators in 
these formulas never vanish. (We assume that in 
the spectrum of the operator H1 there are no 
other states with p~ = JJ.2 apart of the single-meson 
states.) 

Furthermore, using Eq. (9), we obtain 

f (O) = (<I>(o), t<-> <I>(l)) + 2J E :_ fl. {(<I>n, V<I>(l)) (<I>(O), t<-><I>n) 
n n 

(12) 

Since tH is an integral of motion [ cf. Eq. (8)], 
and since it obviously commutes with the total mo­
mentum of the field, it is necessary that p~ = JJ.2• 

We found, however, that there are no such states 
among the n states in Eq. (12) and, therefore, 
there is no linear effect in V, i.e., 

(13) 

It can be easily seen that t<h are infinitesimal 
rotation operators in the isotopic spin space. Since 
t<-> = 2-1/2 ( t<1> - it<2>), then the matrix element 
( <1>< 0>, t<-l <1>< 1>) in Eq. (13) is equal to unity 2>, thus 
proving the theorem that the constant G is not re­
normalizable in the approximation linear in the 
mass differences. 

4. The proof of the theorem is carried out ana­
logously for the {3 decay ( n- p + e + ") and for 
the {3 decay of :E hyperons. Thus, e.g., the {3 de­
cay vertex operator r JJ. should be written in the 
form 

r p. = a (q2) y p. + b (q2) qp. + c (q2) C1p.vqv. (14) 

The contribution of the form factors b and c 
is negligibly small, and for the quantity a ( 0) we 
find easily a relation of the type (6): 

a (0) = V2~ (pI j~+> (x, 0) In) d3x, 

j<+> = 2-'/, (j(l) + ij<2>). (15) 

The consequent calculation is carried out in Sec. 3. 
As a result, we obtain an equation analogous to Eq. 
(13) 

a (0) = V2 (<I>('/z), t<+><t><-'lzl), (16) 

where <I><-1/2> and <1><1/2> are the neutron and pro­
ton states of the Hamiltonian H1. Repeating the 

twe use the well-known expression for the matrix elements 
of rotation generators t<il in canonical basis: 

(m ± 11 t<1> ± u<2> I m) = Vt (t + 1)- m (m± 1). 

arguments following Eq. (13), we find again that in 
the case under consideration a ( 0) = 1. 

The absence in the {3 decay of effects linear in 
mass differences was earlier established by Beh­
rends and Sirlin [ 3], but their proof is less general 
and is not applicable to the rr+ - e+ + v + rr0 decay 
and to hyperon decays. 

2. THE 1T+ - 1r0 + e+ + v DECAY 

1. The rr+ - rr0 + e+ + v decay has recently been 
found experimentally ( cf. [ 4- 6]). The decay was 
first predicted by Zel'dovich L7J in 1954. The 
study of this process enables us in principle to 
test the current vector conservation hypothesis in 
weak interactions, [t •2] since it follows from this 
hypothesis that the interaction constant of the pro­
cess is equal to the constant of the vector part of 
the {3 decay interaction. It is interesting to find 
out how accurate is the equality of the constants, 
taking into consideration the approximate charac­
ter of the vector current conservation. 

2. Let us estimate the radiative corrections to 
the rr+ - rr0 + e+ + v decay. In addition to the 
main process (see diagram 1 in the figure) we 
have a set of processes involving the emission of 
a virtual photon (diagram 2-8) and also the decay 
with the emission of a bremsstrahlung photon ( dia­
gram 9-11 ). In diagrams 9-11 we neglect the 
rr-meson form factor. Let us first consider the 
case where the weak interaction form factor is in­
dependent of q2 (the square of the difference of 
the meson four-momenta) and of the difference in 
meson mass. We are then left with diagrams 1 to 7. 

,n• ..... ' ',~ ~~ ~::os:: fp 
,./ e+ 

""/ fl + / 
/ 

/ 

z J 

...... -... 

-~:~ /:;JD< 'D<: / /u / 
/ 

£.. 5 6 

7 8 
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The resulting set of diagrams is generated in 
the lowest order by the following interaction La­
grangian 

L m A' m + . (a<p* * acp \A 2A A~'- * 
int = - e T e T e te ax!'- <jJ - <jJ ax!'- ) !J. + e !J. <p <p 

where lJJ. = ~vYp. (1 + Ys)~e• G = (1.01 
± 0.01) 10-5 /M2, and M is the nucleon mass. The 
contribution of such diagrams was calculated in 
[S], in which, however, the authors committed a 
number of errors. The diagrams were used with 
incorrect relative signs, and were therefore on the 
whole not invariant with respect to gauge trans­
formation. An error was also made in calculating 
the contribution of diagram 4 and of the brems­
strahlung photon (diagrams 9-11). 

We shall calculate the positron spectrum in the 
case where the decay with the bremsstrahlung 
photon emission is not singled out experimentally: 

W(e) de = G2m;n-3 (I+ 2m,f-L~1 ch e) (I + <l> 1) 

x (che0 - che)2 sh2 e chede; 

<l>1 =-a In she che]-1 [8 + e ch2 8 + 2e2 ch2 8 -3 she che 

--~sh8ch81n(A/me) + 2ch8(sh8- 8ch8) 

x In [2 (ch 80 - ch 8) I 2 ch2 8f(l - e-29) + }(ch 80 - ch 8) 

x (2 she -fe ch8 -+e ch80)). (18)* 

In this expression me and JJ.+ are the positron 
and 1r+ meson mass, respectively, and coshe 
= E/me, where E is the positron energy. e varies 
within the limits 0 :s e :s 80, and e0 isgivenbythe 
relation 

ch Oo = emaxlme = !':J./me(l - !':J./2f-l+) 

where Ll is the mass difference of the 1r+ and 1r0 

mesons, A is the ultraviolet cutoff, and f (x) 
X 

= - J [ln ( 1 - t) dt]/t is the Spence function. The 
0 

function <I> 1 is due to the radiative corrections and 
is very similar to the expressions for radiative 
corrections to the electron spectrum in {3 decay 
[Kinoshita and Sirlin, [ 9] Eq. (4.2) 3l]. 

3lFor a comparison, we can first simplify Eq. ( 4. 2) in [•] 
taking into consideration that the complete set of Spence func­
tions in Eq. (4.2) can be in fact reduced to one function: 

t<~l-t<-~l+t(~)+_!_t(1 -~)-_!_r( 1 +~)- 21 (-~~-) 1+~ 2 2 2 2 - 1+~ 

2 
- In 1 +~arc tanh~= 2f (1- e-20)- 6ln (2e-0 sh 6) 

and the term with ln (2e -e sinh()) cancels the last term in Eq. 
4.2 in [•]. 

*ch ~ cosh; sh = sinh. 

In the case where the experimental resolution 
of the photon energy w0 is small ( w0 ~ me), the 
function <I> 1 in Eq. (18) should be exchanged for 
<I>2: 

<l>2 =-a [nsh8ch8)-1 

x [ 8- 28ch2 8 + 282 ch2 0 + 2 ch8 (sh8-0ch8) 

xln (2wofm.)2 ch2 ef(l -e-29) -% she ch8 In (~) J. 
e, (19) 

The integration in Eq. (18) leads to the follow­
ing expression for the decay probability: 

W =Wo (I-f !':J./f-l+- 5m;/ ~2 + 61), (20) 

where w0 = G2il5 /307r3 and 61 = ( 3a/27r) [ ln (A/2Ll) 
- 47r2/9 + 59/20] arise because of the function <1> 1• 

When exchanging <I> 1 for <I>2 in Eq. (20), it is nec­
essary to exchange 61 for 62, where 

Cl ( 3 A 47 21'1 
lh = ;:t 2In me + 00 In me 

61 and 62 are of the same order of magnitude 
(for w0 ~ 1/10 me). 

In the following we consider only 61• Numeri­
cally 61 = 0.012 for A = M. Kinematical correc­
tions [second and third terms in Eq. (20)] amount 
to - 0.113. As the result, the decay probability 
is found to be 

w = 3.95 .IQ-1 sec-1 (21) 

The error of the known value of the mass dif­
ference of the 1r+ and 1r 0 mesons [ Ll = ( 4.59 
± 0.01) MeV] causes an error of 1.5% in the de­
cay probability. The variation of A by a factor of 
10 leads to 0.8% change in w. An attempt to cut 
off the interaction with the photon in the positron­
pion vertices at different A (similar to what was 
done for {3 decay in [to]) assuming that the elec­
tron is cut off in weak interactions at Ae 
~ 300 BeV, and the meson in strong interactions 
at A7r = M ~ 1 BeV, leads to the exchange in Eq. 
(20) of A for Aeff::::; 2.5A = 2.5M, 4l and we ob­
tain practically the same results as earlier for 
A = Ae = A7r = M. 

Thus, the radiative corrections and the errors 
in Eq. (20) are very small. There is, however, a 
source of an additional error, which we have not 
considered so far. 

3. If we take the weak interaction form factor 

4lSuch a result is obtained if we choose the cut-off factor 
in the positron vertex in the form Ae/[A~ + k2]Y' and in the 
17 meson vertex in the form A1r![A~ + k2]'1'. It is then neces­
sary to make use of the fact that Ae » A1r. 
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into account, then the matrix element correspond­
ing to diagram 1 in the figure is proportional to 
the expression [compare Eqs. (4) and (5)] 

GFp.uvr~'- (l + Ys) v., 
Fp. = f(q2) (p+ + pO)p. + h(q2) qp.· 

(22) 

(23) 

We can neglect the second term in Eq. (23) (see 
footnote 1 l). In the theory with conserved vector 
current the quantity f ( q2 ) coincides, with an ac­
curacy to the meson mass difference, with the rr­
meson electromagnetic form factor. We can as­
sume that f(q2 ) = f(q2//}) ~ f(O) since q2/1J.2 

~ t:;.2/1J.2 ~ 10-3• The theorem about the absence of 
effects linear in the mass difference (see section 
3.1) enables us to put f ( 0) = 1 + 0(!::;.2/IJ-2 ). Thus, 
taking the form factor in diagram 1 into account 
does not lead to a considerable uncertainty in the 
decay probability. 

4. The source of an additional error lies in an 
effect analogous to that discussed in [ 1o] for the 
radiative corrections to the {3 decay. In the pres­
ence of form factors, the diagrams 2-8 are gauge­
invariant and processes 6-8 occur therefore in 
addition to those discussed by us in Sec. 2.2. (It 
should be noted that the cases of a local interaction 
of five fields, contained in diagrams 6 and 7, were 
also taken into account in Sec. 2.) Let us denote 
by F~ (p+, p0, q, k) and F~A.' (p+, p0, q, k, k') the 
form factors involving the emission, directly 
from F in diagram 1, of one and two photons 
respecBvely, with momenta k and k' and polari­
zations A. and A.'. We have also the following 
identities of the Ward type for F~ and Ft"': 

k,p~ (p+, P0 , q, k) 

= e [Fp. (p+- k, p0, q- k) - Fp. (p+, p0 , q)l, (24) 

k).kl..,p;'-' (p+, p0 , q, k, - k) = e2 [Fp. (p+ + k, p0 , q + k) 

- Fp. (p+- k, p0 , q- k)- 2F..,. (p+, P0 , q)l. (25} 

The proof of these relations obtained by summing 
the perturbation theory diagrams, was given in 
[ 10J. 5' The contribution of diagrams 6-8 can be 
estimated as follows: Eqs. (24) and (25) enable 
us to express the quantities Ft and FtA.', for k 

5lJn this proof, the interactions in which the photon is 
emitted from the same point at which the interaction with the 
lepton current takes place were erroneously omitted. Further 
analysis shows that the form factors in the presence of such 
interactions satisfy, as before, Eqs. (24) and (25) and the 
complete set of diagrams including the emission of photons 
and of lepton currents from the same point is separately gauge­
invariant. 

and k' equal to zero, through the derivatives of 
the form factor Fw Thus, e.g., 

F~[k=o = - eg~..P., (26) 

(27) 

In calculating the contribution from diagrams 
6-8 we used Eqs. (26) and (27) and cut off the in­
tegration over the photon momentum at the nu­
cleon mass. The resulting correction to the decay 
probability equals ~ 0.3%. Strictly speaking this 
quantity is actually not a correction but character­
izes only the magnitude of additional errors, since 
the above discussion does not pretend to great 
accuracy. 

5. Summarizing the results of the preceding 
sections we come to the conclusion that the proba­
bility of the rr+ - rr 0 + e+ + 11 decay is given by 
Eq. (21) with an error of 2.5-3%. Moreover, a 
greater part of this error ( 1.5%) is due to the 
errors in the experimental value of the rr+ and rr0 

meson mass difference [ /::;. = ( 4.59 ± 0.01) MeV]. 
The probability considered usually is that of the 

rr+- IJ.+ + 11 decay, which essentially determines 
the lifetime of the rr+ meson. The ratio R is 
found to be 

R = (1.01 ± 0.03)·10-8 • (28) 

For comparison let us quote the values of R 
obtained recently by three different experimental 
groups: 

R 

(I. I~~:~)· I o-s 
(1.7 ± 0.5). w-s 
(2.0 ± 0.6) ·I o-s 

Experimental group 

Dubna [ 4] 

Geneva 15J 
Berkeley [s] 
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