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A theory of natural vibrations is developed for resonators consisting of sections of circular 
or plane waveguide or formed by plane parallel mirrors of rectangular or circular shape. 
This theory is based on a rigorous theory of the diffraction at the open end of a waveguide 
and leads to simple and graphic relations whose accuracy increases with increase of the 
frequency and with decrease of the radiative damping of the oscillations. Resonators of 
these types are of interest for lasers, and also for the physics and technology of millimeter 
and submillimeter waves. 

INTRODUCTION 

THE quantum light generator (laser), many forms 
· of which have now been developed, has as its oscil
lating system an open resonator, which in the sim
plest case consists of two plane parallel mirrors 
placed opposite to one another. Open resonators 
of this type have been considered by a number of 
authors, [1-s] but a quantitative theory of resona
tors with plane mirrors was first given in a paper 
by Fox and Li, C7J and this theory lacks intuitive 
clarity and requires computations with fast com
puting machines; these calculations are based es
sentially on a modelling (with some simplifying 
assumptions) of the process of the establishing 
of oscillations in an open resonator. 

A remarkable feature of open resonators is that 
all of their dimensions are much larger than the 
wavelength, and the spectrum of natural frequencies 
is sparse as compared with that of a closed reso
nating volume. Therefore open resonators should 
find wide application in the physics and technology 
of millimeter and submillimeter waves (and per
haps of longer waves as well). 

We give here a theory of open resonators formed 
by plane mirrors, and also of resonators consist
ing of sections of waveguide with open ends, and we 
show that all of the characteristics of such reso
nators can be calculated rather simply, at least 
for oscillations with small radiation losses. This 
theory also gives an intuitive physical idea of the 
principle of operation of open resonators. 

The basis of the theory is the following idea 
(statedbySuchkin[6]): the smallness of the radia
tion loss of an open resonator is due to the fact 
that the wave reaching the edge or end of the reso-

nator is a guided wave of frequency only slightly 
higher than the critical frequency; such a wave, as 
has been shown in a number of papers [8- 12] and in 
a book by the present writer, [13] scarcely emerges 
as radiation at all, but is reflected back with a re
flection coefficient of absolute value close to unity. 
Suchkin did not succeed, however, in developing 
this idea in a sufficiently convincing way, nor in 
making quantitative calculations for open resonat
ing systems, nor in particular in finding the main 
characteristics of their natural oscillations (fre
quency, radiative damping, field and current dis
tributions ). 

As will be seen from what follows, this idea 
actually allows us to construct a theory of open 
resonators, and thus this theory is implicitly con
tained in the theory of diffraction at an open end 
of a waveguide. 

1. DIFFRACTION AT AN OPEN END OF A 
WAVEGUIDE 

Let us consider the diffraction at the end of a 
plane waveguide (Fig. 1) from a point of view 
rather different from that used in previous treat
ments. [8•9•13] Taking the time dependence in the 
form e-iwt, we shall assume that the wave num
ber k = w/c is connected with the distance 2a be
tween the plates of the waveguide by the following 
relation 

!! 

FIG. 1. Waveguide with open end. 2a 
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ka = n(q/2 + p), (1) 

where q is a large integer and I pI < 1,12• Let 
there arrive at the open end of the guide a wave 
Hoq or Eoq with field independent of the coordinate 
x and frequency which by Eq. (1) is close to the 
critical frequency (these frequencies are equal 
for p = 0 ). The diffraction field of this wave can 
be expressed simply in terms of a function F ( w), 
which is connected with the surface density of cur
rent on the upper plate y = a by the relation 

f (z) = ~ eiwzp (w) dw, 
c 

(2) 

where the path C goes mainly along the real axis 
and dips below the point w = - w 0 which corre
sponds to the wave arriving at the end. The func
tion F ( w ) is determined from the functional equa
tions ( cf. [S] or Chapter I of [ 13]) 

~ eiwz F (w) dw = 0 for z < 0, 
(; 

~ eiwzL (w) F(w) dw = 0 for z > 0, 
c 

where for a wave H0q 

L (w) = .!:_ [ 1 _ (- 1)qe2iva], 
v 

and for a wave E0q 

L (w) = T [1 _ (- 1)qe2iva]. 

Under the conditions 

the functions (4) and (5) can be replaced by the 
simpler (integral) function 

L (w) = 1- exp {i (2np- w2a/k)}, 

since in the exponent we can set 

v = Jfk2 -w2 = k -w2/2k, 

and in the coefficient of the brackets we can set 
v = k. 

The function (7) vanishes for w = ±Wj, where 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

w~=Ykl2as1 , s1 =Y4n(j+p). (9) 

It is easy to verify that Wj is the wave number of 
the wave Hoq+ 2j or Eoq+2j in the plane waveguide 
[approximately, under the conditions (1) and (6)]. 
The values j = 1, 2, . . . in Eq. (9) give propagating 
waves; the values j = -1, -2, ... give damped 
waves {for which Sj = il Sj I = i[ 47r(- j -p )] 112 }; 

and the value j = 0 corresponds to the arriving 
wave Hoq or E0q. which propagates for p > 0 and 
is damped for p < 0. 

We shall solve the equations (3) with the integral 
function (7), so that at the very beginning we intro
duce into the diffraction problem an approximation 
which depends on the condition (6). The function 
(7) breaks up into factors 

L (w) = L 1 (w) L 2 (w), (10) 

where L1 (w) is a function holomorphic in the upper 
half-plane Im w :::: 0, which satisfies in that half
plane the condition L1 ( w ) - 1 for I w I - oo and 
is given by the formulas 

L1 (w) = eU(s, Pl' -. ;za 
s = V kw, 

()() 

U (s p) = ·~ I 1n (1 _ ei2nP -t'/2) ~. (11) 
, 2m ~ t- se'"/4 

-()() 

The function U ( s, p) was introduced in [9] and 
afterwards was studied in detail and tabulated in 
a book by the writer. [13] When the equations (3) 
are solved the functions F(w) and f(z) are ob
tained in the forms 

(12) 

f (z) =A (e-iw,z + L; Ro./wiz), (13) 
I 

where A is the current amplitude of the arriving 
wave, 

R . ___ i_e_xp_{_U---,(_so_, ,--P_) +~U_(so_i'_P_)}_ 
0 • 1 - (so+ s1) s1 

(14) 

is (for j ;r. 0) the coefficient of transformation of 
the incident wave into the wave with the index j, 

and Ro,o is the reflection coefficient of the incident 
wave with respect to current. Analogous formulas 
are obtained in cases of incident waves which do 
not have the index j = 0, but indices j = 1, j = -1, 
and so on. 

Figure 2 shows the absolute values of the coef
ficients R0, 0, R0, 1, R1, 1, and R 1, 0 as functions of 
p for -% < p < 1f2• In virtue of the relation 

u (is, p) = u· (s, - p) (15) 

we also have 

R_l, -1 (p) I = J R1,1 (- p) J, I R_l,O (p) I =I Rl,O (- p) I. 
I Ro, -1 (p) I =I Ro,1 (- p) J. (16) 

Thus for small values of p the wave with the in
dex j = 0 undergoes strong reflection, with almost 
no transformation into the waves with the indices 
j = ± 1. For I p I < 1,12 the latter waves are weakly 
reflected from the end (I R1 1 I and I R-1 -1 I are 

' ' smaller than 0.1) and cannot give rise to oscilla-
tions with small losses to radiation. Therefore 
the only quantity of importance for what follows is 
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FIG. 2. Absolute values of reflection and transformation 
coefficients for current. 
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FIG. 3. Phase of the reflection coefficient R0, 0 • 

the reflection coefficient 

Ro,o = -I Ro.o J exp (iE>o,o), (17) 

whose phase ®0, 0 is shown in Fig. 3; by Eq. (15) 

it is an odd function of p, whereas I R0, 0 I is an 
even function. For small p the coefficients (17) 
can be represented in the form 

Ro,o = - exp {i~ (1 + i) s0}, 

where 

and t(z) is the zeta function of Riemann. The 
dashed lines in Figs. 2 and 3 show the functions 

(18) 

(19) 

I Ro o I and ®0 o calculated from the approximate 
for~ula (18); ~e see that it gives agreement with
in the accuracy of plotting for I pI < 0.05, and is 
qualitatively useful right up to I pI ~ 0.5. 

The physical meaning of these results is as fol
lows. As is well known, a wave propagating in a 

plane waveguide can be represented as the sum of 
two plane waves, i.e., as two beams of parallel 
rays. If the frequency of the wave is close to the 
critical frequency, these rays make a small angle 
E: with the normal to the walls (Fig. 4) and there
fore can easily be turned, owing to diffraction, 

FIG. 4. For the interpretation 
of Eq. (18). 

,y 

through the angle 2E, which results in the forma
tion of a reflected wave. There is practically no 
transformation into waves with other indices, 
since in such a transformation the rays have to 

z 

be turned through much larger angles. The re
flection coefficient depends not on the angle E: 

alone, but on the parameter s 0 = E( 2ka) 112 which 
characterizes the diffraction creep (transverse 
diffusion) of the beam of rays reflected from each 
semiinfinite wall to the distance 2a, where the 
other wall is located, which forms the reflected 
wave from the turned rays. 

Let us now consider a circular waveguide of 
radius a. Suppose that at its open end there ar
rives a wave Emn with frequency close to its 
critical frequency, i.e., with 

ka = Vmn + np, (20) 

or else a wave Hmn with the analogous condition 

ka = ftmn + np, J~ ([tmn) = 0, (21) 

where I p I < t;2, m = 0, 1, 2, . . . is the azimuthal 
index, and n » 1 is the number of the root. In the 
general case of the reflection of a wave Emn 
(m >" 0) from the open end, in addition to the lon
gitudinal component 

jz = f (z) sin (mrp + rp0) (22) 

of the current density there is an azimuthal com
ponent jcp, and the functional equations are com
plicated (cf. [ 10•11 ] or Chapter IV in [13]). They 
become simpler under the conditions 

m<ka, Jwl <ll, (23) 

which follow from the condition (20), and go over 
into the simpler equations (3) with the function (7). 

Under the conditions (23) a wave Hmn excites 
an azimuthal component of current density 

j, = f (z) cos (mrp + rp0) (24) 
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and a negligibly small component jz. The new 
function F ( w), connected with f ( z ) by the rela
tion (2), also satisfies the equations (3) with the 
function (7), but now the parameter p is deter
mined by Eq. (21), not by Eq. (20). 

It follows from this that the formulas (12)-(19), 
Figs. 2 and 3, and all of our previous conclusions 
apply to waves Emn and Hmn in a circular wave
guide with an open end. We note that the vector 
character of electromagnetic waves does not mani
fest itself near the critical frequency: the same 
results are obtained ( cf. [12 ] or Chapter III of [13]) 

for scalar (sound) waves; waves satisfying the con
dition <I> = 0 at the wall behave like waves Emn, 
and those satisfying the condition El<I>/Elr = 0 be
have like waves Hmn· 

Having obtained the asymptotic laws relating to 
the reflection of waves of high index near their 
critical frequencies (i.e., for ka » 1 ), we may 
naturally ask: when do these laws come into effect? 
An inspection of the graphs given in [B-13] shows 
that only the wave H11 in a circular waveguide 
(among waves of the guided type) has qualitatively 
different properties, and that already for the E 03 

and H03 waves in a plane waveguide (ka r::>J 371"/2) 
and for Em2 and Hm2 waves in a circular wave
guide ( ka r::>J vm2 and ka f'>j J.tm2 ) the asymptotic 
laws give satisfactory accuracy, which improves 
rapidly as ka increases, i.e., as the number of 
the wave increases. 

We note that the asymptotic laws are not af
fected by the behavior of the current near a sharp 
edge, which is different for waves of different po
larizations, for example for Hoq and Eoq waves 
in a plane waveguide. Moreover, our solution (13) 
does not involve the current flowing on the outer 
surfaces of the walls [since the function (7) is an 
integral function]. Therefore the asymptotic laws 
are valid for waveguides with flanges, with walls 
of finite thickness (not necessarily metallic), and 
so on. 

2. OPEN CYLINDRICAL RESONATOR (OPEN 
TUBE) 

As is well known, an open tube (under the con
dition ka « 1 ) is an acoustical resonator with high 
figure of merit. The design of such a resonator is 
based on the theory of diffraction at the open end 
of the tube ( cf. [ 12] or Chapter III of [13] ) . In the 
opposite case ka » 1 the open tube also has good 
resonance properties for both electromagnetic and 
acoustical oscillations. The calculation for this 
case is easily made by means of the formulas de
rived above. 

Let 2a be the diameter of the tube and 2Z its 
length. We choose the origin of coordinates at the 
center of the tube, so that the inner surface of the 
tube is given by r = a, -Z < z < l. We shall look 
for the value of the complex wave number k = w/ c 
of the oscillation Emnq ( q = 1, 2, ... ) in the cy
lindrical resonator without special terminations 
in the form (20) with unknown but small complex 
parameter p. Then the function f(z ), which in 
Eq. (22) determines the current distribution on 
the surface of the tube, will be of the form 

f(z) =COSW0Z for q =1,3, ... , (25) 
f (z) = sinw0z for q = 2, 4, ... , (26) 

where w0 is connected with p by Eq. (9) with 
j = 0. In fact, because of the symmetry of the sys
tem the function f(z) is either even or odd; since 
the vibration Emnq arises as the result of sue
cessive reflections of the wave Emn from the two 
ends, and since these produce practically no other 
waves, we get the formulas (25) and (26). The for
mer can be written 

t (z) = + eiwJ [eiw,(z-l) + e-2iw,le-iw,(z-l)). (27) 

The first term in the brackets is the wave arriving 
at the open end z = l, and the second term is the 
reflected wave, which by Eq. (13) must be equal to 
R 0 0 exp {- iw0 ( z -l) }. Equating R0 0 to the coef
fic'ient which appears in Eq. (27), w~ get the char
acteristic equation 

Ro,o =e-2tw,l (q = 1, 3, ... ). (28) 

The formula (26) gives the characteristic equa
tion 

Ro, o = - e-2lw,l (q = 2, 4, ... ). (29) 

Using the fact that according to Eq. (9) 

(30) 

we can rewrite the equations (28) and (29) in the 
form 

ei<M+Il+t{l)s,=(-1)q, q=1,2,3, .•. 

with the obvious solution 

(31) 

S0 = Y4:rtp=:rtq/(M + ~ + i~), q= 1, 2, 3, ..• (32) 

The required complex parameter p is given by 

(33) 

or in more detail 

p = p' -ip", , nq2 M (M + 2~) 
p = T [(M + f3) 2 + f3 2)'' 

" nq2 ~ (M + f3) 
p = 2 [(M + f3) 2 + f3 2]'. 

(34) 
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The frequency w = w'- iw" of the oscillation 
Emnq is complex. By the relation exp ( - iwt) 
= exp (- iw't) exp (- w"t) the quantities p' and 
p" have the following meanings: .6. = 21rp' is the 
additional increase of the phase in the time T 

= 2a/c owing to the fact that the frequency of the 
oscillations is not equal to the critical frequency, 
and 

A= 1-exp (-4np") = 4np" (35) 

is the fractional decrease of the energy of the os
cillations during the same time T. Because p' is 
small, the quality of the oscillation Emnq is given 
by 

Q = Vmn12np". (36) 

The formulas (32)-(36) are approximate. They 
give good accuracy if Eq. (33) gives I pI < 0.05, 
and are roughly correct right up to I pI ~ 0.5 
(see Section 1). For large values of M 

(37) 

and we get the series -of resonance shown schemat
ically in Fig. 5. The width of the q-th resonance 
curve is proportional to q2, and the distance be
tween adjacent curves is proportional to 2q ± 1; 
for q ~ M the resonance curves begin to overlap, 
and then our approximate formulas are no longer 
good. 

Setting q = 0 in Eqs. (32)-(34) we get a formal 
solution of the equation (31) which has no physical 
meaning; it corresponds to undamped oscillations 
at the critical frequency, which are impossible in 
open systems. 

When we use the relations (30) and (32) the func
tions (25) and (26) take the forms 

nqz I 3 f (z) = cos 21 [1 + i3 (1 + i) I M] ' q = ' ' ... ; 
nqz 2 4 f (z) =sin 21 [1 + 13 (1 + i) 1 MJ ' q = ' ' · · ·• 

(38) 

(39) 

and for small values of p the formulas (29) and 
(33) can be rewritten in the form 

{( vmn ) 2 [ nq ]2}'/, 
kmnq = a + _ 21 (1 + i3 (1 + i) I M) • 

(40) 

Amplitude 

) Emnl 

ka 

FIG. S. Resonance curve of open tube. 

The formulas (38) and (39) show that for M » 1 
the current distribution of the oscillation Emnq in 
an open cylindrical resonator has a node near each 
end z = ±l, whereas in a closed cylindrical reso
nator there are antinodes of the current at the end 
walls z = ± l. For this reason there is an oscilla
tion Emno in the closed resonator which is impos
sible in an open one, but the natural frequencies of 
the other oscillations Emnq are nearly the same 
if the quantity M is sufficiently large. The radia
tion losses in open resonators make their spectra 
more widely space (Sec. 6 ). 

In this system the same formulas (25)-(40) hold 
for the oscillations Hmnq• except that by Eq. (21) 
we must replace Vmn by t-tmn· The function f(z) 
is now used in Eq. (24) to give the distribution of 
the azimuthal current. It is interesting to note 
that for M » 1 the vibrations Hmnq in open and 
closed resonators of the same dimensions have 
nearly the same current and field distributions; 
the only difference is that in a closed resonator 
the current falls to zero at z = ±l, whereas in the 
open resonator it falls to small values of the order 
of 1/M (see Figs. 8 and 9 below). The drop of 
the current to small values at the boundaries is a 
characteristic effect in open resonators; owing to 
it the radiation loss is kept to a minimum. 

In conclusion let us consider a "semi-open" 
resonator of length l (reflecting piston at z = 0, 
open end at z = l). It is easy to show that in such 
a resonator there will be oscillations Emnq with 
odd indices q and oscillations Hmnq with even 
indices q, which are the same as for the open 
resonator of length 2l examined above. 

3. TWO-DIMENSIONAL RESONATOR FORMED 
BY PLANE MIRRORS 

Figure 6 shows a resonator formed by two par
allel mirrors of width 2a and of infinite length, 
separated by the distance 2l. Let us introduce 
coordinates x, y, z as shown in Fig. 6, and con
sider two-dimensional oscillations in the reso
nator with fields independent of y. In the new 
coordinate system x, y, z these oscillations can 
be denoted by Ei?{~q and Hi?{~q; the index x shows 
that the classification is based on the x component 
of the field, and not the z component as in the usual 
notation (the oscillation Hi?{~q can also be labelled 

(y) f ) Emoq• c . Sec. 4 . 
The properties of these oscillations can be de

rived without difficulty from the relations obtained 
in Sec. 2, since this resonator is a section of plane 
waveguide, and in Sec. 2 we considered a section of 
circular waveguide. The oscillations Ei;f~q occur 
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FIG. 6. Two-dimensional 
resonator with plane mirrors. 

at a frequency w = ck such that 

kl = :rt (q/2 + p), (41) 

where q is a large integer (for practical pur
poses q > 3) and p is a small correction, which 
is found to be given by 

where 

M = Y 2ka2/l. 

Equations (41) and (42) can be combined into a 
single formula 

{l m ]z ( q )2}'/, 
kmq = ~ a ( 1 + ~ 1 k i ) + T · 

(42) 

(43) 

(44) 

The current distribution (longitudinal, i.e., di
rected along the x axis ) is given by the functions 

f (x) =cos Za [1 + ;(~xj- i) 1 MJ form= I, 3, ... , (45) 

f ( . mnx f 2 4 (46) 
x) = sm 2a [1 + ~ (1 + i) I M] or m = ' ' ... 

The same formulas also apply to the oscilla
tions Hg6q• for which the function f(x) gives the 
distribution of transverse current-directed along 
the y axis. Thus for this resonator there is a 
characteristic polarization degeneracy-the oscil
lations Eg~q and Hg6q have the same frequency 
(41). The degeneracy disappears if we go over to 
the semi-open resonator shown in Fig. 7; in this 
resonator, owing to the presence of the ideally 
conducting wall at x = 0 the only oscillations are 
E~6q with odd indices m and Hg6q with even m, 
whwh are the same as the corresponding oscilla
tions of the open resonator of Fig. 6. 

h-I 
ZL 

FIG. 7. Semi-open resonator. 

The two-dimensional resonator with plane 
("ribbon") mirrors has been studied in detail by 
Fox and Li, [7] who obtained from elaborate calcu
lations curves for the quantities which we denoted 
in Section 2 by A (fractional energy loss during 
the time T = 2l/ c) and ~ (additional phase change 
in the time r ), for m = 1 and m = 2. Oscillations 
with higher indices were not investigated in [1] 

and could scarcely be dealt with in the framework 
of the method used in that paper. 

In our theory A and ~ are given by the simple 
formulas 

A - 4 " - 2 2 2 ~ (M + ~) 
- :rtp -- :rt m [(M + ~)2 + ~2 1 2 • 

, n 2m2 M (M + 2;3) 
11 = 2:rtp = 2""" [(M + ~)2 + ~2]2 , 

where the quantity M is connected with the 
"Fresnel zone number" 

N = a2/2l'A = ka2/4:rtl, 

introduced in [7] by the simple relation 

M=V8:rtN. 

(47) 

(48) 

(49) 

(50) 

If we compare the formulas (48) with the curves 
given in [7] for m = 1 and m = 2, it is found that 
they agree within the accuracy of reading the 
curves. 

Figures 8 and 9 show the current distributions 
on the plates of the resonator for the oscillations 
m = 1 and m = 2, for the values of N for which 
the corresponding curves are given in [7]. When 
we compare these latter curves with Figs. 8 and 9, 
we see that they are different: the curves of Fox 
and Li are irregular and wavy, and in general do 
not run the same as our curves. The difference 
is due to the fact that we have not taken into ac
count the waves of other numbers (j = 1, j = - 1, 
etc.) which arise, though indeed with small ampli-

0,,'1-------- +----

1 

I 
I _,// 
~ ....--:.-----'11'-:itJ' 

arcjrxJ~--
0~~~~~~~--------~ 

IJ.J' I 
Z/fl 

FIG. 8. The function ( 45) for m : 1. 
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'" 
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N=l 

FIG. 9. The function (46) for m = 2. 

!oNfJ 
N=4 
N=Z 

,N= f(} 

tudes, when the waves are reflected from the edge. 
These "fine details" of the current distributions 
are unimportant for the calculation of the natural 
frequencies, just as they are unimportant for the 
calculation of the Joule and other losses caused 
by the fact that the walls of the open resonator 
are not ideally reflecting. 

4. OPEN RESONATOR FORMED BY RECTANGU
LAR MIRRORS 

Let an open resonator be formed by parallel 
rectangular mirrors 

-a< x<a, Z= ± l. (51) 

In the analysis of the oscillations in this system 
we shall start from the scalar wave equation 

00 

~~ e1 <wxx+wyy) F (wx, Wy) dwxdWy = 0 for I X I> a, I Y I> b, 
-00 

00 

~~ e' <wxx+wyY) L (wx, Wy) F (wx, Wy) dwxdWy 
-oo 

= 0 for I xI< a, I y I< b, (56) 

which cannot be solved exactly. For wx « k, wy 
« k the function (55) takes the form 

{ ( w2 + w2 )} L (wx, Wy) = I - exp i 2np- x k Y l 

where we have set 

kl = J( (q/2 + p), P= Pa + Pb· 

Substituting the function (57) in the equations 
(56), we see that they have the solution 

(58) 

F (wx, Wy) =Fa (wx) Fb (wy), (59) 

where the function Fa ( w) is a solution of the 
equations 

00 

~ eiwx Fa (w) dw = 0 for /Xi >a, 
-oo 

00 

~ eiwx [I - exp {i ( 2np a - ~21)} J Fa (w) dw = 0 for I xI< a, 

~ 0000 

which correspond to the two-dimensional oscilla
tions of the resonator considered in Sec. 3, and 
the function Fb(W) satisfies the same equations 
with a replaced by b. The function 

00 

f (x, y) = ~ ~ e" (wxx+wyY) F (Wx, Wy) dwxdWy (61) 
-00 

a2<IJ + az<D + az<D + k2<D = 0 (52) 
axz ay2 az2 can also be put in the form of a product 

and the boundary condition <P = 0 at the mirrors. f (x, y) =fa (x) fb (y)o (62) 
The solution of Eq. (52) can be written in the form 

00 

<1> (x, y, z) = 2:i ~~ e' (wxx+wyy) ! [eiv jz-lj 

-oo 

(53) 

where 

(54) 

Writing 

(55) 

we get as the equations for the unknown function 
F(w): 

where, according to Sec. 3, 

mnx 
fa(X)= cos 2a(i+~(1+i)1Ma)' 

nny 
fb (y) = cos 2b (1 + ~ (1 + i) I Ml>) form, n =I, 3, o o 0, (63) 

f ( ) 0 mnx 
a X = SITI 2a (1 + ~ (1 + i) I Ma) ' 

f ( ) 0 nny 2 4 
b y = sm 2b (1 + ~ (1 + i) I Mb) form, n = ' '0 0 0' 

Ma = J/2ka 2/l, M1> = Y2kb2llo (64) 

The parameters Pa and Pb are given by 

pb = nn214 (Mb + ~ + i~)2, 
(65) 
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so that 

[ 
m _12 

kmnq = { a (1 + ~ (1 +i)/Mal j 

[ n ]2 ( q )2 }'/, + . b (1 + [3 (1 + i) I Mb) + T . . (66) 

The formulas (56)-(66) are also obtained when 
the boundary condition is B<P/Bz = 0. To go over 
to the case of the vector electromagnetic field we 
use the formulas 

E= ik-1 (grad divA + k2A), H= rot A (67)* 

and set <P equal to one of the rectangular compo
nents of the vector potential A. Then the expres
sion (62) must be proportional to the current den
sity on the mirror-only then are the formulas 
(63) valid; in their derivation one uses the expres
sion for the current reflection coefficient. We can 
set 

<P =Ax and <f>= Au (68) 

but we cannot take <P to be Az or the z component 
of the magnetic vector potential. 

With <P = Ax we get an oscillation Ei?fhq polar
ized along the x axis, for which jx = f and jy = 0; 
with <P = Ay we get an oscillation E~hq, for which 
jx = 0 and jy = f (see Fig. 10). The oscillations 

Eg~q and Eih~q have the same frequency (66); 
this is the polarization degeneracy, which is re
moved in the semi-open resonator with three walls 

O< x< a, 
X= 0, 

z = ± l; 
-L<z<L, (69) 

for which the only oscillations are Eg~q with odd 
m and Eih~q with even m, which are the same as 
in the open oscillator. By means of other walls 
one can obtain other semi-open resonators from 
the open resonator (for example, a section of a 
rectangular waveguide), and there is also no dif
ficulty in making the calculations for these. 

c 

b d 

FIG. 10. Current distributions on rectangular mirror for the 
oscillations Euq and E21q: a- oscillation E<t?q; b- oscilla

tion E{l'J; c- oscillation EJ~~; d- oscillation Em. 

*rot = curl. 

5. OPEN RESONATOR FORMED BY CIRCULAR 
MIRRORS 

When we consider a resonator formed by par
allel circular mirrors given, in cylindrical coor
dinates r, cp, z by the equations 

0 < r <a, Z=± {, 

the solutions of Eq. (52) are of the form 

<P (r, cp, z) = 1¥ (r, z) cos mcp, 

so that 

(70) 

(71) 

c a<D ( ) f (r, cp) = -4 8-(r, cp, l-0) = g (r) cos mcp. 72 
1t z 

Under the condition (41) we can write the function 
g( r) in the form 

g (r) = Jm (w0 r), (73) 

since when the wave is reflected from the edge 
r = a there is practically no production of other 
waves. We shall assume that the reflection coef
ficient for the cylindrical wave at the edge r = a 
is approximately equal to the coefficient (18) de
rived for a plane wave, and introduce functions 
Am (x) and &1m (x) -the amplitude and phase of 
the cylindrical wave-with the formulas 

Jm (x) = Am (x) sin Qm (x). 

(7 4) 

If we require that the function (73) have the form 
( cf. Sec. 2) 

-i [11m ~(w,r)-!lm (w,a)] + R.o,oe }, (7 5) 

we get the characteristic equation 

(76) 

As in Eq. (20), let us denote the n-th zero of 
the function Jm(x) by Vmn· Using the relations 

Qm (x) = Qm (vmn) + Q;, (Vmn) (X - Vmn) 

(77) 

and the fact that in Eq. (18) we must replace s 0 by 
s 0&1'(vmn), we put Eq. (76) in the form 

from which we have 

So= 2Vmni(M + ~ + i~), 

M = Y2ka2/l, (78) 

p = v;.n/Jr. (M + ~ + i~)2 • 

(79) 

For the resonator with circular mirrors the 
quantities A and ~ are given by 
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A - 4 " -- 8 2 ~ (M + [1) 
- '!tp -- Vmn[(M+f3)2+f1"J"' 

2 , 2 M (M + 2!3) . 
ll = .rtp = v;;_,n [(M + [1)2 + ;3"1"' (80) 

and the quality figure and complex frequency can 
be calculated from the formulas 

kmnq = {[ a(1 ;;n~) r + (~ifr, (81) 

while the function (73) takes the form 

/ vmnrfa \ 

g (r) = .Tm \ 1 -!--- [1 (1 + i); AI I ' (82) 

When we connect the function <I> with the elec
tromagnetic field with the formulas (67) and (68), 
we obtain oscillations E~hq (jx = f, jy = 0 ) and 
E~hq (jx = 0, jy = f) in the resonator with cir
cular mirrors. For m = 1, 2, ... each of the os
cillations Eghq and EiKhq has a rotational degen
eracy; replacement of cos mcp by sin mcp gives 
two new oscillations, so that for m ~ 0 the for
mulas (80)-(82) apply to four oscillations. By in
troducing an additional metal plane at x = 0 and 
keeping only half of each mirror (x 2:: 0) one can 
destroy the twofold (polarization, see end of Sec. 4) 
degeneracy of the symmetric oscillations with the 
index m = 0. 

FIG. 11. Current distributions on circular mirror for oscil

lations ~Iq and E11q: a- oscillation EJ!J, Ax 3 IJI; b- oscil
lation V(Y) A -1}1· c-oscillation E("), Ax= IJ!coscp; d-os-.O......Olq, y - ' llq 

cillation E}fJ, Ay = IJ!sincp; e-oscillation Em,Ay= IJ!coscp; 

f- oscillation Em, Ax = IJI sin cp; g- oscillation llq, Ar = IJI; 
h- oscillation 11q, Acp = IJI. 

The first and second columns in Fig. 11 show 
schematically the current distributions on a mir
ror for the oscillations E(x,y) and E(x,y) By otq uq · 

combining oscillations E~~~ and El~~ one can get 
oscillations with radial or azimuthal currents which 
have axial symmetry (third column of Fig. 11 ). 
The current distributions are shown in more detail 
in Figs. 12 and 13, where we have plotted the ab
solute values and phases of the functions (84) for 
m = 0, n = 1 ( v01 = 2.405) and m = n = 1 ( v11 

= 3.832 ), and given to the number N connected 
with M by the relation (50) the values 2, 5, and 10. 
The calculations were made by means of tables. [t4J 

In the paper by Fox and Li [7] curves are given 
for A and ~ with m = 0 and 1, n = 1, which are 
practically equivalent to the formulas (80); the 
paper also gives curves for the function g(r ), 
which have a wavy cha1·acter, but agree "on the 
average'' with the shapes of the curves shown in 
Figs. 12 and 13 (cf. end of Sec. 3). 

FIG. 12. The function (84) for m = 0, n = 1. 

N"S r/a 
11-2 

FIG. 13. The function (84) for m = n = 1. 
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We note that in the rigorous theory of diffrac
tion by a disk the electromagnetic field cannot be 
expressed in terms of a single scalar function, 
since the condition at the sharp edge cannot be 
satisfied in this way (cf. e.g., [15J). The condition 
at the sharp edge is of no importance, however, 
for the asymptotic laws in which we are interested 
( cf. Sec. 1 ), and accordingly we can manage with 
the single function introduced in Eq. (68); the re
sults obtained apply to resonators with walls of 
any thickness. 

6. THE SPECTRUM OF NATURAL FREQUENCIES 

As is well known (cf. e.g., [16] and C17J), for 
closed resonating volumes the spectrum of natural 
frequencies becomes denser as we go to higher 
frequencies; the number N of oscillations belong
ing to the frequency range .6.w is given by 

(83) 

where V is the volume of the resonator. The 
damping coefficient of the oscillations, caused by 
Joule losses in the walls, is proportional to w112 

for constant wall resistance; therefore at suffi
ciently high frequencies the resonance curves of 
a resonator of fixed dimensions overlap, and the 
resonance properties are lost. 

In the open resonators considered above the 
spectrum of the natural frequencies is sparser 
than for closed resonators. To examine this mat
ter, let us plot the natural frequencies Wmnq of a 
resonator with square or circular mirrors as 
points in the complex plane of the variable w 
(Fig. 14). It follows from Eqs. (58), (65), and (79) 
that these points lie on rays which begin at the 
points wq = 1rcq/2Z on the real axis and make with 
this axis angles If! given by 

2 -1 ~ ~ 213 f M ~ 1 'ljJ = tan M + ~ ~ M or ~ , (84) 

where the value of M must be taken for w = wq. 
It can be seen from Fig. 14 that as the indices 

m and n increase there is an increase of the ra
diative damping of the oscillations -the points get 
farther from the real axis (actually the increase 
of the damping is more rapid, since for finite I p I 
the formula (18) understates the radiation loss, 
cf. Fig. 2 ). Moreover, the ordinates of the points 
increase in magnitude much more rapidly than the 

differences of abscissas of adjacent points. Since 
when 

(85) 

the resonance curves corresponding to two adja
cent natural frequencies w_ = w: - iw~ and w+ 
= w~- iw~ overlap, near each frequency Wq there 
remain only a finite number of natural frequencies 
which appear when one works with an open reso
nator. If there remains just the one oscillation with 
the smallest indices ( m = n = 1 for rectangular 
mirrors and m = 0, n = 1 for circular mirrors), 
we get a spectrum with practically equally spaced 
frequencies and no bunching at all-the same as 
for the ideal case of a one-dimensional resonating 
system. 

For a closed resonator If! = 0 and the rays in 
Fig. 14 fall on the axis of abscissas, so that there 
is bunching of levels in the spectrum. 

Open resonators formed by sections of wave
guide (Sec. 2) also have more open spectra than 
closed resonators of the same dimensions. In 
open waveguides, however, the spectrum in the 
best case takes the form characteristic of two
dimensional regions ( cf. [ 17]), and instead of 
Eq. (83) the formula is 

(86) 

(S is the area of a transverse section of the wave
guide). Therefore such resonators can be used 
only in the region of longer wavelengths, where 
the increasing density of the spectrum (86) is not 
intolerable. 

The excitation of open resonators differs from 
that of closed resonators because a considerable 
fraction of the power supplied can be taken up by 
oscillations with large radiative damping. These 
radiative losses are unavoidable (it is owing to 
them that the spectrum is more open than for 
closed systems), but with suitable excitation they 
can be reduced to a minimum. 

SUMMARY 

We have given here a theory of the simplest 
sort for the natural oscillations in open resonators; 
by its use one can easily calculate for each oscil
lation the natural frequency and the radiative damp
ing, and also the current distribution on the walls, 
from which one can find the additional damping 

FIG. 14. Spectrum of an open resonator. 
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caused by the Joule losses or the partial transpar
ency of the walls. Also it is not hard to construct 
the electric and magnetic field distributions in the 
volume of the resonator. 

The formulas obtained are simple and present 
no difficulties in the calculations, and also they 
admit of an intuitive physical interpretation. They 
are approximate, with higher accuracy for oscilla
tions with higher quality figures. 

I am grateful to V. P. Bykov for a helpful dis
cussion of questions relating to open resonators. 
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