
SOVIET PHYSICS JETP VOLUME 17, NUMBER 4 OCTOBER, 1963 

OSCILLATIONS OFA WEAKLY INHOMOGENEOUS PLASMA 

V. P. SILIN 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor October 9, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 1271-1282 (April, 1963) 

The natural oscillations of a weakly inhomogeneous plasma are studied. The dispersion 
equations which determine the natural frequencies of such oscillations are similar to the 
quasi-classical Bohr quantization laws [see Eqs. (3), (55), (56)]. The high-frequency elec­
tron oscillations of a weakly inhomogeneous plasma are considered by means of such dis­
persion equations. The quantization rules are also used for the study of the oscillation 
spectrum of a weakly inhomogeneous plasma confined by a strong magnetic field. Sufficient 
conditions for instability of the plasma are deduced and in a number of concrete cases 
analyzed. 

1. INTRODUCTION AND FUNDAMENTALS OF 
THE PROBLEM 

R:ECENTL Y the attention of many theoreticians 
who have been studying plasma physics has been 
drawn to the problem of the construction of a the­
ory of electromagnetic waves in a weakly inhomo­
geneous plasma. (In particular, the necessity of 
such a theory is brought about by the urgent re­
quirement for analysis of the question as to the 
stability of the plasma). Here attempts are made 
at an almost direct transfer of the methods applied 
in the description of a homogeneous plasma. Of 
course, such a procedure meets with a whole series 
of difficulties, among which can be noted, for exam­
ple, the dependence of the natural frequencies of the 
vibrations on the coordinates. 

On the other hand, it is well known that in the 
theory of propagation of electromagnetic waves 
in a weakly inhomogeneous medium, it has been 
possible to apply the method of geometric optics,C1J 
which corresponds to the quasiclassical approxima­
tion of quantum mechanics. In the present report 
we set forth the application of such a niethod to the 
theory of the natural oscillations of a weakly in­
homogeneous plasma. 

For simplicity, let us consider the case of a 
one-dimensional dependence of the properties of 
the plasma on the single coordinate x. Then, by 
taking into account the dependence of the field on 
time and the other coordinates in the form 
exp (- iwt- ikxY + ikzz ), one can reduce the field 
equation in a many cases to the form 

J..,2y" + q(w, x)y = 0, (1) 

where A. is a small quantity, for example, of the 
order of the Debye or Larmor radius. When one 
says that A. is small, it is meant that A. is small 
in comparison with the characteristic length of 
change q(x). 

The asymptotic solutions [2] of Eq. (1) corre­
sponding to large A. have the form 1> 

y= c ,,exp{±-+-ldxJfq(w,x)}. (2) 
(q (w, x)) 1• r. J 

The theory of the natural oscillations of a plasma 
is interested not only in the form of the character­
istic solutions, but also in the frequency spectrum. 
Such a problem has been solved in principle for 
equations of type (1) by the construction of the 
quasi-classical approximation theory of quantum 
mechanics (see, for example, [2]). Here the eigen­
value spectrum is determined by the Bohr quanti­
zation conditions: 

~dxJfq(w, x) = MA. (3) 

Here n is an integer that is large compared with 
unity. 

A few words must be said about the limits of 
integration in the left-hand side of Eq. (3). If 
q > 0 throughout the entire plasma and the bound­
ary condition of vanishing of the field on the bound­
ary of the plasma is used, then the integral is taken 
over the entire plasma. If there is a single turning 
point at which q > 0, then the integral is taken from 
the turning point throughout the whole region q < 0. 
Finally, if there are several turning points then the 

l) An exception is the vicinity of the point where q (x) ~ 0. 
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integral over each region q > 0 will lead to a sepa­
rate equation (3). The latter means that in the 
quasi-classical approximation the vibrations in each 
such region are independent. This is brought about 
by the fact that, as is known from quantum mechanics, 
the width of the quasi-classical barrier separating 
the classically achievable regions must be extremely 
large, and therefore the corresponding transmission 
coefficient is extremely small. 

In quantum mechanics, q(w,x) is always a real 
quantity. On the contrary, in the theory of natural 
oscillations of a plasma, q is frequently complex. 
The asymptotic solution of (2) has the same form 
for complex q. The situation concerning the quan­
tization conditions (3), which give the dispersion 
equations of the plasma oscillations, is more com­
plicated. A simplifying circumstance is the fact 
that the imaginary part of q ( w, x) is frequently 
small. This is always the case when the absorp­
tion of the plasma is small. Under these condi­
tions, use can be made of dispersion equations of 
the type (3). Therefore, equations of the type (3) 
are applied below for the determination both of the 
real and imaginary parts of the frequencies of os­
cillation, and in particular for the study of the sta­
bility of the plasma. 2> 

Naturally, such consideration can be applied not 
only to the plasma oscillations described by Eq. (1), 
but everywhere where the natural oscillations of a 
weakly inhomogeneous plasma, which is described 
by a set of linear differential equations dependent 
on a small (or large) parameter, are involved. 

2. HIGH FREQUENCY ELECTROMAGNETIC 
OSCILLATIONS 

Following these general remarks, we now turn 
to a consideration of concrete examples. First let 
us consider high -frequency electronic oscillations 
of the plasma. In this case, we restrict ourselves 
to oscillations which are propagated in the direc­
tion of the inhomogeneity. Then one can write the 
following relation between the electric field and 
the displacement 

I w;_, (x) ] d2 2 wt_. (x) 
D (x) = L 1- -w.--- E (x) + 3 di' Ern(x) ~ (4) 

where 

w'ie (x) = 4rte2 N (x)jm, r~ (x) = xT(x)/4rte2 N(x) 

2lFor complex q, the turning points lie in the complex 
plane x. Therefore, in the quantization rules (if, of course, 
they are possible) f qdx = 27TnA the contour of integration must 
enclose such points in the complex plane (see [2]). 

(this expression is valid under conditions for which 
the "wavelength" is large in comparison with the 
Debye radius). Equating the electric displacement 
to zero, we obtain an equation for oscillations of 
the longitudinal field which is obviously an equation 
of type (1). Therefore, the corresponding disper­
sion equation can be written in the form 

_1_\ ~~ • f !- wi,(x) = rtn (5) 
y3 ~ r D (x) wL (x) V w2 ' 

Here the turning points are determined by the re­
lation 

(6) 

and correspond to a division of the plasma into re­
gions of transparency and opacity. 

In order to make the results obtained through 
the dispersion equation (5) more graphic and per­
ceptible, let us first make a simplifying assump­
tion on the constancy of the plasma pressure: 

N (x) xT (x) = const = N 0XT0 • 

We further assume that the density of the plasma 
changes according to the law N(x) = N0 [1 + (x/d)2]. 

Then the dispersion equation (5) takes the following 
form: 

_1 ___ d __ lw_[_ [~-I' =rtn. (7) 
y3 r D (0) WLe (0) WJ"e (0) j 

Inasmuch as the corresponding turning points 
are ±d[(w2/wte(O))- 1] 112, then it is apparent 
that w2 must be larger than wie· Keeping this in 
mind, and also the fact that rn( 0 )/d is small in 
comparison with unity, we get from Eq. (7): 

w2 = wL (0) {I + 2n V3 rn (0)/d}. (8) 

We note that in the case of a spatially homoge­
neous particle distribution in the region - L/2 ~ x 
~ + L/2, the dispersion equation (5) leads to the 
following spectrum: 

w2 = wle (0) {I + 3 (rtnrn (O)/L)2}. (9) 

3. LOW FREQUENCY PLASMA OSCILLATIONS 
IN A PLANE PLASMA LAYER CONFINED BY 
A MAGNETIC FIELD 

This section is concerned with a plasma con­
fined by a magnetic field. We shall speak only of 
the dependence of the plasma parameters on the 
inhomogeneity x. We assume the magnetic pres­
sure to be considerably greater than the plasma 
pressure. Then we can establish that the magnetic 
field changes over distances that are much greater 
than the distances characteristic of change in the 
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particle distribution. Therefore, with great accu­
racy, we can neglect the effect of spatial change of 
the magnetic field on the motion of the plasma par­
ticles. 

The case in which the Larmor radius of ~he par­
ticles can be regarded as small is a comparatively 
simple one. Then, by S')lving the kinetic equation 
with the self-consistent field, and by expanding the 
solution in powers of tre Larmor radius, it is easy 
to obtain the following expression for the ionic 
charge density under the assumption that E 
=-grad <P: 

Here it is assumed that the plasma ions in the 
ground state are described by the distribution 

f ( 2 ) + Vy Ofo 
o Vz, V .1• X Q ax , 

(10) 

and 1'0 = J dvx dvy f0• The z axis is directed par­
allel to the direction of the constant magnetic field 
B. In obtaining Eq. (10), it is also taken into ac­
count that w and kzVz are small in comparison 
with the Larmor frequency fl. Moreover, it is 
assumed that kyR « 1, where R is the Larmor 
radius. A similar expression holds also for elec­
trons. 

We limit ourselves to the case of values of the 
projection on the z axis of the phase velocity of 
the oscillations that are small in comparison with 
the thermal velocity of the electrons and large in 
comparison with the thermal velocity of the ions 
(or of sound for a non-isothermal plasma in which 
Te » Ti; this is precisely the case considered be­
low). Here the corresponding expansion can be in­
troduced in the integrand of Eq. (10) both for elec­
trons and ions. As a result, the following equation 
is obtained for the case of a Maxwellian electron 
distribution; this equation describes the potential 
of the electric field of the plasma oscillations: 

. -. ;-n 1 -. /til ( kyc d M ) + t Jl 2m Jl xT - w + xT reJB Tx In V T . 

(12) 

We note immediately that the imaginary part of the 
right-hand side of Eq. (12) is assumed to be small 

in comparison with the real one. Therefore, in the 
determination of the frequency, one does not have 
to consider the imaginary part in the first approxi­
mation. 

Equation (11) contains two characteristic param­
eters. Corresponding to this situation, we can dis­
tinguish two limiting cases. We take 47TNMc2 » B2, 

i.e., we shall assume that the Alfven velocity is 
small in comparison with the velocity of light. 3> 

Neglecting the first two terms of Eq. (11), and in­
troducing a new function <P = lj;/ffl, we get 

'IJ" + {Q(x,w) _ _!__ d"N _!__ + _1:_ ( dIn N )2} 'lJ = O (13) 
R2 (x) 2 dx2 N 4 dx · 

Here R2(x) = KT/rlt. where ni is the Larmor fre­
quency of the ions. 

Inasmuch as the particle distribution changes 
little at distances of the order of the Larmor ra­
dius, the first component of the curly brackets on 
the left-hand side of Eq. (13) considerably exceeds 
the remainder. In just this sense, one can speak 
of the Larmor radius as a small parameter. There­
fore, the asymptotic solution for the potential of the 
electric field can be written in the form 

<D = (CR'1•;N'1•Q'1•) exp { ± i ~ dxV Q (x, w)/R(x)}. (14) 

The corresponding dispersion equation of the 
plasma oscillations has the form 

~ dx V Q (x, w)/R (x) = 1tn, (15) 

where the limits of integration are determined as 
in Eq. (3). Actually, let the dependence Q(x) be 
such that there is no turriing point Q ( x) = 0 in the 
plasma. Then the boundary condition of vanishing 
of the potential on the boundary of the plasma im­
mediately reduces to Eq. (15). The change in the 
boundary condition leads only to the appearance 
on the right-hand side of (15) of an additional real 
component of the order of unity, 4> which is of little 
importance. This is connected with the fact that 
many "wavelengths" of oscillations are included 
in the characteristic distance for change in the 
distribution of the plasma. 

To make concrete the dependence of the number 
of particles and the temperature on the coordinates, 
let us consider the application of the dispersion 
equation (15). Let Q(x)/R2 (x) = const, which is 
possible only in the case T = const, N ( x) = N0 x 

3)The limit 4rrNMc' « B2 can be considered in a fashion 
quite similar to what is set forth below. 

4lQne can possibly propose special dissipative (or active) 
boundary conditions leading to an· imaginary contribution. We 
shall not consider such boundary conditions below. 
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exp ( -x/x0 ). We then get the following dispersion 
equation with the help of (15) for a plasma located 
in the interval 0 < x < 1: 

... /n (J) .. /m (""T kuc dIn N ) ( R )2 + t V 2 ~ V xT w ieTB ----ciX - I = nn T · 

(16) 

For the case n2R2 « L2 we then get 

w = xT ky c dIn N = _ xT ....!.L_ (l7 ) 
[e/B dx x0 [e[B 

Keeping it in mind that the imaginary part of Q is 
small, we get from Eq. (15) in first approximation: 

~ Rd(x) YRe Q (x, w) = :rtn, (18) 

where the integration is carried out along the real 
axis, which corresponds to neglect of the small 
imaginary parts of the coordinates of the turning 
point. 

Taking into account the following term of the 
expansion in Eq. (15), we get 

\ dx lm Q (x, w) _ O (19) 
~ R (x) V Re Q (x, w) - · 

Making use of Eq. (18) as an equation of first 
approximation, we can materially simplify the 
analysis of the dispersion equation (15). In order 
to demonstrate this, we consider the following ex­
ample. Let Re Q(x) = const. This can be accom­
plished only for a number of particles N and tem­
perature T satisfying the equation 

T din N/dx =- T ofx0 = const. (20) 

Then, with the help of Eq. (18), we can easily find 
( w = w' + iw") 

' - kyc dIn N r [ I r dx ]2}-1 
w - reTE xT ----;IX 1. I + :rtn j R (x) • (21) 

In the limit n/ J R-1 dx, small in comparison 
with unity, the spectrum of (21) is identical with 
(17). Keeping in mind the smallness of such a 
parameter and assuming w' determined by Eq. 
(21), we can write 

. [ w" .. In w' .. /m dInT J 
Q (x) = - t (;)' + V 8 ro V xT d ln N 

(22) 

If we require the satisfaction of the equation 

dln T C 
yT d!nN- VT,;' 

(23) 

then the right side of Eq. (22) is seen to be inde­
pendent of the coordinates. Then, substituting the 

imaginary part of Eq. (22) in Eq. (19), we get 

w" __ .. I~ (w')2 .. I m d ln T (24) 
- V 8 I k2 1 V xT d ln N · 

Such a spectrum corresponds to instability of 
the plasma for d ln T/d InN< 0. This conclusion, 
and also the spectrum of oscillations were obtained 
by Rudakov and Sagdeev, [3] who assumed that the 
dependence of the temperature and number of par­
ticles on the coordinate can be arbitrary. The ex­
pansion above shows that the spectra obtained by 
them are possible only in the case of satisfaction 
of Eqs. (20) and (23), or, what amounts to the same 
thing, for a particular specific dependence of the 
temperature and density of the particles on the co­
ordinates. 5> 

Satisfaction of Eq. (20) alone is less restrictive. 
In this case, we again have the spectrum (21) which 
determines the real part of the frequency of oscil­
lations. For the imaginary part of the frequency, 
we then get the following equation with the aid of 
Eqs. (19), (22): 

w" = _-.I n (w')2 {I _!1!___}-1 \__!:!'___-.I m dInT . (25) 
V 8 I k2 [ J R (x) ~ R (x) V xT dIn N 

Here the condition dIn T/d ln N < 0, which is sat­
isfied at any point, is by no means sufficient. In 
fact, in order that the right side of Eq. (25) be 
greater than zero, which corresponds to the growth 
of the oscillations in time, the following inequality 
must hold: 

( \ dx )-1 \ dx 1 d In T / O 
J R (x) j R (x) VT dIn N '-- · (26) 

Keeping in mind Eq. (20), and also the definition 
of R(x ), we can write this inequality in the form 

where x1 and x2 are the boundary points of the 
plasma (or the turning points). 

(27) 

For definiteness, let x2 > x1• Then, for x0 > 0, 
Eq. (27) takes the form T(x1 ) < T(x2 ). In other 
words, the temperature increases with increase 
in x. At the same time, x0 > 0 corresponds to a 
decrease in density with increase in x. Therefore, 
the integral jump condition of (27) corresponds not 
only to the local jump condition of Rudakov and 
Sagdeev, but also requires that their condition be 
sufficiently weakly violated throughout the entire 
plasma. 6> 

5>N = N0 exp l-(2/C) YT0/T l, VT IT 0 = (C/2) (o - x/x0 ); 

if C < 0, then OXo < x, while if C > 0, then OXo > x. 
6)It is necessaty to emphasize that all our considerations, 

which are based on the approximation of the expression for the 
charge density (10), and which refer to the concrete conforma­
tion of the plasma spectrum, are limited to this approximation. 



OSCILLATIONS OF A WEAKLY INHOMOGENEOUS PLASMA 861 

Equation (19) makes it possible to obtain a gen­
eral expression for the imaginary part of the oscil­
lation frequency, 1 > 

" - ( ')2 { \ d xT (x) kyc d InN 1 }-1 
w -- w J x R (x) I e I B dX l;-Re Q (x, w') 

x-. ;· n _I -. I ."2. \ dx 1 _1_ 
V ~[kziV xJ R(x)fReQ(x,w')fT(x) 

[ kyc d N '] x reTIJxT (x) dx In VT --w , (28) 

where, according to Eq. (18), the real part of the 
frequency is determined by the relation 

\ dx [ kyc l dIn N J- '!, 
J R-(x) xT (x) lfiB W' ---zrx- - I = nn. (29) 

In the region of transparency considered by us, 

kyc 1 dIn N 
X T (X) 1---etB W' ---zrx-> I . (30) 

Making use of this relation, we can write down the 
condition for the instability of the plasma, corre­
sponding to the positive nature of the right-hand 
side of Eq. (28), in the following form: 

r· dx 

) T (x) V Re Q (x, w') 

[ T ( ) kyc _!__(dIn N _ _!__dIn T) _ I J > O 
X _ X X 1 e 1 B w' dx 2 dx · 

Here and below, the integration is carried out 
from small values to large ones. 

(31) 

In the special case T = const, the relation (31) 
takes the form 

(32) 

In accord with the relation (30), the inequality (32) 
is violated only in one isolated case when Eq. (20) 
is satisfied (and n = 0). Thus one can establish 
the fact that a weakly inhomogeneous plasma with 
a constant temperature Te » Ti, confined by a 
strong magnetic field of plane geometry, can be 
unstable. The frequency of the increasing oscilla­
tions is determined by the equation 

\
. 1- xTk1l dinN -~··, __ ) 
dx 1 ---,-----1, , - 1-_- -- I j --- nnR.. 

~ ~, 1 e: --<.u l x _ 
(33) 

We note that as is seen from the inequality (31), 
the requirement of a decrease of the temperature 
of the plasma in the same direction in which the 
density decreases in the example under considera­
tion corresponds to stabilization of the plasma but 

7lin the case wN« w', Eq. (19) takes the form 

~ ~ V ~e Q {1m Q (x, w') + w" a~· Re Q (x, <v'l} ~-- o. 

cannot be used as a sufficient condition for stability. 
Finally, we write down the dispersion equation 

for an arbitrary distribution function for the elec­
trons of the form f0 = N(x) F(/8 ,x), where 18 
= mv~/2: 

I e _!_B \ dx [ kyc ~ t£1.~- <-1-. >]'/, = nn (34) 
V Me J B I e I w' dx mv' ' 

w -rt-- dx-- ------ -"_ (w')2 {~ dinN [ kyc 1 dinN < t )]-';,}-1 

I kz I dx B I e I w' dx mv2 

(' [ kyc 1 dlnN < 1 )]-'/, 
x J dx ~ W'--;[;; - mv' 

X [w' ~of(O, x) + dlnN F+ aF (0, x)J. (35) 
kyc 8\E dx dx 

+00 

Here (1/mv2 ) = - J dvz BF /B(£. If this quantity is 
-00 

positive, then the condition for instability can be 
written in the following form: 

f dx ( aF (0, x) + [dIn N F + aF (0, x)J kyc _!__) 
J o'i£ dx ax B I e I w' 

x [s~y:l ~, d~:N -<m~'>r·;, >o. (36) 

The local condition for instability can be written 
by requiring the positiveness of the integrand 

oF(O,x) +[dinN F+ aF(O,x)J kyc _1_>0 (37) 
o\E dx ox B I e 1 w' · 

Such a local condition is necessary but by no means 
sufficient. Instability will of course take place if 
one requires the fulfilment of the condition (37) 
throughout the whole region of transparency. But 
such a requirement is rather excessive, as is evi­
dent from the relation (36). 

Comparing the results of this section with the 
results of the work of Rudakov and Sagdeev, [3] it 
should be noted that in our consideration the fre­
quency of the oscillations is a number determined 
only by the integral parameters of the plasma. On 
the other hand, the frequency in [3] is a point func­
tion. 8> 

4. LOW FREQUENCY OSCILLATIONS IN A CY­
LINDRICAL PLASMA COLUMN CONFINED 
BY A MAGNETIC FIELD 

This section will also be devoted to a plasma 
confined by a magnetic field (with Te » Ti). How-

8lM. L. Levin has pointed out the well-known mechanical 
analog which characterizes the state of affairs. If we have a 
set of pendulums on different suspension threads, then each 
of them possesses a characteristic frequency (point function). 
The presence of even small coupling leads, generally speak­
ing, to new characteristic frequencies which are no longer 
point functions and which are determined by the parameters 
of the set of pendulums as a whole. I take this occasion to 
express my gratitude to M. L. Levin for this useful observation. 
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ever, in contrast to the previous section, we shall 
consider here a cylindrical plasma column con­
fined by a magnetic field which depends only on 
the radial coordinate. It is assumed that the par­
ticle distribution in the ground state of the plasma 
has the form 

fo(Vz, V1_, r)-(vl_jQ)sin('\jl-cp)ofo/or, (38) 

where r = (r, 1/J, z ), v = (v1, cp, Vz) and the z axis 
is directed along the direction of the magnetic field. 

We assume that the plasma pressure (more pre­
cisely, the transverse pressure) 

\ mv2 

P=lJJdv-f-fo (39) 

significantly exceeds the magnetic pressure. Then, 
using the relation 

(40) 

we can, as in the previous section, neglect the de­
pendence of the magnetic field on the coordinate in 
comparison with the sensitive dependence of the 
distribution on consideration of the motion of the 
particles of the plasma. 

It is not difficult to establish the fact that, within 
the framework of the assumptions used in obtaining 
the formula (10), the following expression results 
for the charge density of the ions in the case of 
cylindrical symmetry: 

~~2 [ d;~ + + ~~ (I + ddl~ ~ ) - ~: <D J 

- <D .::._ +r dvz {kz aTo - _!_ J_ aTo}. (41) 
M J ffi-k 2v2 iJv 2 Q r iJr 

-00 

Here cf> depends only on r. The dependence on the 
time and the other coordinates taken in the form 
exp (- iwt + ikzz + illj;), is separated out and will 
not be considered further. 

Considering that 47TNMc2 » B2, and also limit­
ing ourselves to the case of the projection of the 
phase velocity on the z axis that is small in com­
parison with the thermal velocity of the electrons 
and large in comparison with the sound velocity, 
we get the following equation for the field potential 
cf>; 

where for a Maxwellian electron distribution 

lc 1 1 d In N . ""' /It ro 
Q (r, w) = xT (r) ""J3Tel ffi 7 llf -I + t V 2fk,l 

-. /-n-z [ lc 1 1 d l N J xy x.T(r) xT(r)lfTe[wrdr" n y'f -1 . 
(43) 

Making the substitution 1/J = cf> /rN, we get 

'ljl" + { Q (~, ro) _ z: + J... ( J... _ N' )2 _ J... ·!!:._} '\jJ = O. 
R (r) r 4 \ r N 2 N (44) 

We shall assume lR to be small. 9> Then the 
asymptotic solution for the potential of the electric 
field has the form 

CR'f, { ·\ VQ (r, ro)} 
<D = r'i•N'i•Q'I• exp ± t J dr R (r) , (45) 

while the corresponding dispersion equation which 
defines the oscillation spectrum of the plasma can 
be written in the form 

~ :~r) 1f Q (r, w) = nn. (46) 

Inasmuch as the imaginary part of Q ( r, w) is 
small, one can write the following equation defining 
the real part of the oscillation frequency: 

(' _!!!:_[~-lc _ _!_ dlnN -I]''• = nn. (47) 
J R (r) ro' B I e I r dr 

For the imaginary part of the frequency of os­
cillation, we get the following equation directly: 

w" = Y ~ i~:~ V : 
X {\' dr 1 T ( ) lc 1 dIn N }-l 

J R (r) VReQ(r, ro) X r B lei'~ 
\ dr 1 1 

XJR(r) VReQ(r,w) VT(r) 

x [x.T (r) _!!._ _!__!:_ ln ~- 1] 
w' B 1 e I r dr V T · 

(48) 

It is evident that the following inequality holds 
in the region of transparency over which the inte­
gration here is carried out: 

~~J...dlnN 31 
w' B I e I r dr ~ · 

(49) 

Making use of this relation, we obtain the following 
condition for positive character of the imaginary 
part of the frequency (the instability condition): 

f ~ . 1 (x.T(r) ~_!_.!!_In~ -1) 0 
J T (r) V Re Q (r, ro) w' B I e I r dr yr > ·(50) 

In a fashion similar to the formula (3.2), the inte­
gration here and below is carried out in the direc­
tion from small r to large. 

In the case of a plasma temperature independent 
of the coordinates the inequality (50) has the form 

f dr[.!!!... ~J...dlnN -!]'/, = :rt/n/R>O (51) J w' I e I B r dr ' 

which is always satisfied (except in the case N 
~ e-r2/rij and the value n = 0 is possible here). 

9lin the case of large lR/r in the formulas written out 
below· we must have Q(r,w)- (lR/r)2 in place of Q(r, w). 
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Consequently, a plasma column with an electron 
distribution function of the form (38) and which 
has a temperature that is homogeneous over a 
cross section confined by the cylindrical magnetic 
field with straight lines of force is seen to be un­
stable relative to the oscillations (51). 

In conclusion, let us write the dispersion equa­
tions for a non-Maxwellian electron distribution 
function of the form f0 = N ( r ) F ( it, r ) : 

~ \ dr [~ __!___ _:I_ dIn N _ _1_)]'/, = nn, 
VM c J B I e I w' r dr <_ mv2 • 

(52) 

ro" _ JT (w')2 { \ !!:!___dIn N [-lc __ 1 _ ___!___dIn N _ /_1_""-]-'/,}-1 
- I kz I j r dr B I e I w' r dr ""- mv2 / 

X \ dr {w' ~ aF (0, r) + _:I_ [dIn N F + aF ~~· r)l_} 
j tc a'l! r dr I 

(53) 

If it is taken into account that ( 1/mv2 ) is posi­
tive, then one can proceed further and write down 
the following stability condition: 

\' dr { aF (0, r) + ~___!____:I_ [dIn N F + aF (0, r) ]} 
J a\£ B I e I w' r dr ar 

[ ____!!___ ___!__:I_ dIn N _ /_1_""-]-'/, 
X B I e I w' r dr ""-otnV2 / • 

(54) 

By requiring that the integrand be less than zero 

aF (0, r) + _lc _ ___!___ ~[dIn N F + aF (0, r) J < 0 (55) 
a'i£ B I e I w' r dr ar ' 

we obtain the local stability condition. This condi­
tion is necessary in contrast with the sufficient 
condition (54). If we require the satisfaction of the 
condition (55) throughout the region of transparency 
(in other words, to consider it as non-local), then 
the stability will take place in general earlier than 
such a condition is seen to be satisfied. 

Here the problem does not arise as to what 
measure it is exhaustive to consider the problem 
of the stability of the plasma. However, one of the 
reasons for writing this paper were the prospects 
uncovered by the possibility of applying the method 
of "quasi-classical quantization" to the problem 
of plasma stability. 

5. CONCLUSION. GENERALIZATION 

Summing up the situation briefly, one can repeat 
and generalize several premises of our research. 

The first from which we set out, is that the 
eigenvalue problem which arises in the question of 
interest to us, concerning the natural oscillations 
of weakly inhomogeneous plasma, is solved by 
means of the "quantization rules" which are simi­
lar to the quasi-classical quantization rules of 

Bohr. It must be noted that it is not difficult to 
ascertain from what has been set forth above that 
the formula (3) can be written in the form 

~ dxkx (w, x) = 2nn, (56) 

where kx( w, x) is the projection of the wave vector 
on the x axis and is of course a function of the co­
ordinates. 

Keeping in mind the deep analogy between me­
chanics and geometric optics, [4] one can establish 
the fact that for finite, conditionally periodic tra­
jectories of rays in an inhomogeneous medium, 
the eikonal 10 > is a non-unique quantity defined with 
accuracy up to sums of multiples of the values of 
the analogs of the mechanical action variables (the 
eikonal variables). Therefore, the problem of ob­
taining the spectrum of the characteristic oscilla­
tions in a non-one-dimensionally weakly inhomo­
geneous plasma reduces to finding the conditional 
periodic motions of the rays and, what is very im­
portant, the adiabatic invariance of the eikonal 
variables Ia corresponding to them. The conse­
quent quantization rule is that the eikonal variables 
can take on only values which are multiples of 27T: 

(57) 

In this paper we have considered only the appli­
cation of a one-dimensional "quantization rule" 
(56). The characteristic feature of the natural os­
cillations considered is the smallness of their 
"wavelength" in comparison with the distances 
over which the particle distribution of an equilib­
rium plasma changes appreciably. On the other 
hand, the "wavelength" is large in comparison 
with such "microscopic" scales of a weakly in­
homogeneous plasma as the Debye or Larmor 
radii. The latter fact appears in the result that 
the "quasi-classical quantum number" is large 
in comparison with unity. 

In the examples considered above we have lim­
ited ourselves to the case of a medium without ab­
sorption and a medium with weak absorption (or 
weak buildup). For the case of strong absorption 
or strong buildup the projection of the wave vector 
in formula (56) can possess a large imaginary part, 
while the turning points appear to be located in the 
complex plane. In such a case, the difference be­
tween the regions of transparency and opacity dis­
appear. However, even in this case, by following 

10lin geometric optics, the field has the form <ll = Aei..P, 
where A is a slowly changing function and If; is the eikonal­
a very large quantity which appears in analogy to the action 
function divided by Planck's constant. 



864 V. P. SILIN 

[ 2], we can make clear the conditions under which 
the quantization rule (56) becomes possible. 

In conclusion, I express my thanks with great 
pleasure to A. A. Rukhadze, E. E. Lovetskil, and 
L. M. Kovrizhnykh, useful conversations with whom 
promoted my interest in the problems of the theory 
of the stability of a magnetically confined plasma. 
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