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maximum in the angular diagram of a binary sam­
ple always appears when the projection of the hex­
agonal axis on the plane of rotation of the magnetic 
field coincides with the direction of that field. The 
appearance of a minimum at which t:.p/ p tends to 
saturation with increase of the field is in this case 
probably due to the fact that the current is per­
pendicular to an open direction of the Fermi sur­
face. Consequently one of the open directions is 
parallel to the hexagonal axis. Therefore the 
quadratic rise of the resistance at the maximum 
should be considered as a result of the compen­
sation of the hole and electron volumes of the 
Fermi surface. The minima in the hexagonal an­
gular dependence indicate that, apart from the 
open directions parallel to the hexagonal axis, 
there should also be open directions in the hex­
agonal plane. However, it is possible that such 
directions appear only in strong fields, i.e., that 
they are due to so-called "magnetic breakdown." 
[ 4•5] Indeed, if we compare curves 2 and 3 in 
Fig. 2 we can easily see that while curve 3 even at 
H ~ 20 kOe shows a clear tendency to saturation, 
curve 2 in fields up to 25 kOe is practically indis­
tinguishable from the quadratic dependence and the 
tendency to saturation appears in it only in fields 
exceeding 50 kOe. 

Thus, we may assume that the Fermi surface of 
Re consists of two independent parts: hole and elec­
tron. From the data obtained by measurements of 
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A vector field with mass m and spin 1 is de­
scribed by the equations 

(0- m2) A~n =0, (1a) 

(gnn aA~n 1 axn) =0. (1b) 

The Lorentz condition (1b) excludes the quanta 
with zero spin. The quantization is usually carried 
out in terms of the three-dimensional operators 

the Hall emf it follows that the electron surface is 
an open one. This open surface has open direc­
tions both along the hexagonal axis and in the hex­
agonal plane. 

Concluding, we regard it as a pleasant duty to 
thank Academician P. L. Kapitza for his constant 
interest in this work and G. E. Karstens for deter­
mination of the crystallographic orientations of the 
samples. 

l)The effective field is the quantity Heff = Hp(300°K)/ 
p(4.2°K). The maximum value of Heff in our experiments was 
2.5 x 108 Oe. 
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a~(k), which are related to the four-dimensional 
operators an ( ± k) in the usual way. [1] However, 
the whole procedure can also be carried through 
directly in terms of the covariant quantities an ( ± k). 
In place of the usual expression for the commutator 
function we obtain then 

Because of the factor o(k2 -m2 ), this expression 
is not essentially different from the usual one. 
However, it is somewhat more general. In partic­
ular, it is adapted to the quantization of a field with 
vanishing mass. 

The next step consists in defining the chrono­
logical product, i.e., the manner in which to go off 
the mass shell. The Green's function of different 
fields is, by definition, constructed in the follow­
ing way: [1] the Green's function for an arbitrary 
field is obtained from the Green's function for a 
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scalar field by applying the same operator as the 
one used to obtain the corresponding commutator 
function. This operator is usually taken in the x 
representation. But since the quantization is car­
ried out in the momentum representation and the 
whole S matrix formalism is adapted to the mo­
mentum space, it is natural to consider this oper­
ator in k space. We have then instead of the usual 
expression for Dfu.n 

-c -4 gmn- kmknk-2 
Dnm (k) = (2n) m" _ k2 _is · (3) 

The usual Green's function and the function (3) are 
obtained from (2) by going off the mass shell in a 
different fashion. In the first case k2 in the de­
nominator remains on the mass shell, in the sec­
ond case it does not. 

The operators under the chronological pairing 
operator do not satisfy free field equations. As we 
go off the mass shell we drop Eq. (la). We still 
have some freedom with respect to (lb): either we 
retain the Lorentz condition for virtual particles 
or we do not require the exclusion of virtual zero 
spin quanta. It is easily seen that the usual ex­
pression corresponds to the second choice and 
expression (3) to the first: 

W D~n (k)) = 0. (4) 

Dgm does not satisfy this relation. 
It can be shown that taking (3) as the unper­

turbed transverse expression leads to a total 
Green's function including all radiative corrections 
which is also transverse. By virtue of the relation 

Am (x) = A:;: (x)- ~ D~n (x- x') t (x') dx' (5) 

we obtain therefore 

(6) 

and, by the equation of motion for Am ( x), are led 
to the conservation law for the current jm: 

(7) 

The choice of the Green's function in the form 
(3), therefore, automatically leads to the conserva­
tion of the corresponding current. It is therefore 
natural to choose the Green's function in gauge in­
variant theories of the type of that of Sakurai [2] or 
Salam [3] in the form (3). Thus gauge invariance 
implies the absence of real as well as virtual 
quanta of zero spin. The renormalizability of the 
theory becomes obvious. 

Let us show now that our procedure gives the 
correct results in electrodynamics, which in the 
present case is treated in complete analogy with 
other vector fields with conserved current. As is 

known, the quantization of the electromagnetic 
field in the usual formalism meets with serious 
difficulties. The Lorentz con,dition cannot be im­
posed on the field operators and an indefinite met­
ric has to be introduced. Our method is free from 
these complications. We start from Eqs. (1) with 
m = 0. As noted above, the quantization is carried 
out in the same way as for a field with nonvanish­
ing mass. As a result we obtain (2) with m = 0. 

Going off the mass shell in the manner de­
scribed above, we find for the Green's function 
the well known transverse expression 

Oc -4 ( mn kmkn) 1 
Dmn (k) = - (2n) g - ~ kz + ie · (8) 

At no place did we have to use the artifice of an in­
definite metric. 

The Green's function (3) has a pole at k2 = 0. 
This pole might at first glance lead to a violation 
of unitarity. However, for interactions with a con­
served current jn = ~yni/J, as well as in electrody­
namics, this violation does not affect observable 
quantities, since the part of the Green's function 
proportional to km kn can be transformed away by 
a contact transformation. [4] Moreover, as shown 
by Jouvet, [5] it is necessary in this case that the 
total Green's function have a pole at k2 = 0 in order 
that unitarity be preserved in the observable quan­
tities. Our results are in complete accordance with 
those of Jouvet. In our scheme, in contrast to 
Jouvet's paper, the polarization tensor is trans­
verse in all orders of perturbation theory. 

In theories of the Yang-Mills type, [GJ in which 
the current is also conserved, the presence of the 
pole at k2 = 0 may lead to a violation of unitarity, 
since the longitudinal part cannot be removed in 
this case. This question is currently under inves­
tigation. In this connection, it is of interest to 
mention the work of Goldstone et al., [7] in which 
it is shown that theories based on "broken sym­
metries," to which the Yang-Mills field with non­
vanishing mass belongs, require the introduction 
of particles with vanishing mass. 

Our procedure permits us thus to construct a 
renormalizable theory of vector particles in which 
zero spin quanta are excluded at all stages. Appli­
cation of this procedure to electrodynamics leads 
to the usual results. Here the electromagnetic 
field is considered on a par with fields with non­
zero mass and does not require the introduction 
of an indefinite metric. 

In conclusion I take this opportunity to express 
my gratitude to V. V. Medvedev, M. K. Polivanov, 
and A. D. Sukhanov for a useful discussion. 
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IT is known that the energy losses, due to ioniza­
tion, of fast charged particles in dense media at 
high values of p/ JJ.C ( p is the momentum and iJ. is 
the mass of the particle) remain practically con­
stant due to the density effect. Garibyan [1] showed 
that if a particle passes through a sufficiently thin 
plate then its electric field remains the same as it 
was in vacuum. Therefore, in such a plate the par­
ticle ionizes in a manner as if there is no screen­
ing action of the medium, i.e., there is no density 
effect. 

Earlier calculations [1] showed that for this to 
happen the plate thickness a should satisfy the in­
equality 

~-' 2vQ I vx0 
a~- n , 

G f1 -~' Q 

where v is the velocity of the particle; {3 = vIc; 
a= 4rrNe2/m (the plasma frequency); 'g is the 
frequency above which the dielectric constant of 
the medium can be given by the formula E ( w) 

(1) 

= 1-a/w2; Ko is a quantity inversely proportional 
to the distance beyond which the macroscopic ap­
proach is applicable. 

In plates of this thickness one should expect a 
logarithmic increase of the ionization losses with 
increase of the particle energy. The presence of 
such an increase of the ionization losses may be 
used to measure the energies of very fast particles 
in those cases when other methods are not prac­
ticable. 

This method can obviously be used to determine 
the energies of particles in monoenergetic beams, 
although in principle it can also be used for single 
particles. In the latter case a large number of 
thin plates must be used to measure the particle 
energy, so that the total energy losses can be 
measured sufficiently accurately and with minimum 
fluctuations. Then, as pointed out earlier, [2] the 
distance between the thin plates should be much 
smaller than the quantity in the right-hand part of 
the inequality (1). This condition is necessary to 
ensure that the field of the particle is not distorted 
by the polarization of the medium not only in the 
first plate but in all the subsequent ones. 

EXPERIMENTAL SECTION AND RESULTS 

Measurements were carried out using the linear 
accelerator of the Physico-technical Institute of the 
Ukrainian Academy of Sciences. The experimental 
setup is shown in Fig. 1. Electron beams of ener­
gies 20.5, 40, 47 .5, 88 MeV were in turn focused 
on a target consisting of a scintillation film of 
10-6 em thickness deposited on an aluminim sub­
strate of 10 J.L thickness. In all the measurements 
the current passing through the target reached 
0.01 JJ.A. The beam intensity was measured with 
a secondary-emission monitor. The monitor was 
calibrated by means of a Faraday cylinder and had 
a constant secondary-emission coefficient in the 
range of electron energies used in the present 
work. The scintillation film was prepared from a 
plastic polystyrene-based scintillator by the usual 
method of deposition on a substrate. 

From Eq. (1) we deduced the following criti­
cal values of the thickness a0 of the polystyrene 
film for different values of the electron energy: 

To photo­
multiplier Electron beam 

FIG. 1. Schematic representation of the experimental setup: 
1) secondary-emission monitor; 2) target; 3) vacuum window . 


