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The resistance of plates and wires that are thin compared with the mean free path, Z, is cal
culated for the entire range of magnetic fields. In strong magnetic fields (r « l, where r is 
the Larmor orbit radius) the static "skin-effect" previously pointed out[i] is taken into ac
count. 

1. INTRODUCTION 

A large amount of work has been devoted to cal
culating the resistance of metals in a constant mag
netic field H. The great interest in this question is 
associated with the possibility of additional checks 
on the basic assumptions of the modern electronic 
theory of metals, and of clarifying the features of 
the dispersion law for conduction electrons close 
to the bounding Fermi surface. The study of thin 
plates and wires can naturally throw additional 
light on this problem. 

In the existing works, however, the range of 
fields H for which r > d ( r is the Larmor orbit 
radius, d is the thickness of the specimen; for d 
~ 10-3 em this corresponds to H < 104 Oe) has 
been little studied. Also, the region of "strong" 
fields, r < d, has been treated without taking into 
account the inhomogeneity of the Hall field and the 
"screening" of the static current thereby caused. 
As shown in [t], this usually leads to incorrect 
results precisely in the case that allows the sub
sequent theory to be developed-the case of a spe
cimen with a "good" surface (imperfections small 
compared with r ), when the surface can be taken 
into account with an appropriate boundary condi
tion. If the specimen surface is "bad" (imperfec
tions of order r) the development of the subse
quent theory is, on the one hand, extremely com
plex, and on the other hand is unnecessary, since 
all the results of interest to us can be obtained 
from simple physical considerations. 

In the present paper the resistance of plates 
and wires is found in the entire range of magnetic 
fields for d « l ( l is the free path of electrons ) . 
It is assumed that the linear dimensions of the 
wire cross section are of equal order in all direc
tions; the shape of the cross section is arbitrary. 
The direction of the magnetic field is everywhere 
taken as the z axis, and the direction of the total 

current J is taken as the v axis (for the wire the 
v axis coincides of course with its axis). 

2. STRONG MAGNETIC FIELD; r « d 

A. If the magnetic field is very strong, r « d, 
and is not directed along the wire axis (or 
parallel to the plate surface) all the electrons 
playing an essential part collide with the surfaces, 
if d « l, so that d assumes the role of free path, 
and in all other respects everything proceeds just 
as in the bulk metal where d » l. 

The resistance p of bulk metal for a specimen 
with a "poor" 1' surface has been found in a paper 
by I. Lifshitz, the present author, and Kaganov [ 2J, 
p£, = p ( d, l ) , and for a "good" surface in a paper 
by the present author [ 1], p~ = p ( d, r, l) (for d 
« l the condition for the applicability of the formu
lae of [ 1] is obviously satisfied). In accordance 
with what has been said we obtain for a thin speci
men 

p~ = p (r, d), Pa =P (d, r, d). (1) 

Using (1) and the results of the works mentioned 
above [1, 2] we arrive at the following relations for 
the resistance: 

Specimen with Bad Surface (Specimen Shape 
Arbitrary) 

For n1 ""- n2 (n1 and n2 are respectively the 
number of electrons and "holes") we have 

and for n1 = n2 

(2) 

1lThe characteristic dimension 8 of the rartdom imperfec
tions of the specimen surface is of course small compared 
with d. Therefore a "good" surface implies a magnetic field 
such that r » o, and a "poor" one has r « 8 and occurs for 
thin specimens only in limiting strong magnetic fields. 
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p~ (H)- p00 (0) (lid) (dlr) 2 - p00 {0) ldlr2 ~dr-2 - H 2d, (3) 

where pfJO ( 0) is the resistance of an infinite spe
cimen with H= 0. 

Specimen with Good Surface 

For a wire with any ratio of n1 to n2, for a 
plate with n1 ~ n2 and with H not lying in the ~ IJ 

plane ( ~ is the normal to the surface), and for a 
plate with n1 = n2 and with the magnetic field lying 
in the same plane as the total current J and the 
normal to the surface ~, we have 

(4) 

For a plate with n1 = n2 in the remaining cases, 
and with n1 ~ n2 when H lies in the ~I.J plane but 
is not parallel to ~ we have 

p~ (H) ~ p 00 (0) ld/ r 2 - d! r 2 ~ H2d. (5) 

For a plate with n1 ~ n2 and H II ~ we have 

(5a) 

B. We now consider the remaining special case 
in which the magnetic field is parallel to the axis 
of a wire (and consequently parallel to the direc
tion of the total current) or to the surface of a 
plate. In this case the only characteristic param
eter in directions normal to the surface is r, and 
the surface affects matters only at such distances. 
Therefore, in the case of a specimen with a poor 
surface (in the initial approximation the formulae 
for bulk metal are valid) the relative increase 
above the resistance of a bulk specimen is of order 
r/d, and is positive both for n1 ~ n2 with any mu
tual orientations of J and H, and for J II H with 
any n1 - n2 (since the surface decreases the free 
path of the electrons colliding with it): 

p~ (H)- p~ (H) (1 +arid), a- 1, 

i.e., for a wire and plate with H II J, n1 ~ n2 

p~ (H) ~p00 (0) (1 +arid) (6) 

and for a plate with n1 = n2 and H not parallel to J 

(7) 

If the specimen surface is good, we obtain, using 
directly the formulae in [1]: for a wire with any 
n1 -n2 

(8) 

for a plate with n1 ~ n2 and H II 1', or for n1 ~ n2 
and any mutual orientations of H and 11 

p~(H)-P00 (0)(1 +arjd) 

and for n1 = n2 and H not parallel to II 

(9) 

p~ (H) ~ p00 (0) d/ r ~d! lr. (10) 

We point out the formulae obtained in other 
works for the particular case of a quadratic dis
persion law. These are: the formulae for the plate 
with a good surface: 1) in a perpendicular field 
( H 11 ~) [ 3, 4J [formulae (5) and (5a) of the present 
paper], 2) in a parallel field with n1 >"' n2 [4-s] 

[formula (9) here]. 
It should be noted that for r « d « l a curious 

phenomenon occurs-an oscillation of the resist
ance in an inclined magnetic field, which was first 
predicted by Sondheimer [3], and which was treated 
for an arbitrary dispersion law by Gurevich [7]. 

However, as noted in [1], Gurevich wrote down the 
conductivity tensor incorrectly, and-what is ex
tremely important-did not take into account the 
inhomogeneity of the Hall current. The correction 
oscillatory in H can be found by successive approx
imations if the initial approximation found in [1] is 
used. The period of the oscillations then agrees, 
of course, with that found by Gurevich, but the order 
of magnitude of the amplitude can differ. The con
sideration of this question will be the subject of a 
separate communication. 

3. WEAK MAGNETIC FIELD 

We now proceed to fields corresponding to 
r » d. Here, of course, the quality of the surface 
does not play an important part. Because the 
smallest characteristic length is d, pronounced 
inhomogeneity of the electric field and current 
cannot occur in this depth. This allows us to write 
down immediately a formula for the effective con
ductivity and to obtain all the asymptotic relations 
of interest to us without solving the equation for 
the field normal to the surface (since it is clear 
at the start that E ( r) is of the order of E at the 
surface) which makes the solution unusually sim-

, . [1] 
pie compared with that we treated m . Of course, 
because the actual form of E ( r ) is not found, the 
numerical constants in front of the corresponding 
expressions are not hereby determined. However, 
their evaluation presents no interest because they 
are related to the form of the collision integral, 
and to the way the electrons are reflected from the 
surface, and none of them can be used for compar
ing theory with experiment. 

The calculation of the asymptotic relations pre
sents no difficulties of principle; it is, however, an 
extremely tedious theoretical problem. Wherever 
possible, therefore, we shall find the form of p (H) 
by using obvious physical considerations. 
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A. Weak Magnetic Field: d « r. Wire 

In the case of a wire in a magnetic field inclined 
with respect to its axis, the field causes only a 
small "twisting" of the orbit, as a result of which 
the path traversed between collisions with the sur
face (since d » l, the mean free path does enter 
into the problem in the initial approximation with 
respect to the magnetic field) is of order 
d { 1 + a ( d/r )2}, a ~ 1. Therefore, 

Pd(H) ~ Poo(d) { 1-a(+ n ~ Poo(O) +{1-a(f Y}. 
(11) 

If the magnetic field is directed along the axis 
of the wire (and, consequently, parallel to the total 
current) electrons appear, which owing to the small 
radius of their orbits r < d do not collide with the 
surface, and traverse without collision a path of 
order l. The relative number of such electrons 
corresponds to the relative number of orbits with 
diameters less than d when the mean diameter is 
of order 2r. Since only electrons on the limiting 
Fermi-surface play an essential role (r ~ cp1/eH, 
Pl is the projection of electron momentum on the 
plane PxPy. H II z ), the electrons of interest to us 
correspond to the surface of a section of radius d 
on a surface of radius r, i.e., their relative num
ber is of order ( d/ r )2• The remaining electrons 
contribute a conductivity of the same order as in 
the absence of a magnetic field. 

The resulting conductivity is thus 

Cid (H)~ Cid (0) +Moo (0) (-4--r, 
and the resistance is 

{ d ( d )2}-1 { ld }-1 Pd (H) - Poo (0) T +a r - Pd (0) 1 + a f2 , 

B. Weak Magnetic Field Parallel to the Surface; 
r »d. Plate 

(12) 

We now turn to the calculation of the resistance 
of a plate in fields such that r »d. It is apparent 
that this region can be divided into several ranges. 
In order to understand what influences the variation 
of p with H in such fields, we start with the case 
when the magnetic field is parallel to the surface 
of a plate. 

The conductivity of a plate of thickness d in a 
magnetic field parallel to its surface is influenced 
by the following groups of electrons (see Fig. 1): 

a) Electrons of type a, which do not collide with 
the surface and contribute a conductivity the same 
as in the bulk metal. The relative number of such 

FIG. 1. The trajectories of electrons in a plate in a weak 
magnetic field parallel to its surface. 

electrons is of order ( d/r )2 [see the derivation of 
formula (12)]. The conductivity associated with 
these electrons is 

a~~) (d, H) - (d/ r) 2 aik ( oo, H). 

b) Electrons of type b, which collide with both 
surfaces of the plate. For r » d, these consist of 
almost all the electrons. These electrons are only 
slightly "twisted" by the magnetic field, and tra
verse a path 1 + a(d/r )2 times greater than in 
zero magnetic field with a ~ 1. In the absence of 
a magnetic field, the principal role is played by 
the "grazing" electrons that proceed almost par
allel to the plate surface, (see [S,s]) which con
tribute a conductivity of order (cr0d/l) ln (Z/d) 
(cr 0 is the conductivity of the bulk metal; a 0d/Z does not 
depend on l ) . In a magnetic field the maximum 
free path of electrons of type b is of order l if 
.frd > l, and of order ..frd if ..frd < l (since, 
if ..frd < l, electrons reflected from the surface 
at an angle smaller than ..frd I d do not collide 
with the second surface, and the maximum path 
of electrons colliding with both surfaces is of 
order..frd ). The contribution of these electrons 
to the conductivity is, therefore, of order 

d t f ~~- d vrJ f ~~-a0ylnd".orvrd>Z, a01 In-d- orvrd<Z. 

c) Electrons of type c that return to the same 
surface from which they set out. For !Tif < l 
the relative number of these electrons is of order 
d/ !Tif ~ ...J d/r (since they consist of all electrons 
that avoid collisions with the second surface, i.e., 
those setting out at an angle {3 ~ d/hd , and de
parture at any angle is almost equally probable), 
and the path traversed by these electrons is of 
order ..frd, so that their contribution to the con
ductivity (which is proportional to the effective 
free path and the relative number of electrons ) 
is of order 

and does depend on the magnetic field. 
For !Tif > l the majority of electrons of type 

c traverse a path of order Z, do not have time to 
return to the surface without collisions in the bulk, 
and behave in the main just as in the absence of the 
magnetic field. There are, however, electrons with 
a small radius r' (i.e., with small Py) such that 
..fr'd ~ l. The relative number of such electrons 
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is of order (r' /r )2, i.e., of order (rdr )2 with 
r 1 "' 12/d. Of the similar electrons, those that de
part at an angle {3 ~ d/l (their relative number is 
d/l) are "safeguarded" by the magnetic field 
against colliding with the second surface, and tra
verse a path of order l, which is greater than in 
zero magnetic field. It is clear that the contribu
tion of these electrons to the conductivity is of 
order a0(rdr )2d/l. 

We now determine the conductivity of a plate 
in various magnetic fields (but with r » d). 

1) Very weak magnetic fields: r > r 1 "' 12/d » l. 
Taking into account that here we have O"ik( oo, H) "' 
"' aik ( 00 , 0) "' a0, we easily see that in the initial 
approximation the conductivity is, as would be ex
pected, the same as in zero magnetic field, and is 
provided by electrons of type b, while the princi
pal field-dependent contribution to the conductivity 
is due to electrons of type c being "safeguarded" 
against collisions with the second surface. As a 
result: 

d f I d (-ft )2 
0 (H, d) -a0 T In([, 6~o[ r 

-a (0, d) {I + 6 ln ;lid) ( '; Y}' 
6 ~I, r1~l2jd. (13) 

Thus even in fields such that r"' r 1 "' 12/d (for 
d "' 10-3 em, l "' 10-1 em, this corresponds to H 

"' 1 Oe ) a significant increase in the conductivity 
occurs (by a factor of about 1 + o ln (l/d)). It is 
clear from the method of derivation that a similar 
effect is only possible in a plate of length greater 
than l. 

For a quadratic dispersion with H II j (j is the 
current density), formula (13) was first obtained 
in [SJ. 

2) Weak magnetic fields: l « r « r 1. As before 
we have a 00 (H)"' a 00 (0)"' a0• The main contribu
tion to the conductivity is due to electrons of type 
b, and 

d ... /ffi 
a(d, H) ~a01 ln V d, (14) 

3) Strong magnetic fields: d « r « l. Electrons 
of types a and b play the principal roles. Because 
the conductivity components due to electrons of 
type a are strongly anisotropic, the entire effec
tive conductivity tensor should be written out. 
Since d is the smallest length it is clear at the 
start that Ey ( y ) "' Ey ( 0 ) ( see also the start of 
the section). Calculating the contribution these 
electrons make to the conductivity components in 
a way similar to that used in [tJ (only now the elec
tric field changes in a region of order of the orbit ra-

dius for the electrons of interest to us), we obtain 

k + rA.• k + rA.• k + A.2 

ad (H) ~ 000 (0) ( k + rA.2 k +)21..2 k + rA.2 ) ; 

k + .rA.• k + rA.2 k + A.2 

d rcr 
k- 1 sln ([, 8= l--d-2rmax 

(15) 

where A. 2 takes into account the relative number 
of electrons of type a, y is the effect of the mag
netic field on these electrons, ( d/l) ln .J ra /d is 
the contribution to the conductivity of electrons of 
type b, and E is the relative number of electrons 
of type b (it is obvious that when the maximum 
orbit diameter 2rmax approximates to the thick
ness d of the plate, the number of electrons that 
collide with both surfaces diminishes; for 2rmax 
< d there are in general no such electrons ) . 

From (15) we easily find: 
a) In the case when 1 - d/2rmax "' 1 ( E "' 1) 

i.e., when the field H is not close to the "critical" 
field (for which 2rmax =d), the effective resistiv
ity tensor in the plane of the plate has the form: 

A (k-1 (k + J..2)-1) 
pd (H) ~poo (0) k-1 (k + f..2)-1 • (16) 

For all directions of H, except H II J, we have 

pd (H) ~pco (0) ~ (In '; r1 

If H II J, then 

(17) 

CJ., ~-1. (18) 

b) In the case E « 1, when the field H is close 
to the "critical" field (2rmax r::o d), the longitudi
nal specific resistance tensor has the form 

A (1 + kr-• 1) (1 + k-Ie 1) 
Pd (H)- Pco (O) 1 + kr-• 1, - Pco (O) 1 + k-1e 1 · (19) 

Thus for H not parallel to J 

pd (H) -p00 (0) {I +a~ ( 1- 2, :ax)}, (20) 

and for H II J 

(21) 

C. Weak Inclined Magnetic Field, r »d. Plate 

The trajectories of electrons in an inclined field 
(Fig. 2) differ from the trajectories in a parallel 
field in a way of interest to us only in that the elec
trons that do not collide with the surface should 
have not only a small radius, but also a small ve
locity Vz. In order that electrons should move 
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~H 

FIG. 2. The trajectories of electrons in a plate in an in
clined magnetic field. 

without collisions for a time T, it is necessary that 
Vz /v ~ d/l. As a result, electrons of type a do not 
provide a significant contribution to the conductivity. 

An exception is the particular case of the mag
netic field normal to the surface, and electron or
bits that are plane in real space when Vz = 0, i.e., 
Vz dependent only on Pz· The case of such special 
Fermi surfaces is completely analogous to the case 
of a quadratic dispersion law treated in [a,4], where 
the path along the film is of order r when r < l and 
of order l when r > l; so that 

l { ( d d )}-1 Pd (H)- Poo (0) 7 In -1 + r · 

In the general case for r » l and in an inclined 
field we obtain formulae (13), (14). For r « l, be
cause electrons of group a are unimportant, for
mula (14) is valid up to r ~ d. 

CONCLUSIONS 

We now present, using all the formulae obtained, 
graphs of the function p (H) for the entire range of 
magnetic fields in the various cases: Fig. 3-the 
wire in an inclined field; Fig. 4-the wire in a lon
gitudinal field; Fig. 5-the plate in an inclined field 
and Fig. 6-the plate in a parallel field [ o is the 
characteristic dimension of the random "rough
nesses" of the surface (see [1] )]. The curves 
given allow the anisotropy of p to be seen easily. 

It is curious to note: a) the rapid fall in the re
sistance of a plate at the field r ~ l 2 I d (for d 

p 

p"(O)ln~ 

11 ~o H' • .• B,. 
/ ~) fW(Ho 

H 

FIG. 3. The function p(H) for a wire in an inclined field. 

p 

FIG. 4. The func
tion p(H) for a wire in 
a parallel field. 

H 

~ 10-3 em, l ~ 10-1 em, this corresponds to H 
~ 1 Oe ); b) the linear relation that is the general 
case in strong fields and the break at 2rmax = d, 
for the plate, which allows the diameter of the 
Fermi surface to be determined; c) for H 11. J in 
Fig. 6, the slow change of resistance-the resist
ance increases for H not parallel to J by a factor 
of ln ( l/ d) on increasing the field by a factor of 
(l/d)2 (curve A2 +Bdln(H0/H) and d)therapid 
fall in resistance by a factor of l/d for only a 
severalfold increase in the field (curve A3 - B3H ). 

Also seen from the figures is the strong depend
ence of the resistance in high fields on the quality 
of the specimen surface (on the ratio of r to o ) . 
We also note that the question of whether the curve 
going to saturation in Fig. 6 goes to Pd ( oo) or dif
fers from it depends, as is easily seen, on whether 
a direction of open trajectories coincides with the 
y-axis. The large number of characteristic points 
allows the quantities r, l, and o to be determined 
for the same specimen under different conditions. 

H 

86 H2/ 
I 

FIG. S. The function p(H) for a plate in an inclined 
field. Branch I is for n, = n2 , H not in the 'v-plane or 
H II '; branch II for n, = n2 , H in the 'v- plane but 
H'!l.,,, or for n, ~ n2 , H not in the 'v-plane; branch III 
for n, ~ n2 , H in the 'v-plane; branch IV, A5H2

1 for 
n, = n2 ; branch V for n, ~ n2 • 

FIG. 6. The function p(H) for a plate in a 
parallel field. Branch I is for H\v; branch II 

Jrtf{J) I I e~ 
m for H II v; branch III for n, = n2 , H\v; branch IV 

for n, ~ n2 or n2 = n2 and H II v. 
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