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Starting from the Lehmann-Kallen expansion for the Green's function and using the dispersion 
relation for the vertex part r ( K2 ), we show that with prescribed masses there must be an 
upper bound on the coupling constant g2• A concrete expression is found for the upper bound 
on the coupling constant, which shows, for example, that in the case of the deuteron ~ 
< 16ma cc~!m )1/ 2 ( md, m are the masses of the deuteron and nucleon, and b. is the binding 
energy), and in the case of the interaction between 1r mesons and nucleons f2 < 0.47. 

INTRODUCTION 

IN the usual formulation of quantum field theory 
values are independently prescribed for the 
masses of the particles and the coupling constants 
of the various fields. Meanwhile, in a number of 
papers [l-5] it has been shown that with given val
ues of the masses there are definite upper bounds 
on the physical ( renormalized) coupling constants, 
and that these bounds are functions of the masses 
of the particles. In these papers, however, the 
treatment either was based on the use of models, 
or else [4] depended on the hypothesis that the in
teraction of elementary particles is characterized 
by an effective radius which depends only on the 
masses of the particles and does not increase with 
an increase of the coupling constant. In the present 
paper we obtain restrictions on the sizes of the 
coupling constants for prescribed masses, on the 
basis of general principles of quantum field theory, 
without any additional assumptions and without re
sorting to the use of models. 

We base our treatment on the representation of 
the Green's function in the form of a Lehmann
Kallen expansion [GJ; that is to say, we shall as
sume that all of the conditions for the validity of 
this expansion are satisfied (existence of a com
plete system of functions in Hilbert space, definite 
metric, Lorentz invariance ). Starting from the 
Lehmann-KlilH~n expansion we shall obtain a rela
tion, Eq. (10), which restricts the maximum pos
sible value of the coupling constant g2 of three 
fields. 

In the boson case this relation involves the ver
tex part r ( K2 ). As a second postulate we assume 
that the vertex part r ( K2 ) is an analytic function 

of K2 with a cut beginning at the square of the sum 
of the masses of the nearest two particles, and that 
a dispersion relation can be written for r ( K2 ). The 
number of subtractions in this dispersion relation 
is uniquely determined from the same relation, 
Eq. (10). The maximum value of g2 will be ob
tained by Minimizing the expression (10) with re
spect to all possible functions r ( K2 ) having the 
given analytic properties. Variation of the function 
r ( K2 ) leads to an integral equation for Im r ( K2 )' 

which can be solved and gives restrictions on the 
coupling constant which depend on the masses of 
the particles. In the case in which the mass of 
one of the interacting particles is close to the sum 
of the masses of the other two, the limit so ob
tained is twice the limit which follows from non
relativistic quantum mechanics for an interaction 
with an infinitely small radius. [2•3•5] 

The treatment for the fermion case is similar 
in principle but is somewhat complicated by the 
presence of two functions p 1 and p2 which are in
volved in the Lehmann-Kallen expansion, and by 
the fact that the expression for the vertex part is 
more complicated. Nevertheless, here also we 
are able, within the framework of the same hy
potheses, to get an explicit expression for the limit 
on the coupling constant. In particular, the cou
pling constant f 2 for the interaction between 1r 

mesons and nucleons must be smaller than 0.47, 
and if ~ and A have opposite parities the constant 
g2 for the A~1r interaction must be smaller than 
3.2. 

BOSONS 

The Lehmann-Kallen representation for the 
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Green's function of a boson with spin zero and 
mass ma is [GJ: 

where mb and m 0 are the masses of the nearest 
(in sum of masses ) particles into which particle a 
can be converted in a transition. 

We are interested in the value of the coupling 
constant g2 of the three fields a, b, c. To get re
strictions on the value of g2, we shall first pro
ceed by a method analogous to that of a paper by 
Lehmann, Symanzik, and Zimmermann. [7] It can 
easily be seen from the relation (1) that the func
tion - D( K2 ) is an R-function in the complex plane 
of K2, i.e., that the sign of the imaginary part of 
- D ( K2 ) is the same as the sign of the imaginary 
part of K2• It follows from this that the function 
n-1 ( K2 ) is also an R-function, and consequently 
the most general expression for n-1( K2 ) is of the 
form[!] 

00 

D-1~ (x2) = _.!:._ (' Im D-1 (x'2) [-1-.- -·-1-J dx'2 
n j x,'2 - xt. x'2 - m2 

(mb+mc)' a 

+ ~Rn (-1 - --.-1-) + 1Y-(X2 -m2 ), (2) 
n X~ - x,2 X~ - fft~ a 

where the constants Rn. K~, and a are real and 
positive, and 

m~ <X~< (mb +m,)2, D-1 (m~) =0, 

Im D-1 (x2) = :rtp (x2) I I D (x2) j2• (2 ') 

The relation (2) is written with one subtraction 
(at the point mi). We shall show that this is suf
ficient. 

It can be seen from the Lehmann-Kallen expan
sion that for large K2 the function n-1 ( K2 ) cannot 
increase more rapidly than K2• Therefore the 
function n-1 (K 2 )/(K 2 -m~)2 can be expressed as 
a Cauchy integral over the usual path: 

D-1 (x2) = [D-1 (m~)l' (x2 - m;) 
00 

~ I D-1 (x'2) 
m d '2 2 3 

( '2 2) ( '2 2 )2 X + R (X ) ' ( ) X -X X -m 
(mb+mc)' a 

where R( K2 ) is the contribution from the poles of 
D-1(K 2 ). It follows from Eq. (3) that the integral 

\ Im v-1 (x•) 2 

J (x2)2 dx 

converges, because otherwise for large K2 the 
function n-1(K 2 ) would increase more rapidly 
than K2, which is impossible. Thus the integral 
in the formula (2) converges, and one subtraction 
is enough. 

Let us differentiate Eq. (2) with respect to K2 

and set K2 = m~. Then, using the equation 
-1 2 I [ D (K )]K2=m2 = 1, we get a 

Dropping the two positive terms in the left member 
of Eq. (4), we arrive at the inequality 

00 

1 p (x2) 1 d 2 
\ I D ( 2) 12 2 X < 1. ' x (x2-ma)2 

(mb.f-mcl' 

(5) 

As is shown in Lehmann's paper,CGJ p(K 2 ) can 
be written in the form 

p (x2) = (2n)3 ~I aon \2, (6) 
n 

where 

(6') 

A(x) is the field of particle a, and 4>n is an arbi
trary state of the complete system of functions with 
four-momentum k such that k2 = K2. It is clear 
from Eq. (6) that the inequality (5) is only strength
ened if in the summation over n in Eq. (6) we take 
into account only two-particle states of particles 
b and c. 

The contribution to p ( K2 ) owing to the two
particle states can be expressed in terms of the 
Green's function D( K2) and the vertex part r ( K2 ). 

We shall suppose that particles b and c are scalar 
particles and that the product of the parities of all 
three particles a, b, and c is unity. Then from 
the definition of the vertex part 

gr (x, y, z) 

= ~ d4x' d4y' d4z'D~1(z- z') Di/ (x- x') D~1!(y- y') 

X (0\ T {A (z'), cpb (x'), cp, (y')} I 0) (7) 

we can obtain a connection between the matrix ele
ment ( 0 I A( 0) I 4>kb,kc) (where 4>kb,kc is the two
particle state of particles b and c with the mo
menta kb, kc, and (kb + kc )2 = K2, kb = mt, ~ 
= m~) and the vertex part r (mt. mb, K2 ) = r ( K2 ): 

(0 I A (0) I <Dkb,kc> = gDd (x2) r (x2) I y 4noobWc (8) 

( Wb and w0 are the energies of particles b and 
c). Substituting Eq. (8) in Eq. (6), we find the con
tribution to p ( K2 ) owing to two-particle states: 

p two-particle= (1 I 2n) g2 1 D (x2) \2 1 r (x2) \2 q (x2) I x, (9) 

q (x2) = V!x2 - (mb +m,)2 l [x2 - (mb- m,)2 l I 2x. (9') 

After substituting Eq. (9) in Eq. (5) we arrive 
at an inequality which restricts the possible values 
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of the renormalized coupling constant g2 of the 
three fields a, b, c 1>: 

In order to get from the inequality (10) definite re
strictions on g2 for prescribed masses ma, mb, 
me it is necessary that the value of the integral 

(11) 

have a lower bound. 
We shall look for the minimum of <I> over the 

class of functions r ( K2 ) that have the following 
properties: 

1) r ( K2 ) is a holomorphic function of K2 in the 
complex plane of K2 with a cut along the real axis 
which begins at the point K2 = ( mb + me ) 2• 2 > On 
the real axis to the left of the point K2 = (mb +me )2 

the function r ( K2 ) is real; 
2) the increase of r ( K2 ) at infinity is not faster 

than a power law; 
3) the value at the point K2 = m~ is r ( m~) = 1. 
We assume that r ( K2 ) has no poles in the com

plex plane of K2• 3 > In principle there could be 
poles of r ( K2 ) on the real axis in the interval 
m~ < K 2 < (mb +me )2, at the points K~ at which 
the Green's function D( K2 ) is equal to zero, while 

r(K2) D(K2)- const for K2 - K~. [The last fact 
follows, for example, from the Schwinger equation 
for the Green's function D( K2 )] • These poles of 
r ( K ) correspond to true bound states of the par
ticles b and c, and owing to the terms g2r 2( K2 ) 

D( K2 ) they will lead to poles in the scattering am
plitude of particles b and c. [This situation oc
cures, for example, in the theory of superconduc
tivity, where a pole of r ( K2 ) corresponds to a 
bound state of a Cooper pair.] Thus our assump
tion means that there are no particles with the 
same quantum numbers as particle a and lying 
between ma and mb +me. 

The function r ( K2 ) will automatically have the 
properties 1)-3) if we write the dispersion relation 

1>We use the Gaussian system of units, so that, for ex• 
ample, in our notation e2 = 1/137. 

2>In the case considered (with b and c the lightest pos
sible particles) there can be no anomalous thresholds in r(x2). 

3>The fact that r(x2 ) can have poles on the real axis in 
the complex plane of x2 has been called to our attention by 
V. Ya. Fal'nberg and E. S. Fradkin, to whom we express our 
deep gratitude. 

dx'2 Im r (x'') '1(12) 
(x'2 - x 2 - il'J) (x'2 - m~) 

with an arbitrary function Im r ( K2 ) with one sub
traction. It follows from the inequality (10) that on 
the real axis I r ( K2 ) I increases more slowly than 
( K2 ) 112• By using the condition (2) we can show 
from this that one subtraction is surely enough in 
the dispersion relation for r. 

We can now find the minimum of the functional 
<I>[ r ( K2 )] for the class of functions r ( K2 ) with 
which we are concerned. To do so we substitute 
Eq. (12) in Eq. (11) and perform the integration 
over K2• After changing to the dimensionless 
variable x = K2/ ( mb + me )2 we get 

<D =_!_[-a ...J- l + _!_a. (1 +A.)- 21.. ~] 
a.2 ' 2 (1 -a.) (a.- A.) 

00 

2 \ [ l !3 L (x) J d 
- -;t" j ~ + a. (x- a.) - x (x- a.) <p (x) x 

1 

00 

+ 2 ~ V (x- ; (x- /..) <pz (x) dx 

1 

00 00 

+ ~ ~ dx~ dy{~ + Y~x[L;x)- L~y)J}<p (x) <p (y), (13) 
1 1 

where 

<p (x) = I~~~) , l = Ji1In 1 + rr~ , 
1- r /.. 

V 1 ) ") [ n: . 2a. - 1 - A.] !3 = ( -a (a-"" 2 +arc stn 1 _ A. , 

L (x) = Y(x- 1) (x- 'J..) In (V~.! rx=-1)2 (13') 

[ The formula (13) is written for the case a 2: A., 
i.e., ma 2: I mb- me 1. ) Finding the variation of 
<I> with respect to cp, we get the equation satisfied 
by the function cp (x) which minimizes the inte
gral <1>: 

00 

V (x- 1) (x- /..) (x) + __!__ (' {_!_ + _1_ [L (x) _ L (y)]} ( ) d 
X <p 2n;2 J xy y - X X y <p y y 

1 

_ __!__ [_!_ !3 _ L (x) J _ O 
2n: a.x + a. (x- a.) x (x- a.) - • 

(14) 

When we use Eq. (14) the minimum value of <I> can 
be written 

$min =..!..[-a+ l+ _!_a. (1 +A.)- 21.. r-.] 
a.• 2. (1- a.)(a.- /..) r' 

00 

- _!_ \ dx (x)[_l_ + - 13 --~] n: j <p a.x a.(x-a.) a.(x-a.) • (15) 
1 
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Equation (14) is a Fredholm integral equation of 
the second kind, which, as is well known, has a 
unique solution (provided the parameter 1/27T2 is 
not equal to an eigenvalue of the homogeneous equa
tion, and in our case there is no reason for this to 
be so). In the general case the equation (14) can 
be solved numerically, but some properties of the 
solution [ and consequently of the r ( K2 ) which 
gives the minimum value of <I>] can be seen di
rectly from the equation. 

For x close to unity and x > 1, i.e., near the 
threshold for production of particles b and c, it 
is not hard to see that cp (x) is proportional to 
(x-1)-1/l, sothat r(x) isoftheform 

f(x)= iAfYx-l+B. (16) 

where A and B are constants and A is real. 
Using Eqs. (2), (2'), and (9), one can easily show 
that if r ( x ) near the threshold is given by Eq. 
(16) and goes to infinity for x - 1, then the 
Green's function D(x) will go to zero for x- 1 
and near x = 1 will be given by 

-[·g" 2Vi-A. J-1 
D (x) - t 4:rt A V x-i + C (17) 

where C is a constant. It is interesting to see 
whether such forms of r and D may not lead to 
an unphysical behavior of the scattering amplitude 
of particles b and c near the threshold. To cal
culate the s-wave scattering amplitude ao(x) for 
particles b and c we can use the relation 

Im [f(x) D(x)l = f(x) D(x) a~(x) q(x). (18) 

Substituting Eqs. (16) and (17) in Eq. (18), we find 
that for x- 1 

a0q = eiS sin~= 'l' Jl x-1 ==: y'q (19) 

(y, y' are real), i.e., we get the effective-range 
approximation for the s-wave scattering amplitude. 

It must be note9 that although when we calcu
late the scattering amplitude of particles b and c 
near threshold in this way we get a quite reason
able expression, we nevertheless qannot be sure 
that the r(x) determined from Eq. (14) can cor
respond to an actual physical situation. In fact, if 
we use the r (x) of Eq. (15) and the D(x) of Eq. 
(16) to calculate the pole term in the scattering 
amplitude a0(x) of particles b and c near thresh
old, (g2/27T) r 2(x) D{x), it will be proportional to 
(x -1 r 112, and consequently in order for the ef
fective-range approximation to hold it is necessary 
that the pole term be compensated by some sort of 

more complicated diagrams, and this seems very 
strange. 4> 

Thus when we find the minimum of the func
tional <I> by means of the function cp ( x) deter
mined from Eq. (14) we may possibly be getting 
too low a value for this minimum (and conse
quently too high a limit on g2 ), in comparison 
with what can in principle be realized in actual 
physical problems. 

Let us now consider the limiting case of small 
values of 1- 0! « 1, i.e., the case D.= mb +me 
- ma « ma. This case corresponds to the non
relativistic approximation; particle a can be in
terpreted as a bound state of particles b and c, 
and D. is the binding energy. 

It is not hard to see that when 1 - a is small 
the values of x that are important for the integral 
in Eq. (15) are those close to unity, x -1 ...... 1- 0!. 

Then we can neglect the integral term in Eq. (14), 
and 5> 

<p (x) = Yl-a/2 (x- a) JIX=l. (20) 

For <I>min we get 

:rt .. /1-A. :rt .. /2!1 
<Dmin = 4 V 1- ct = 4 V If ' (21) 

where J.l. = mbmc I ( mb + me ) is the reduced mass 
of particles b and c. For r (x) = 1 we would have 
had <I>= (7T/2)(2J.i./D..)112, i.e., the value of the inte
gral <I> cannot be decreased by more than a factor 
two because r (x) is different from unity. We get 
as the result the following upper limit on the cou
pling constant g2: 

g2 < 16m~ Y ~I 2!:!. (22) 

A physical example of such a situation is the 
case of the deuteron; the deuteron is particle a, 
and particles b and c are the neutron and proton. 

4lif there were no such cancellation it would mean that the 
scattering amplitude has a resonance at zero energy. 

5lJt can easily be shown from Eq. (14) that in the nonrela
tivistic case the vertex part f' that gives the minimum of <I> 
and the corresponding Green's function D are 

r (B)= 1/2 (1. + i v t./B), D (B)=- i (8 ma/g2 V2f1) Vi I (B + t.), 
where E is the kinetic energy of particles b and c; x = mb 
+ me + E. Calculating the scattering amplitude according to 
Eq. (18), we find a,= i [(2/LE)'h- i(2 11~)'1•]-'- the usual ex
pression for the scattering amplitude when there is a bound 
state in a potential with an infinitely small range (the Bethe
Peierls formul.a for np scattering in the triplet state). It is 
important to point out that the usual expression for the scat
tering amplitude has been obtained here with f'(E) 
= 1/,[1 + i(~/ E)'1•], and not with f'( E)= 1, as in the Bethe
Peierls theory. For this reason the bound on g2 was twice 
the usual value. 
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The fact that the deuteron, neutron, and proton 
have spins is unimportant, since at small energies 
the interaction is that in the triplet state and the 
spin functions can be factored out. 

The fact that at small values of the binding en
ergy ~ the coupling constant g2 decreases in 
proportion to ~ 1/ 2 has been derived in a number 
of papers, [2•3•5] which treated the problem on the 
basis of nonrelativistic theory and with the range 
of the nuclear forces set equal to zero. With these 
assumptions the limit obtained on g2 is smaller 
than ours by a factor two (i.e., is the same as 
would be obtained with r = 1 ). In the paper of 
Gribov, Zel'dovich, and Perelomov [3] it was 
pointed out that inclusion of a finite range of the 
nuclear forces raises the limit on the coupling 
constant g2• It follows from our treatment that 
the increase of the value of g2 due to the finite 
range of nuclear forces cannot be by more than 
a factor two. From the experimental data on the 
scattering of neutrons by protons ( cf. e.g., [B]) 

one gets 

g2 = 12mb Y ~12f-t. 

These data show that for the case of the deuteron 
the estimate (22) is a very satisfactory one. 

The numerical solution of Eq. (14) and the de
termination of Im r (x) and <~>min from Eq. (15) 
have been carried out for a number of values of 
a and A. by A. S. Kronrod, G. M. Adel'son-Vel'ski1, 
F. M. Filler, and L. V. ll'kov with an electronic 
computing machine. 

The minimum value of <I> can also be obtained 
analytically by an elegant method [9- 11] pointed out 
to us by N. N. Melman. To find the minimum of the 
integral 

<D = r -v (x -1) (x- A) I r (x) 12 dx (23) 
J x(x-a) 2 

1 

in the complex plane of x, one makes the confor
mal transformation 

z =- <Vx-1- iVI-a)f <Yx=l + iV1-a),(24) 

which takes the two sides of the cut along the real 
axis from unity to infinity over into the unit circle. 
Then the entire cut plane of x goes over into the 
interior of the unit circle, and the point x into the 
center of the circle. The integral (23) is trans
formed into 

" 
<D= 2~ ~ f(6)/f(z)/ 2d6, z=el9 , (25) 

_, 

:rt u V 1- A+ (1 - cx) u 2 6 
f(6)=V1-a[1+(1-cx)u](1+u)' U=tan 2· (26) 

r ( z) is an analytic function inside the unit circle 
and r ( 0) = 1. The solution of the problem of find
ing the minimum of the integral (25) over the class 
of functions r ( z ) that are analytic inside the circle 
and have r ( 0) = 1 is obtained ( cf. [9- 11]) by ex
panding r ( z ) in terms of the system of polynomials 
orthogonal on the unit circle with the weight f( e), 
and the answer is 

<I>min = exp{ in ~ In f (6) dB}· (27) 
_,.. 

After an elementary integration we get 

rc Yt-A+Vt-a 
<Dmin = 4 Vi-a (1 + f1- cx)• (28) 

[ The results of calculation with the formula (28) 
naturally agree with the results of numerical com
putation with Eqs. (14) and (15)]. 

Thus in the case of the interaction of three boson 
fields the coupling constant g2 is bounded by the in
equality 

(29) 
It is obvious that in the nonrelativistic case ( mb 
+me -ma « ma) the inequality (29) goes over into 
(22). 

FERMIONS 

If a particle a is a fermion, the Lehmann-Klillen 
representation for its Green's function is of the 
form 

G (p) = --;;---
p-ma 

where the functions p 1 and p 2 are positive and 
2KP1- p 2 :::::: 0. Writing G(p) in the form 

(31) 

we get for the functions f1 ( p2 ) and f2 ( p2 ) the rela
tions 

(32) 

(33) 

It follows from Eq. (32) that f11(p2 ) is an R-func
tion. Then by arguments analogous to those used 
for the boson case in going from Eq. (1) to Eq. (5), 
we get 
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Just as before, the inequality (34) is only 
strengthened if in Pi (K 2 ) we confine ourselves to 
including only the lowest two-particle states. We 
shall suppose that the lowest state is a boson with 
spin zero and a fermion with spin %. Then [G] 

(p2) - _!_ (2:n:)3....., c<r>•c<r) 
P1 two-particle - 4po L.l "' " ' (35) 

n.r 

where 

c;;> = <OI'!Ja. (0) I <Dp,r;k) (36) 

and if>pbr;k is the two-particle state of a fermion 
with momentum Pi and polarization r and a boson 
with momentum k, (pi+ k) 2 = p2• From the defi
nition of the vertex part r (x, y; z ), 

gr (x, y; z) = ~ d4x'd4y'd4z'G;/ (x- x')D~1 (z- z') 

X (01 T {cp (z'), 'iJ (x'), 'iJ (y')} I 0) Gi/ (y- y'), (37) 

it is easy to show, when we go over to the momen
tum representation, that c[> is proportional to 

1 • • . r 
g v k Ga (p) r (p) Up,, (38) 

oPo 

where u~i is a spinor which describes the free 
state of fermion b with four-momentum Pi and 
polarization r. Substituting this expression for 
c[> in Eq. (35), we arrive at the following for
mula for Pi two-particle [ q = q ( p2 ) is determined 
according to Eq. (9')]: 

4PoPltwo-particle 

= _!_g2 q <~l Sp {~r+ (p) G+ (p) G (p) r cP) CP1 + mb)}. 
2:rt v p' (39) 

Let us consider two cases: a) the scalar case, 
in which the parity of the boson c is the same as 
the product of the parities of the fermions a and b; 
b) the pseudoscalar case, in which the parity of the 
boson c is opposite to the product of the parities 
of the fermions a and b. In the scalar case the 
general expression for r <P> is of the form 

rs (p) = r1S {p2) + pr2S {p2), (40) 

and in the pseudoscalar case 

rps (p) = y,r1Ps (P2) + p"y,r2Ps (p2). (41) 

[ Particle b is a real particle, and therefore for it 
Pi = mb, so that according to Eq. (38) the only 
spinor terms remaining in the expression for r 
are those indicated in Eqs. (40), (41).] Substituting 
Eqs. (31), (40), (41) in Eq. (39) and calculating the 
trace, we get the following expression for 

Pi two-particle= 

P1 two-particle {p2) 

= (g2/4:n:){! flp + f21 2\ r 1 + pr21 2 [(p ± mb)2 - m~J 

+I tiP - f2l 2l rl- pr2\ 2 l(p :r= mb)2 - m~)} q (p2)12p3, 
(42) 

where p = (p2 )i/2, and the upper sign holds for the 
scalar case and the lower for the pseudoscalar 
case. Substituting Eq. (42) in Eq. (34) and intro
ducing the notations 

(fir~ +t2r2)/2fl =F1(p2),(f1r2P2 +t2rl)/2flma =F2(p2), 

we can write the inequality (34) in the form 

(g2/2:n:) <I> < I, 

x {I F1 (x2) x +F2 (x2) ma \2 [(x ± mb) 2 - m~l 

+ \ F1 (x2) x- F2 (x2) ma 12 [(x =f mb) 2 - m~l}. 

(43) 

(44) 

(45) 

Just as in the boson case, we assume that r i ( K2 ) 

and r 2 ( K2 ) are analytic functions of K2 in the en
tire complex plane of K2 with a cut along the real 
axis from K2 = (mb + m 0 ) 2 to infinity, which are 
real on the real axis to the left of the point K2 

= (mb +me )2 and do not increase at infinity more 
rapidly than a power of the argument. According 
to the definition of physical charge and the renor
malized vertex part the following condition must 
hold: 

(46) 

In analogy with the boson case we assume that the 
functions ri(K2 ) and r2(K2 ) have no poles any
where in the complex plane, including the interval 
from m~ to (mb + m 0 ) 2 on the real axis. This 
means that the Green's function of the fermion a 
has no zeroes associated with poles of r i and r 2• 

In addition, we here make the stronger assumption 
that the Green's function fi ( p2 ) of the fermion a 
has no zeroes at all. 6> 

On these assumptions the functions F i ( K2 ) and 
F 2 ( K2 ) are analytic functions of K2 in the plane of 
K2 cut along the real axis from K2 = (mb +me )2 

to infinity. On the real axis to the left of 
(mb + m 0 ) 2 the functions Fi(K2 ) and F2(K2 ) are 
real, and at the point K2 = m~ they satisfy the 
conditions 

6)It follows from Eq. (32) that if f1(x2) has only one pole, 
at the point x = m~, then in the most general case f,(x2 ) can 
have not more than one zero, and this zero must lie on the 
real axis in the interval m~ < x2 < (mb + me?. The restric
tions on g2 in the case in which f1 (x 2 ) has one zero will be 
dealt with in a later paper. 
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F1 (m~) = F 2 (m~) = 1/ 2• (47) 

It will be convenient for us to transform the ex
pression (45) for <P, introducing instead of F1 and 
F2 the new functions F1 ( K2 ) and F2( K2 ): 

2mb(mb+mc) - -
FI(x2)= 2 2 [=fFI{x2)+F2 (x2 )], 

x 2 + mb-mc 

In terms of the new functions the formula for <P is 

(49) 

It is obvious that the functions F 1 ( K2 ) and F 2 ( K2 ) 

have the same analyticity properties as F 1 and F 2• 

By the same arguments as used in the proof of Eq. 
(2) one can show that the behavior of F 1 and F 2 at 
infinity is such that for each of them there is a dis
persion relation with one subtraction. At the point 
K2- m2 - a 

(50) 

From the requirement that F 1 ( K2 ) be regular at 
the point K2 = - mi, + m~ t~ere fol!?ws one further 
condition on the functions F1 and F2: 

=t= F1 (- m~ + m~) + F 2 (- m~ + m~) = 0. (51) 

Thus in order to determine the maximum pos
sible value of g2 we must find the minimum of the 
function <P over the class of functions F 1 and F 2 

having the analytic properties indicated above and 
satisfying the conditions (50) and (51). To solve 
this problem we substitute the dispersion relations 
for F 1 ( K2 ) and F 2 ( K2 ) [ with one subtraction at the 
point K2 = m~] in Eq. (49) and carry out the inte
gration over K2• The result is 

00 

<1> = C + f ~ dx {R1 (x) !f1 (x) Va 
1 

+ R 2 (x) !Va (1 + VX) <p 1 (x) 

- (1 ± Va> <Vf ± Va) <r2 (x)l (1 + vrn 
+ 2 r dx f(x-1)(.:.:_-=-A.) 

~ x(x+ VA.) 
1 

x ex- 1 )x(x- A.) <p~ (x) + (I + }IT)2<p~ (x)] 

00 00 

+ ~. ~ dx ~ dy {K1 (x, y) <p1 (x) <r1 (y) 
1 1 

+ K2 (x, y) [<p2 (x) <r2 (y) <p1 (x) <r1 (y)l (1 + Vf)2}. (52) 

Here (we suppose IDb:;::: m 0 ) 

C= 4~2 { -a(a+2VX)+[2A- ~ (1-y-I)2J;~ 

+ ~ [ 2 VX: +a (e1.- "VfJ (1 + vJ0• ]} 
2 (1- e1.) (e1.- A.) 

+ ~ e1.+1VA. !(I ±"Va)2 (VI±Vcx)2 -a(1 + Vf)2 J 

X {- __!_ + [ 2C1. + V~ + 2e1. - 1 - I. J ~ 
(1. C1.2(C1.+ VI.) 2C1.(1-C1.) (C1.-A) 

+ e1. + vr l _ 1 + v~ _1_ In 1 + 1.'1.} 
C1.2 VI. e1. +VI. 1.'1• 1- ';...,'1• ' 

(1. + vr (:! + x + vr L < ) 
- t1.2 (x-t1.) t-' x2(x-C1.) X' 

R2 (x) = 1 [(1. + vr l + 1 ~ 
t1.-i-VI. e1.xVI. e1.(x-C1.) 

1 + vr 1 1 1 + 1.'/• (e1. + V~l L (x) J 
- x +VI. 'A'/, n 1- 'A'/, - (x + V'A) x (x- e1.) ' 

K1 (x, y) = - V~ + __!__ [ x + Y A-__!__ (1- }IT)2J ~ l 
xy xy xy 2 VI. 

- _1_ [ x + v~ L (x) - Y + vr L ( ) J 
x-y x2 y2 Y ' 

K. x = _z_ _ 1'+ vr _1_ 1n 1 + ~.·;. 
• ( ' y) Vfxy (x + V'A) (y + V'A) 'A'/, 1- 'A'1• 

1 [ L (x) L (y) J 
x-y x(x+ V'A)- y(y+V'A) ' 

Im 7\ (x) 
<p1 (x) = (x- e1.) , 

lmF2(x). 
<p2 (x) = (x _ e1.) , (53) 

the remaining notation is the same as in the boson 
case [ Eq. (13)]. The condition (51) can be written 
in the form 

00 00 

H = __!_ 1 ± __!_ ~ !pi (x) dx- _1 ~ !(l2 (x) dx = 0. 
2 1 + V'A :rt 1 X+ V'A :rt 1 X+ -vr (54) 

When in the expression (52) we vary cp 1 ( x) and 
cp 2(x) subject to the condition (54) we get the fol
lowing equations for the functions cp 1 (x) and cp 2 (x): 

'/, 'I V-
(xx-:-(~)+~-;)'A)' cpt(x)+ 4: !RI(x)+(l+VX")2 R2 (x)] 

00 

+ 2~2 ~ !KI(x, y)- (1 + Vf)2 K2 (x, y)] 
1 

v 1 
X cpl (y) dy=F 4:rt x+ Y'A = 0, (55) 

(x-1)'/•(x-'A)'/, () 1 (1±VCi)(Vf±Va) R2 (x) 
~(x+ V'A) <r• X - 4:rt 1+ VI. 

(56) 
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The undetermined Lagrangian multiplier v is to be 
found from Eq. (54). The minimum value of ~ is 
expressed in terms of the solution of the equations 
(54)-(56) in the following way: 

00 

cl>mm = C + 2~ ~ {}1 cxR 1 (x) lf!1 (x) 

+ R2 (x) (1 + Jf):) !Ya (1 + Jff)lf!1 (x) 

- (1 ± Jfa) (Ji}:± Jf<i) IP2 (x)l} dx. (57) 

The equations for the functions cp1 and cp 2 have 
one important feature in which they differ from the 
corresponding equations in the boson case: for 
x- 1 the coefficient of cp 1(x) in Eq. (55) goes to 
zero as (x -1 )1/2• Because of this the equation (55) 
is singular and acquires meaning only if we suppose 
that the lower limit in the integral term in Eq. (55) 
is 1 + E, where E is a small quantity. It can be 
shown that for E - 0 the quantity ~min of Eq. (57) 
goes to a finite, nonzero limit, although the solution 
cp 1 ( x) loses its meaning for E = 0. 7> This means 
that the minimum of ~ is realized through a se
quence of functions, in which the limiting function, 
while satisfying all the requirements of analyticity, 
does not satisfy the dispersion relation. (That this 
is so can be seen below, when we calculate ~min 
by an analytic method. ) Thus the question remains 
open as to whether the value of ~min which will be 
obtained corresponds to an actual physical situation, 
i.e., whether the minimum of ~ has not been set 
too low (and the maximum value of g2 too high). 

In the nonrelativistic (scalar) case ( 1 - a « 1 ) 
the difficulties just pointed out are unimportant, 
and the problem can be solved easily. As follows 
from Eq. (57), for 1- a « 1 the function cp 2(x) 

· is the important one, and for it we have 

Vt-a 
lf!2 (x) = 2 (x- cr) V x- 1 

(58) 

For ~min we get 

n -./1-1.. -.1 -
<Dmin = 4 V 1-cr (! +r ')..), (59) 

which leads to the following restriction on g2: 

g2 < 4 Y 111211 malmb, 11 = mbmJ(mb +me). (60) 

The formula (60) is equivalent to the formula (22) 
for the boson case, and goes over into that formula 
when we recall the fact that the normalization of 
the fermion wave functions differs from that of the 
boson wave functions by a factor (2m) 1/.!. 

We shall now calculate ~min by an analytical 
method. [9- 11] We make the conformal transfor-

'lThe authors are grateful to E. M. Landis for a discussion 
of this point. 

mation (24). Then the path of integration goes 
over into the unit circle and Eq. (49) can be written 
in the form 

" 
<I>= 2~ ~ d6{fi (6) I F1 (z) 12 + f2 (6) I F2 (z) 1 2}, 

i9 z =e , 
_, 

(61) 
where [u = tan2 ( 8/2 )] 

f1 (6) = n: JIT=(1: .!:!:__ [1- J.. + (1- a) u]'f, 

1+u [1 + (1- cr) u]• [1 + VJ.. +(1- cr)u]' 

u [1 -}.. + (1- cr) u]''• n (1 + V~)• 
V1-a 1 + u [1 + (1- cr) u] [1 + YJ.. + (1- cr) u) · 

(62) 
The functions F 1 ( z ) and F 2 ( z ) can be expanded 

inside the unit circle I z I < 1 in terms of systems 
of polynomials 1/Jg>(z) and 1/J~>(z) which are or
thogonal on the unit circle with the respective 
weight functions f1 ( 8 ) and f2 ( 8 ) : 

- ~ (2) F 2 (z) = LJ bn1Jln (z). (63) 
II n 

[We note that the conditions for the expansions (63) 
to hold for I z I = 1 are weaker than the conditions 
for existence of the dispersion relations for the 
functions F1 and F2 (cf.C10J.] WhenEq. (63)is 
substituted in Eq. (61) the integral ~ takes the 
form 

(64) 
n 

and the conditions (51), (50) can be written 

=t= F 1 (zo) + F 2 (zo) = 0, z = - (1 + V[):l·- (i - cr)'/, , (65) 
0 (1 + YJ..) 1• + (1- cr)'1• 

Fr(O)- yil =0,F2(0)-__!_[cr+Yf ±ra]~~o. (66) 
2 2 1 + VJ.. 

When we look for the minimum of the expression 
(64) under the conditions (65), (66) we easily find 

an = } [ V1\jl~1 > (O) =t= V3'1jl~1\z0)], 

(67) 

where v1, v2, v3 are Lagrangian undetermined mul
tipliers. Substituting Eq. (67) in Eqs. (65), (66) and 
using the formula for calculating sums of orthogo
nal polynomials (see [10], page 310) 

D (z) = exp {-4
1 f In f (8) 1 + ze=~: de}. 
n J 1-ze' _, 

we get the following system of equations for the 
determination of ~'1> v2, va: 

v1D].2 (0) =t= vaDl.1 (0) D].1 (zo) = Vex, 

(68) 

(69) 

vp;2 (0) + v3D;1 (O) D;1 (z0) ·~(a + Jf5.:)/(l + JfX") ± Jfa, 
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=F v1D~1 (0) D~1 (z0) +v2D2"1 (0) D21 (z0) 

+ v3 fD~2 (z0) +D22 (z0)l!(l-z~)=0. (70) 

Substituting Eq. (67) in Eq. (64) and using Eq. (68), 
we find 

<I>min = i- [viD~2 (0) =F 2v1v3D~1 (0) D~1 (z0) 

+ viD~2 (z0)/(1 - z~)l f- [v:D;2 (0) 

+ 2v2v3D21 (0) D21 (z0) +viD~2 (z0)/(1 - z~) l. (71) 

For the f1 ( 8 ) and f2 ( 8 ) found from Eq. (62) the 
functions D1'( z ) and D2 ( z ) can be calculated 
easily, and are found to be [ v = ( 1 - z ) I ( 1 + z ) ] 

Dl (z) = _i___-. I n (1- <)2 
2 V 1- cr 1 +z 

[ V (1- A.) I (1- cr) + v]'/, 

X [11V1- cr + v] 2 [((1 +VA.) I (1- cr))'/, + v] ' 

0 ( )- Vn(i+Vf) 1-z 
2 Z- 1--cr -2-

, [V(i-1..)1(1-cr)+ v]'/, 

X [1 IV 1- cr + v] [((1 +VA.) I (1- cr))'/, + v] 
(72) 

In order to determine ~min we still have to solve 
the equations (70) for v1, v2, v3, substitute these 
solutions in Eq. (71), and express the functions D 
by using Eq. (72). The final result obtained for 
~min is 

<D . - ~ ( vr=a: + V~l3 
mm- 16 (1 +Vi- cr)2 [Vi- cr + (1 + Vt..)'1'] 2 

{ cr Vi=a + (1±VcrJ2 (Vf±Vcrl2 

X (1 +V1-cr)2 V1-cr(V1-cr+V1-A.)2 

2 r v 1--=-r + (1 + vfl'1'F rvr=a + (1 + vfl'I'F 
+ (cr+VWfV1-t..+2(1+Vt..J'1'+1+Vt..J 

[ cr+vf ±ya( t+Vf 
X V 1 - cr + Vi -/, ~ V 1 - cr + V 1 - A. 

_ vr:::::=cr (1 + v5:.J'1, [1 + (1 + VXl'1'l ) 1
2 -J 

rv1- t.. + (1 + Vt..l'1'J (1 + v1- ex) J · (73) 

In the scalar nonrelativistic case ( 1 - a « 1 ) 
the expression (73) goes over into (59). When we 
substitute in Eq. (73) the numerical values of the 
masses for the most interesting case-the inter
action of 1r mesons with nucleons (particles a 
and b are nucleons and c is a 7T meson) -we get 
~min= 0.0245. From this we get as the restrictim. 
on the pion-nucleon coupling constant (the coeffi
cient % is used on account of the isotopically sym
metrical theory) 

g2 < 2rr/3<I>mtn = 85 (74) 

or 

F = (~-t/2m) 2 g2 < 0,47. (75) 

For the ~A1r interaction (a is the fermion ~. 

b is the fermion A, and c is the pion), if the 
parities of ~ and A are different we have ~min 
= 1.95 and 

(76) 

For like parities of the ~ and A hyperons ~min 
= 0. 0120 and g~A1r < 520. Finally, for the :S:S1r 
interaction ~min= 0.0160 and g1k>;:;'7T < 130. 

It is interesting to see how the ...... ~striction on 
the constant for the ~A1r interaction is altered if 
we take A instead of ~ as fermion a. Calculating 
~min we find that in this case d:A1r < 7.5 if ~ 
and A have opposite parities, and g~A7T < 260 if 
the parities are the same, i.e., as the binding en
ergy increases the maximum value of g2 increases 
for the scalar interaction and decreases for the 
pseudoscalar interaction. 8> 

CONCLUSION 

We have found that for prescribed values of the 
masses the coupling constants in quantum field 
theory are bounded. 9> The fact that the value of 
the coupling constant g2 cannot exceed a certain 
value gfu.ax means that the amplitudes of the quan
tum field theory, considered as functions of g2, 

have a singular point at g2 = giuax• and for g2 

> gkax the theory will be physically contradictory. 

It is interesting to discuss what may happen if 
g2 is larger than ginax· One possibility is that the 
vertex part r ( K2 ) will have a pole K2 = m~ which 
lies in the interval m~ < m~ < (mb + m 0 ) 2, i.e., 
that a new physical state with the mass m~ will 
appear. 

Another possibility is that n-1 ( K2 ) will cease 
to be an R-function, i.e., for example one of the 
constants R or a in Eq. (2) will be negative. 
[When there is only one pole of D(K 2 ) only one 
of the constants Rn in Eq. (2) can be different 
from zero.] It is not hard to verify that in addi
tion to the zero of n-1(K 2 ) at K2 = m~ there will 
be another zero at K 2 = K~, with K~ < m~ and 
[ n-1(K 2 )]~2=Ki = 0. Consequently, in this case the 

Green's function D(K 2) has a pole at K2 = Kl with 

B) AU of the numerical values of <l>min given in the text 
have also been obtained by numerical solution of the equa
tions (54)-(56) (by cutting the integrals off at the lower limit 
and afterward letting the cut-off limit approach zero) and cal
culation of <l>min from Eq. (57). 

9>1n the problem of the interaction of neutral scalar mesons 
with a static nucleon, which, as is well known, has an exact 
solution and does not lead to difficulties of the zero-charge 
type, there has been an earlier (and rigorous) proof of the fact 
that the coupling constant is bounded (see [' 2]). 
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a negative residue, i.e., an unphysical state with 
negative norm (a "ghost" ) will appear. 

The fact that the coupling constants in quantum 
field theory have upper bounds indicates that all 
attempts to approach the solution of problems by 
using expansions in powers of 1/g2 with fixed 
masses (strong-coupling theory) have extremely 
little chance of success. 

We shall also make a comment on a paper by 
Landau. [13] In this paper Landau put forward the 
idea that the constant g2 must be equal to the value 
determined for it for the case in which particle a 
is represented as a bound state of particles b and 
c with a point interaction. It follows from our 
treatment that in general this assertion cannot be 
correct, since all the other states besides the two
particle states make positive contributions to the 
relation (5). 

The authors express their gratitude to V. N. 
Gribov, A. P. Rudnik, and K. A. Ter-Martirosyan 
for helpful discussions. We would like to express 
especial gratitude toN. N. Melman for extremely 
valuable discussions of mathematical questions, 
and in particular for informing us of the method 
for analytically determining the minimum of the 
functional ~. We are also deeply grateful to A. S. 
Kronrod, G. M. Adel'son-Vel'skil, F. M. Filler, 
and P. V. li'kov for the numerical solution of the 
integral equations. 
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