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Equations are deduced which describe the nonlinear interactions of electroma~netic _w~ve~ in 
a transparent medium. The results are applied to the study of second harmomcs ansm~ m_the 
propagation of the wave in the medium. The intensities and polarizations of the harmomcs m 
quartz are determined. 

1:. Dynamic and kinetic equations describing non
linear interactions between waves in a plasma, 
located in a strong magnetic field were obtained in 
[i]. In the present work, similar equations are 
obtained for an arbitrary medium. 

e"13 (m) = e:13 (-m). 

In what follows, only transparent media will be 
considered. We can then write [ 4J 

e"ll (m) = e~" (m). 

(6) 

(7) 

Recently, the problems of the nonlinear elec- For simplicity, we shall not consider spatial dis-
trodynamics of a medium have attracted interest persian, i.e., we shall assume that cp~~( t - t1 ) 

in connection with the appearance of experimental does not depend on r- r 1, or Eaj3(w) on k. Even 
possibilities for the study of nonlinear effects. For in this case, cp~~Y( t - ~) does not in general de-
example, Franken et al [2] have reported that the pend on r _ r 1, r 1 _ r2 (for example, for a cold 
appearance of a second harmonic was observed in plasma). In what follows, however, the depend-
the transmission of an intense monochromatic ence of cp(2~ on the coordinates is not expressed 
light beam in the optical frequency range through explicitly,auf'asmuch as it does not play a decisive 
crystalline quartz. This phenomenon is very simply role and complicates the formulas. All the re-
interpreted by means of the equations for wave sults obtained are easily generalized to the case of 
interactions obtained in the present work. spatial dispersion. 

2. For simplicity, we restrict ourselves to It must be kept in mind that cp~~ vanishes in 
nonmagnetic media (J.L ~ 1) and write down Max- certain cases, for example, for bodCes possessing 
well's equations in the form a center of symmetry (in the absence of the de-

1 ao 4 p iJH t E (1)* pendence of cp~hy on r, r 1, or r 2 ). In such_ a rot H = -c ---;,1 , D = E + n , 7fi = -- c ro . u.p 

u case, it is necessary to take the terms of th1rd 
The nonlinear effects are described by terms of order in the field into account-cp~~yo. We apply 
second and higher orders in E, depending on the the method set forth below in this case; however, 
polarization vector P and E. By restricting our- we shall not consider it specially since the effects 
selves to terms of second order, we can write determined below are chiefly connected with the 
(see [3]) term cp ~~ , which is quadratic in the field. 

3. We first write down the fundamental rela
tions of the linear approximation in a form con
venient for subsequent expansion. The solution of 
the linearized equations of Maxwell has the form 

p = p<l) + p(2); (2) 

I 

p~> = (4nr1 ~ dtlcp~1J <t - tl> E(l ctl), (3) 

-00 

I I, 

p~> = (4n)-1 ~ dt1 ~ dt2cp~2Jy (t - t1, f1- i 2) £13 (tl) Ey (t2}, 
-oo -oo (4) 

a, /3, y = x, y, z. The function cp~~( T) in (3) de
termines the dielectric tensor 

00 

1 + \ m ~113) (~) eiwT d't, e._fJ = .\ -r~ ' 
(5) 

0 

*rot~ curl. 

E = V-'/, ~ Cp E(p) exp {i (pr- mpt)}, 
p~k, k_ 

H = V-'J, ~ Cp H(p) exp {i (pr -mpt)}, 
p=k, k_ 

where the cp are constants. Here and in what 
follows, we shall denote the wave vector of the 

882 

(8) 
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harmonic with positive frequency by k, and the 
wave vector of the harmonic with negative fre
quency by k_, so that 

k_ =- k, 

E(k_) = E*(k), H (k_) = H*(k). (9) 

E( p) and H( p) satisfy the equations ( p = k, k_) 

[pH(p)Lx =-(lie) Ba.~E~ (p), Wp H(p) = c [pE(p)], (10) 

from which it follows that 

lPa.P~- P26a.~ + (w~/c2) Ba.~ (wp)l E13 (p) = 0, · (11) 

H a. (k) H: (k) = Ba.~ E: (k) E ~ (k). (12) 

Finally, to determine the meaning of cp in (8), 
we must normalize the vectors E(k) and H(k). 
For this purpose, we write down the expression 
for the electromagnetic density of the medium W 
(which has meaning only for a transparent medium 
C4J). By using the expansion (8) and the relation 
(12), we have (seeC4J) 

W = (I6n)-1 ~ [d (:~~) E: (k) E13 (k) + H: (k) Ha. (k) ]c~ck 

(13) 

where the summation is carried out over all har
monics with positive frequencies. As in [t], we 
normalize E(k) and H(k) so that W takes the 
form 

(14) 

i.e., 

[ d (we, 13) ] • 
(16n)- 1 ~ -f-ea.~ Ea. (k) E13 (k) = w (k). (15) 

In such a normalization, I ck 12 = CkCk has the di
mensions of action, and the quantity I Ck 12/:11 must 
be interpreted as the number of quasiparticles with 
energy nwk· 

4. Let us now consider the nonlinear term p<2) 

in (2), which determines the interaction between the 
waves. Assuming this interaction to be sufficiently 
weak ( amplitudes of ck small), we shall seek the 
solution of the set (1)-(4) in the form 

E = V-'i, 2J Cp (t) [E(p) + E'(p)J / (pr-w/>, 
p~k, k_ 

H = V-'1, 2J Cp (t) [H (p) +- H'(p)J e1 (pr-wpll, (16) 
p~k. k_ 

where E ( k) and H( k) are the polarization vectors 
of the normal waves of linear approximation, de
termined by the relations (10) and (15), cp( t) are 

slowly varying amplitudes [in comparison with the 
exponents in (16)], E'(k) and H'(k) are small, 
slowly varying additions to the polarization vectors 

· of the normal vibrations. 
It will be clear from what follows that if cp( t' 

is regarded as small of first order, then E' and 
H' will also be of first order smallness, and 
dcp/dt will be of second order; the derivatives 
dE'/dt, dH' /dt can also be regarded as small in 
comparison with E', H'. Substituting (16) in (3), 
and limiting ourselves to terms up to second order 
smallness inclusively, we get 

00 

+E13 (p) ~cp~J(-r)e1"'P'(cp(t-T) -iWpCp(t--r))}. 

(17) 

In the second term we expand cp( t) in a Fourier 
integral 

00 

Cp (t- T) = (2n)-1 ~ Cp (v) e-iv U-<) dv. (18) 
-00 

Substituting this in (17) and carrying out the ele
mentary transformations in the second term, we 
get 

00 

- iE13 (p) ~ dve-ivt (v + wp) lea.f3 (v + w~)- 6a. 13 1 Cp (v). 

- n~ 
The smallness of the change in cp( t) means 

that cp( v) is substantially different from zero 
only for v ~ wp. We can therefore write in (19) 

(v + wp) lea 13 (v + wp) -1] 

;::::::: Wp lea{l (wp) - 6a{ll + V d~ lw(Baf3-6a.f3)lw="'p· (20) 

Substituting (20) in (19), and carrying out the 
inverse summation of the Fourier components, we 
get 

X d~ (w (Ba('l- 6a.f3)]w~wp}, 

Substituting (16) in (4), we compute 8P~'/at 
(with accuracy to terms of second order): 

X Ell (p') Ey (p") exp [i (wp· + Wp") t], 

(21) 

(22) 



884 V. I. KARP MAN 

where 1l 

C1a(3y (ro', ro") =:= 1/ 2 (ro' + ro") lxa~y (ro' + ro", ro') 

+ X,ay~ (ro' +ro", ro")], (23) 

00 00 

Xa/ly (ro', ro") = ~ d-c' ~ d-c" {j!apy (-c', -c") exp [i (ro'-c' + ro"-c")l. 
0 0 

(24) 

Substituting (21) and (22) in (1) and (2), we equate 
the identical Fourier p components, use (10), and 
then eliminate H' ( p) from the resulting equations. 
We then get a set of equations for E~ ( p): 

- V-'1, h Cl'•Cp" C1apy (rop•, Wp•) E 13(p') Ey(p") 
p'+P"=p 

x exp [i (rop - rop• - rop•) t). (25) 

This set differs from the set of equations (11) for 
E~(p) only in the presence of the right hand side. 
Consequently, its numerator is equal to zero. For 
the set of equations (25), it is necessary that the 
right side of this set be orthogonal to the solutions 
of the transposed set without the right-hand side, 
i.e., the vectors E~(p) satisfying the equation 

IPa P13 - P26al3 + (ro~/c2) Bpa (rop)] E 13 = 0. (26) 

On the basis of (7), one easily obtains 

Ea (p) = £: (p). (27) 

Thus the consistency condition (25) takes the form 

i :~P {eal>(rop) + d:P [ropBa(l(rop)]}£: (p) £1> (p) 

+ v-'h h Cp•Cp"a (rop·, Wp") £: (p) E{l (p') Ey (p") 
p'+P"=p 

(28) 

Using the normalization condition (15), we see 
that the expression in the curly brackets in (28) is 
equal to 167rwp, and we get finally 

. dcp ~ . (29) 
L -= .L.J Vpp'p"Cp·Cp" exp (L (ro~ -rop· -rop") t], 

dt p',p" 

where 

Vpp'p" =- v-'1. (16:rtrop)-l C1a(ly (rop·. Wp")£: (p) Ei> (p') Ey (p") 
for p = p' + p", (30} 

Vpp'p" = 0 for P =I= p' + p". (30a) 

We have thus obtained an equation determining 

1lThe analytic properties of the tensor aaf3y(w', w") were 
studied by Kogan.[•] 

the change with time of the amplitudes of the in
teracting waves, which is identical in form with 
the dynamic equation for the waves obtained pre
viously. [ 1] For calculation of Vpp'p" in explicit 
form, it is necessary to know the function 
<p~b ( Tt, T2 ), which determines the nonlinear re
spodse of the medium to the external electric field. 

According to [a], the following expressions are 
valid for these functions: 

However, for a number of concrete cases in which 
the quantum properties of the medium are ines
sential, in particular for a classical plasma, the 
quantity <p~Sy( T1, T2 ) is easily computed directly 
by means of the kinetic or hydrodynamic equations, 
expressing the polarization vector of the medium 
in terms of the field intensity, with accuracy up to 
second order. Proceeding in this fashion in the 
case of a "cold" plasma in a strong magnetic 
field ( H2 /871" ~ nT) we get the equations for 
Vpp'p" found for this same case in [t] by a some
what different method. 

The "matrix elements" Vpp'p" satisfy some 
general symmetry relations. Two of them are 
easily obtained immediately: 

v pp'p" = v pp"p'' 
v pp'p" = - v· . . . P_P_P_ 

(32) 
(33) 

The first follows from (30) and (23), and the second 
is obtained if we take the complex conjugate of (30) 
and consider that Cp == Cp [see (9)]. 

In contrast with (33) two other general relations 
are satisfied only for 

Wp = Wp• + Wp", p = k, k_ 

and have the form 

vkk'k" = v· . , 
k"k_k 

v " v", , . 
kk'k- = - k_k_k 

(34) 

(35a) 

(35b) 

The relations (35) were obtained in [t] for the 
special case considered there on the basis of a 
concrete form of the matrix elements of Vkk'k". 
We shall not give them here for the general case 
since this proof is rather cumbersome and the re
lation (35) is not necessary in this work. We only 
note that one can get (35a) by starting out from the 
correspondence between the quantum and classical 
theories of the interaction of electromagnetic 
waves in the medium. 2l Then (35a) follows from 

ZJwe note that the effects of the interaction of the waves 
appear at such high intensities (the number of photons is 
nk ~ <{ck/1i » 1) that the quantum corrections are, as a rule, 
unimportant. Moreover, the quantum consideration, which is 
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the skew symmetry of the matrix element of the 
S-matrix [see, for example, [S]) which describes 
the decay of a photon traveling in a transparent 
medium with energy liwk and momentum lik into 
two waves: (wk1, kd; (wk2, k2 ), such that (34) is 
satisfied and k = k1 + k2• So far as (35b) is con
cerned, it is simply obtained from (35a) and (33). 

By means of the dynamic equation (29) and the 
relation (35) one can study the decay instability of 
waves which was considered previously by Oraev
skil and Sagdeev, [ 7] and can also obtain the kinetic 
equation describing the interaction of a large num
ber of waves with randomly distributed phases. 
All this was done in [t] for a plasma; however, in
asmuch as a concrete form is not used here for 
the matrix elements, all these results are valid 
in an arbitrary transparent medium. 3) 

5. As an example of the application of the dy
namic equation (29), let us consider the effect of 
frequency doubling in a transparent medium. A 
report on the observation of this effect in crystal
line quartz is given in [ 2]. 

Let the wave [ k, w ( k)] be propagated in the 
medium. Then, on the basis of the dynamic equa
tion (29), a wave appears with the double wave 
vector k1 = 2k; its amplitude satisfies the equation 

.dck, _ V 2 i(w1-2w)l 
tdt - k,kk eke ' (36) 

(i)l = (!) (ki) = (!) (2k), (!) = (!) (k). 

We then get (neglecting the time dependence of the 
initial amplitude, which can be done when Ck is 
large in comparison with ck1 ) 

Ck, (t) = (2w -wl)-1 Vk,kkC~e1 (w,-2w) 1• (37) 

The equation of the wave with the wave vector 
k1 = 2k is the following on the basis of expansion 
of (8), 

(38) 

Thus it follows that the second harmonic is twice 
the frequency in comparison with the initial wave. 4) 

useful in obtaining general relations of the type (35) does not 
lead in sufficiently simple fashion to the explicit expressions 
(30) for the matrix elements. We shall therefore not consider 
it here. 

3>A report was made in [•,•] on the experimental observation 
in crystals of a phenomenon that is the opposite of wave decay, 
namely, the harmonic (w 1 + w2 , k1 + k2 ) appears in the super

position of two waves (w,. k,), (w 2 , k2). We note further that 
one of the decay cases was discussed previously by Akhmanov 
and Khokhlov[10 ] as a possible mechanism of wave amplification. 

4>Inasmuch as 2w of, w 1 = w(2k) as a consequence of the 
nonlinearity of the dispersion law, then such a wave must be 
considered as "forced." 

Equation (38) is valid for 

I Vk,kkCk I (2w -uJI) I< I, l2w -w1 1 <w1. (39) 

The first of the inequalities (39) is the condition of 
the smallness of Ck1 in comparison with Ck, while 
the second is the condition of the slowness of change 
of Ck1 ( t ). Both conditions can be satisfied simul
taneously for 

JVk,kkCk/wii <I (2w -w1)/w1 1 <I. (40) 

If some different waves with the same initial 
frequency w are propagated in the medium, then 
they also can lead to the appearance of waves with 
double frequency (such a case is encountered be
low). The amplitudes of the latter will be deter
mined by an equation similar to (37): 

Ck, = (2w -w1f 1 ~ Vk,k'k" Ck•Ck"e1 (w,-2w) 1, (41) 
k,=k'+k" 

where k' and k" are the wave vectors of the 
initial wave. 

We now consider in detail the form of the 
matrix element Vk1 k'k". It follows from (3 0) that 
one can describe it in the following fashion: 

Vk,k'k" = - v-•;, ( w/8nw 1) E* (kJ) u (k', k"), (42) 

where the vector u ( k', k") is determined by the 
equation 

u<:J. (k', k") = (2wr1 c;CJ. 0Y (u>, w) E0 (k') Ey (k''J. (43) 

We now apply these considerations to crystal
line quartz which was investigated in [ 2]. The 
latter is a uniaxial crystal with symmetry class 
D3, containing a three-fold symmetry axis (the z 
axis) and three two-fold symmetry axes in the xy 
plane; one of these axes is assumed directed along 
x. It then follows that the tensor (]" a{3y( w) will 
have the form (see [ 4], page 106) 

!Jx, XX = -- crx, YY = -cry, xy = 2wa, 

crx, yz = --cry, xz = 2wb, 
(44) 

where a and b are certain functions of the fre
quency w. 

Substituting (44) in (43), we get the vector u in 
the form 

Ux =a [Ex (k') Ex (k") - Ey (k') Eu (k")] 

+ b [Ey (k') Ez (k") + Ey (k") Ez (k')], 

Uy =- b [Ex (k') Ez (k") +Ex (k") Ez (k')] 

- a [Ex (k') Ey (k") +Ex (k") Ey (k') I, (45) 

Uz = 0. 

The tensor Eaf3 is diagonal in the chosen set of 
coordinates, whence 

Bxx = Byy =8, Bzz = e'. (46) 
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It follows from the absence of absorption that E:, E', 
and the polarization vectors E ( k) are real. 

We now consider three cases separately. 
A. The incident ray is directed along the x 

axis (that is, along one of the two-fold axes). 
For arbitrary polarization, it yields ordinary and 
extraordinary waves having the same frequency 
and direction of propagation, but different values 
of the wave vectors and different polarizations; the 
ordinary wave is polarized along the y axis, and 
the extraordinary wave along the z axis. Conse
quently, Ex(k') = Ex(k"), and the vector u has 
only an x component. Inasmuch as a secondary 
wave is also propagated along the x axis, Ex(kt) 
= 0 and consequently E ( kt) · u ( k', k") = 0. There
fore Vk k'k" = 0. This means that the wave with 
double f~equency cannot arise in this case. 

B. The incident ray is directed along the y 
axis. For arbitrary polarization, it again yields 
an ordinary and an extraordinary wave. The first 
is polarized along the x axis, and the second along 
the z axis. For both waves, Ey(k) = 0. For the 
secondary wave, Ey( kt) = 0 also. Consequently, 

E(k1) U (k',k") = Ex(ki) Ux(k',k"). (46a) 

It follows from (45) that ux( k', k") ~ 0 only in the 
ordinary wave. Consequently, in this case, only 
the ordinary wave produces a harmonic with double 
frequency, and the latter is also polarized along x. 

The intensity of the wave with double frequency 
is determined by the energy flux 

S = (cj4n:) [EH] = (cj4n:) n£2 (46b) 

(the latter is written with account of the trans
verse character; the field intensity here is as
sumed to be real). The vector n is equal in mag
nitude to the index of refraction of the wave (here, 
the ordinary wave) and is directed along the wave 
vector. 

The average value of the energy flux, expressed 
in terms of the complex intensity vector iE, has the 
form 

(47) 

where the index 1 denotes that the quantities re
fer to the secondary wave. We substitute cr1 here 
from (38) and the expression for the matrix ele
ment from (42), (45): 

I Vk,kk j2 = v-l (w2j(8n:)2wi} a2E~ (kl) £; (k). (48) 

The values of the polarization vectors here are 
determined by the normalization condition (15), 
from which it follows that 

£ 2 (k) = 16 n:w (wdejdw + 2e)-1 ~ 8n:wjn2, 

(49) 

where n and nt are the indices of refraction of 
the ordinary wave, corresponding to the first and 
second harmonics. 

Substituting (49), (48), and (38) in (47), we finally 
obtain 

- 2n a• . s2 = 2n a• . s• cos4 cp, (50) 
sl - c nln2 (nl- n)2 0 c n1n2 (nl- nJ" 

where n and nt are the indices of refraction of 
the ordinary ray, corresponding to the wavelength 
A. (initial) and A./2; S0 is the energy flux of the 
initial ordinary wave, and S is the total energy 
flux or the initial ray in the crystal, cp is the angle 
between the direction of the polarization of the in
cident ray (at incidence on the crystal) and the x 
axis. Thus the intensity of the second harmonic 
here depends significantly on the polarization of 
the incident ray. 

C. The incident wave is directed along the z 
axis, that is, the principal axis of the crystal; 
Ez(k) = 0. 

In this case the difference between the ordinary 
and extraordinary waves vanishes; the primary 
wave can have arbitrary polarization in the xy 
plane, i.e., degeneracy sets in. In this connection, 
it is necessary to make some observations rela
tive to the initial equation (36). It was obtained 
from (25) by starting out from the fact that the 
right-hand side of (25) should be orthogonal to the 
solutions of the transposed system without the 
right-hand side. But, owing to the degeneracy, the 
homogeneous system now satisfies not a single 
vector as was assumed earlier, but all vectors 
lying in the xy plane. Therefore, the right-hand 
side of (25) must be orthogonal to any vector lying 
in the xy plane and, consequently, the x and y 
components for it must vanish. 

Substituting p = k1, p' = p" = k and Eaf3 in (25) 
from (46), we get the right side of (25) in the form 

dck, ( --1- d (we)) E (k ) 
dt e · dw 1 

Here we have introduced the vector u in accord 
with (43), and taken into account the fact that 
Ez(k1 ) = 0 (k1 II Oz) and uz(k, k) = 0 [on the 
basis of (45)]. 

(51) 

From Eq. (51) follows, in the first place, the 
previous Eq. (36), and in the second place the fact 
that E ( kt ) and u ( k, k) are parallel. Thus the 
polarization of the wave with double frequency is 
identical with the polarization vector u with com
ponents 

Ux =a [E~ (k)- £! (k)J, Uy = - 2aEx (k) Ey (k), Uz = 0, 
(52) 
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where Ex(k), Ey(k) are the components of the 
polarization vector of the initial wave. It then fol
lows that if E ( k) makes the angle q; with the x 
axis, while the electric field of the secondary wave 
makes the angle q;1, then 

c:p1 = 2 (n- c:p). (53) 

Let us compute the intensity of the second har
monic in this case. By taking it into account that 
E ( kd and u ( k, k) in the matrix element (42) are 
parallel, we get 

I V k,k'k" j2 = v-1 ( wf8nw1) 2 £ 2 (k1 ) u2 (k, k) 

(54) 

By substituting (54), (49), and (38) in (47), we get 

(55) 

where S1 and S are the energy fluxes of the 
secondary and initial wave, and n1 and n are the 
corresponding indices of refraction. In this case, 
the intensity of the wave of double frequency does 
not depend on the polarization of the incident beam. 

We note that many qualitative features of the 
dependence of the intensity of the secondary wave 
on the polarization of the incident wave pointed out 
above are identical with the results of the analysis 
carried out in [2] by another method, and are con
firmed by observation. The formula given in [ 2] 

for the intensity is in error. 
From (55), one can make a numerical estimate 

of the effect under consideration. In fact, the 
quantity a-1 has the dimensions of the field inten
sity and must be equal in order of magnitude to the 
value of the atomic field. Substituting in (55) the 

expression S ~ ( c/ 4rr ) E2, where E is the field 
intensity in the medium and n1 - n ~ n-2, we get 

(55 a) 

For a ~ 10-9 cm/V, E ~ 1 05V I em (a feasible value) 
we get S1/S ~ 0.01 per cent. 

In conclusion, I express my deep gratitude to 
A. A. Galeev, R. Z. Sagdeev and B. V. Chirikov 
for fruitful discussions of the problems under con
sideration. 
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