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The structure of the singularities in nonlinear electrodynamics is investigated, and the equa- '
tions of motion of these singularities are obtained without the use of any important assump-
tions concerning the concrete form of the Lagrangian for the electromagnetic field.

INTRODUCTION

THE purpose of the present paper is a general
investigation of the character of the singularities
in nonlinear electrodynamics with a Lagrangian
having an arbitrary dependence on the two invari-
ants Jy = =Y, Fj,p, and & = = Y, €0, F, ,Fap
(Fyyp is the electromagnetic field tensor). We
shall study the structure of the field near indivi-
dual singularities and obtain the equations of mo-
tion for interacting singularities. !’ In the case of
small accelerations of the singularities these equa-
tions are of the form of Lorentz equations with a
radiative damping force. The dynamical principle
from which we proceed in deriving the equations of
motion of the singularities asserts the vanishing
of the flux of energy and momentum through an in-
finitely small surface enclosing the singularity.

1. THE FIELD EQUATIONS

We obtain the equations of the electromagnetic
field described by the tensor Fy, from the varia-
tional principle

8 SL (1 Jo) dix = 0, 1)

where L (Jy, Jy) is the Lagrangian, which is an
arbitrary function of two invariants, J; = — Y, F[ZJ.V
and Jy = = % €uuapFurFrp (€upap is the com-
pletely antisymmetric tensor of the fourth rank),
which satisfies only the following conditions: it is
an even function of J,, and when J; and J, are
small in comparison with a characteristic quantity
J, the Lagrangian L goes over into the usual La-
grangian of the linear theory, i.e.,

L(JyJy) =Jy, T e << o ()
The electromagnetic field equations derived
DA study of the structure of the field for a single station«

ary singularity and with a special choice of the Lagrangian
has been made by Born and Infeld.[!]

from the variational principle (1) are of the form

] (XIF)\V)/ax)\ + Fﬂp.epp)\v GXQ/ax)\ = 0, (3)
anv/aX)\ —}— (p.vk) = O; (3,)
X1 = aL/aJl, A2 = 6L/0J2

where (puwvA) is an abbreviated notation for the
sum of the terms obtained from 98F,,/8x) by
cyclic permutation of the indices.

It is also easy to obtain the symmetric energy-
momentum tensor of the electromagnetic field:

T}“ = (L - ']2X2) 6}Lv -+ X],Fp)\th (4)

which, in virtue of (3) and (3'), satisfies the usual
conservation law

anv /ax‘;, = O.

In what follows we shall be interested in the be-
havior of the field near certain world lines on which
the field in the linear theory has singularities.
Therefore it is convenient to write the field equa-
tions (3) and (3’) not in the variables Xy but in
natural variables associated with a given world
line.

Let the parametric equation of a line of singu-
larities be of the form

xll = EP (T) !

with the parameter 7 chosen so that (2 = — In-
stead of the variables x,, characterizing a point of
space we introduce variables 7, connected with
Xy by the relation

M, =%, —E, (1), (5)

where the parameter 7 is determined from the
equation

nE (1) =0. (5")

Thus 7 is the four-vector normal dropped from
the point x onto the line M (1).
From the equations (5) and (5’) it is easy to de-
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termine the derivatives of 7 and n, with respect
to x,,:

ot .gp, 51% Ev&
= = = Oy L
0%, wo 14m§

ox, t+4ng’

Therefore for an arbitrary function ¢(x) we have

o

0 . =\ 09
’x—=(6w + gugv) a—n‘ 1—!—"]&

o+ mE) bt b

In these variables the field equations (3) and
(3’) take the forms

(6V)\ + Ev 'g)\) 5’?)_1 (XIF}LV)
£,
R

FaB aBAp. {(6)\v + El Ev) axz
_ ) 0Xa aX2]}

aF)\v E aFlv
T 1;“.%{6, + (1) B }

1617 (X2 Fp) + (TIE) gl a"l (% F pv)}

(6)

(B + EnEo)

+ (wvA) = 0. (6")

2., THE BOUNDARY CONDITIONS

The equations (3), (3') or (6), (6’) describe all
sorts of states of the field. In order to single out
solutions corresponding to particular sets of singu-
larities, it is necessary to impose definite bound-
ary conditions on the solutions of these equations.
Physically it is clear that far from singularities,
i.e., at distances n > r; [the order of magnitude
of ry is ry~ (e/Jl/z)l/z] the field approaches zero,
and consequently the usual equations of the Max-
well-Lorentz theory are valid in this region.
Therefore we shall assume that for n > r; the
solutions of the nonlinear equations must go over
into solutions of the linear equations which corre-
spond to the field produced by the motion of a de-
finite type of singularity.

For example, it is known that in the linear
theory the field of a charge e = 47C moving along
the tra]ectory M (1) is of the form, at distances
n <K p,

va == P‘gv—*-Fll;,v—{—Fﬁv-*—...,
Fﬁ‘* =Cn3 (éunv — .E;V'rlp);

Fh =200t (8, — £ 8) — 2 Cn (f) (B, — En,),
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Fo = 5 Cn8 E,m, —En) +5Cn® ) G, — &)

— 2 ) &5, —EE) + 2 on Em, —En)

+2CEE, —EL) (7
where the sign (+) corresponds to the retarded
solutions and the sign (-) to the advanced solutions
(p is the radius of curvature of the four-dimen-
sional trajectory). Therefore, if we are interested
in solutions of the charge type for the nonlinear
equations, for which ry < p, then for ry < n < p
these solutions must go over into the formulas (7).

Analogous boundary conditions could be formu-
lated for other singularities, for example of the
dipole type. We shall not write out the formulas
here, however.

Finally we note that, as can be seen from the
boundary conditions (7), the solutions of the non-
linear equations (6) and (6') for the case of a single
singularity are to be sought in the form

FPW = FPV (nv g’ E? 'gy L ')! (8)

where the functions Fuy depend on T only through
£, &, £, and so on.

The formulation of the boundary conditions for
the case of several singularities, treated in the ap-
proximation we shall be using, will be given in Sec.
4.

3. DETERMINATION OF THE FIELD OF A POINT
SINGULARITY IN ARBITRARY MOTION

1. For the solution of the field equations (6) and
(6”) in the approximation r; < p we use an expan-
sion of the f1e1d components F,“, of Eq (8) in
powers of £, £, ..., with the orders ¢ ~1/p, 3
~1/p% .

Foo=Foy ;&) + Foo : ,8) + Foo m & E B + ...

The only second-rank antisymmetric tensor that
can be constructed from Ny gu is proportional to

n“gy - nygu Therefore the zeroth-approximation
solution must be of the form

Foum; &) = g M (M —mu k), (9)

where gy(n) is as yet an unknown function of the
variable 7. It is easy to verify that in this approx-
imation F&V satisfies the equation (6’) exactly.

Since for the field F&V

J1=J{°)=%n2 o Jo=0

and consequently x, (J;, 0) = 0, the field equations
(6) take the form
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(4 + §5) 5 0o (Gn, —Em)} = 0,

from which we have
nd (X180)/AN + 3%180 = 0.

The solution of this equation is of the form
(50 0) g = A,

where A is a constant of integration. Noting that
according to Eq. (7) for n — « we have g, = C/n°
and x; (% C*/n%, 0) =1, we find A = C. Introducing
a new function z = ng,, we find that z satisfies the
following equation:

le( 2, 0) Cin. (10)

2. Let us now proceed to find the electromag-
netic field in first approximation.

The most general expression for the second-
rank antisymmetric tensor F}, that can be con-
structed in first approximation from the vectors

n, &, £ is given by the formula

Fl:.lw (Tlv %) g) =& ("l) (Ep .gv —gvgp)

En) + g ) G, —Em,),
(11)

+ g () f) &, —

where gy, g3, g5 are unknown functions of 7.
It is easily verified that for the field F,, + F};,
the invariants J; and J, are

o=+ = 12 Jy =0,

(12)
and therefore in first as well as zeroth approxi-
mation we have x, = 0.

Using the facts that
EOF3.I0m, = gif, (8,0

+ (E) go 0’2 — &)

vp_'g6 )=07

vOue
EoFs.ion, = g5 (£, 8, — §, &)
and consequently
£, EOFL Jon, + (whv) = 0,
we can put Eq. (6’) in the form
OFy./0m, — ExOFS./0T + (wvA) = 0.

Substituting in this equation the expressions (9)
and (11) for F;(.)w and F’IL y» we find the following
relation between the functions g, g, and gs:

g/Mm+ 8+ 8 =0.

Since up to second-order terms
FO

(13)

=0,

. 0
g, N XuFiv =
0

. 9 . OF) s -
g W'hffwz Xlgv-é% = %180k, (§p‘”lv —§&m,) =0,

the equation (6) takes the form

®, + &) a‘“ +®, + &E)F,, 611 Iny, = 0. (14)

Using the fact that, by Eq. (10),

01 _ 1
O |y mere, J=0 %' ( 2 z) ( 2 2 0) !
we find
c 12 : .
Ing =15 — 2 (5 + =) €0 (n°g2 — g) ().

Consequently, when we include only first-order
terms, Eq. (14) takes the form

In S
o, %

— (o + ,8) Rz {57 (5 + ) (e — ) ()}

(6vl+§§1) +(6vh+§§)F;V

= 0.

Substituting in this equation the expression (11)
for Ftw, we get

Ay mE)m, + Ak, + 4, mb)E, =0, (15)
where

1 . 1 7] C
h=—g&— 7

, d C
= 2g3+ﬂgs+7lgs'ﬁ]nnTzr
22 ( « 1 2"\
po=Zlg + (L)
1 (z’ 2"

Pl —F—w)a -

= }
In the derivation of these formulas we have
taken the relation (13) into account.

It is easy to see that the necessary condition
for Eq. (15) to be satisfied is

A1=0, Azzo, A3=0

(we do not consider here the trivial case { = 0).
Since n2A1 + Ay = 2g3, we conclude that the equations
A; =0 and Ay = 0 can be satisfied only for

g;= 0.
It is easy to put the equation A; = 0 in the form
d (z z z Y
alra+E—1)af+e(F) =0

A first integral of this equation is given by

(16)

2 ez an -0
A

We determine the constant of integration A from
the boundary condition (7), according to which

g+ (+—F)e+ (amn

8o = C/Tl3, g1 = C/QT] forn — 00,
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From this we have A = «. Integrating by parts and
using the fact that (z%/z’) |TI"°° =0, we can put Eq.
(17) in the form

1 k4

g, + (T-——Z‘)gx—!- 2+ %'-ioz'dﬂ = 0.
n

Integration of this equation leads to the follow-
ing result:

(18)

2
g1(m) = \zdn— -

28

Do
ng-
3e—g
N
[S%
s

where C, is a constant of integration.
Substituting this expression for g; in the rela-
tion (13), we find

g(m) = = (19)

The formulas (16), (18) and (19), together with Eq.
(11), solve the problem of finding the field of a
single singularity in first approximation.

3. Finally, we proceed to the calculation of the
second approximation to the field Fy, . Since the
calculations in this case are more cumbersome
than those for the first approximation, we shall
indicate only the main steps.

The most general form for the second approxi-
mation is

Fom&ED=rmEE —EE) + L oiEn, —En)
+/5 ) @E) En, — &) + Fat) GE) E,m, — £
+Fs ) ME)® E,n, — En) + fo ) @) E.n, — En)
+ f, m) E) E,E,—E,§), (20)

where fj, ...
variable 7.

In this case the field equations (6’) lead to the
relations

fim+/fs=0, ffm + 2fs + 8. — g = 0.

We note that J, is again equal to zero in this ap-
proximation, since the only nonvanishing invariant
containing €y, )p, namely €, onuépéaép, could
appear only in the third approximation. Conse-
quemtly, x5 = 0.

In second approximation the invariant J; is

I =J0 + 1P 4 P,
JP = — mE) go (f, — f) + B [ gf + gy, (F — fo)]
+ ME? [ g — g8 + &o M?fs — F)l. (22)

Therefore the field equations (6) take the form

, £z are unknown functions of the

(21)
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.. anv . 6F1v . . a )
B+ E8) Z- — & 0—: +@a+ 8E) Fiv g + Fuv gy
0 a('Pl C . &
ng.V ot +va an l 7]22—0’ (23)
where
¢ = *(11;‘]53} (—z + 2 ) (g1 —n’g2)s
e, . (1)
w=— o (2 D) A (H LA T ).
(24)

Substituting in (23) the expressions (9), (11), and

(20) for Fﬁ v Fﬁz s Ff“,, we get

B, + Bok, + By M) &, + Bsu =0;
N T
x (g —n'gy) | — Bfo— i) [+ fo— + (5 + £)fe].
By = nfs + fs —nfs2 /2,
—if;-!-—i—(l—l- ;)fl}

By = nfy + g1 — Mfa?/2.
Bo= () {nfs + n (5 — Z)fs
—g it (1= S ) et h—ht+ &
+ hg_ (24 ) e — ) + 8 fnfs + 0 (2 — 2,
Tht(s T

st and

)f +—g2

It follows from Eq. (23’) that
B,=0, B,=0,

The first three of these equations lead to the fol-
lowing relations:

B3=O, B4=0.

fe=0, (25)
_:l“fz'l" ga—%(%’i‘ ;)fz
+ 7%7(%‘“%’)(&’1_"1232) =0,
N2+ — nfo2/z =0 (25")

It is easily verified that Eq. (25’) is equivalent
to the system of equations
(o)
fotmga=0, fo=gi— zdn,
n
and since gy = — gy — g{/n, we can verify that the
equations (25’) are not inconsistent and that

fo= gl_& zdn.

n

Noting that according to Egs. (24), (22), and (12)

(2%)
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P2 = ﬂi(

+ Z) (o — i) )

— (= + D) [z g+ ne—faE

+ {(nzgilz—z;gl)zi [ % 4 Ez?? n 1_]37" ]
o (2 + D)@+ Z s — i ] by,

we find that the equation By = 0 separates into the
following three equations:

awiFhtE—)R=0 7

(=S )+ 335 —2% )f7+Rz=0(27)

___2_/: f4+ Z,Rl :0)

where

Ry=h=fom o (
—zalw
P TR

Tha 55+ )]
= [FhR(F+m+a)

+ (2 D) (@ — gz —ed) ]}

% + ’;) (81— n*g)
)

( g+ lefz)}

+8h(242)-2

r4

From the first of the equations (27) and the
boundary conditions (7) we get

n
2 dan
h=wc{i-51 %
C.
where the upper sign corresponds to retarded so-
lutions and the lower to advanced, and C, is a con-
stant of integration.
Integration of the second of the equations (27)
leads to the following formula for f;:
2
)it

S+
(29)

(28)

femhr B2y da{ay,
C

The unknown quantity f; appearing in this formula
can be determined from the third of the equations
27.

The formulas (21) and (25)—(29), together with
Eq. (20), solve the problem of finding the field of
a single singularity in the second approximation.

4, STRUCTURE OF THE FIELD IN THE CASE OF
SEVERAL SINGULARITIES

1. There is no superposition principle in the
nonlinear theory, and therefore the inclusion of the

fields of other singularities is not a trivial problem.
Let us denote by £ p the electromagnetic field in
the absence of the singularity under consideration.
If we assume that this field is small in compari-
son with the proper field C2/r0, then in this case
we must look for the total field in the form

Fl*" = ng —+ fpv, fp.v (X) = S Kp.v; po {x, x'; E} fgg (x') dtx’

where K ;50 {Xx, X' ¢} is a quantity to be deter-
mined, which has a functional dependence on the
shape of the world line of the singularity under
consideration.
Forn=|x-¢| > r,

Kyv; oa { %, x'; &} = 8 (x — x') 8,0,

we must have

since in this region of space-time the linear theory
holds, and along with it the principle of superposi-
tion. We shall assume, however, that the field

f(;)w not only is small, but also changes very little
in a space-time region whose radius is of the order
of ry. Therefore we shall look for the quantity

pr' in the form

foa = By () foo -+ hy M)Eafasny (Eon, — Een,)
+ by () Eofoa — Eofpa) Ea + e () (0, fou — M fo) Ea
+ s () Geofox —Eof0 )M, + hs () (0, fox —N,foa) M, (30)

where hy, ..., hg are unknown functions of the
variable 7 and f(;)o' can be treated as a quantity
independent of n, 7. Equation (30) gives the most
general form of a second-rank antisymmetric
tensor constructed from the quantities fopg, Nps
and gp only.

The superposition principle is valid for 7
>> r,, and therefore in this case we must take as
the boundary conditions

By=1, by he=0, N>r, (31)

2. We proceed to the determination of the func-
tions hj. Since the field equations (6’) are linear,
they must also be satisfied by the functions (30).
In the present approximation these equations are
of the form

B + EP&V) Ofos / ON, + (npo) =

When we substitute the expression (30) in this
equation, we easily get the relations

hy=0, h/n+2h=0, hy/m-+hy—hs=0. (32)
The forms of the invariants J; and J, are
J].E Jl(.O) + J(lf) =%£_%ngfpvr
I = — go(Bafanng) (b — 1*ha + hs —*he),
Jo= JP = "gohgﬂlvl‘gp%vlo- (32%)
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From Eq. (10) and the restrictions we have
placed on the Lagrangian, it follows that

In¥% =In—— ¢ ik (2 z’>’

Wz T Tz \m 'z
Xy= % (% 2 0) Jw (),

where

(33)

aX2
v == (22/2 0) 72 |,—ao, im0 *

In this case the field equations (6) take the form

04

(évl + évé)\) fl.w la'fl

.. 0
(6 + EE2) 3%—: + In—& 2712
- (6\;7& + gvgh) va a,,h { ! ('Trzr + %’)}
- arih
— Fogeapay (81 + EE2) ¥ (1) = 0.

Substituting in this equation the relations (30),
we can put the equation in the form

legaﬂa + szga.ga + D8 (gafgﬁﬂg)ﬂ, +D4 (.Eafgﬁnp,) gp =0;

where (34)

Dy = — nfiy— 5he — (2 + £ (b —he) — S,

4 ’ 4 1 /2 4
Dy = —nhy+ "Iiz‘hh D3='—%h4+7(‘n—+ —z*)hm

Dy =ty + 5k — - (& + ) (nPhe — h)

— 4pgehy + —S
‘q)go 1+ (g fgpnlg)

(2 i)

The equations (34) are satisfied if

D=0, D,=0, Dy=0, Dy=0.
From Dy = 0 and Dy = 0 it follows that
hy= 0. (35)

When we use the second of the relations (32) the
equation Dy = 0 takes the form

h{+(%—§)h’1—2[n+ 24y ]hl_—O (36)

Using the relations (32), we can put the equation
D, = 0 in the form

+(3 LT+ 8 )h=0. (37)

It follows from Egs. (36) and (37) that the quan-
tity h = hy + hy satisfies the equation

S. V. PELETMINSKII

d (z ,, z .
ﬁ{711 +(= -1)/1}_0.
Integrating this equation and using the boundary
conditions (31), we get

(38)

where C, is a constant of integration.

The formulas (32), (35), (36), and (38), together
with Eq. (30), determine the effect on the structure
of the field near a particular singularity caused by
other singularities located sufficiently far away.

5. EQUATIONS OF MOTION OF SINGULARITIES

We can obtain the equations of motion by start-
ing from the general dynamical principle of Lo-
rentz, according to which, when only the electro-
magnetic field is present, the singularities move
in such a way that the flux of energy and momentum
through an infinitely small two-dimensional sur-
face enclosing a singularity is zero. £33

If we denote by dfAV an element of a surface S
surrounding the singularity under consideration,
the relativistically invariant formulation of this
principle can be put in the form

H : Av
1;3&@ TpdP" =0 (39)

where the surface S lies in the space orthogonal

to g
Taking a sphere as the surface S, we have
formula df* = (En, —Em,)dS/m

and consequently
g, df* = —n,dS/n = —n,ndo,

where do = n%dS is the solid angle subtended by
the surface element dsS.
The relation (39) therefore takes the form

limnT,m, =0, 39
n—0

where the bar indicates averaging over angles:

f=—4—l—<g>fd0.

The accuracy with which we have carried out
the determination of the field near the singularities
obviously allows us in the calculation of Tyy to
keep only terms of orders 1, , £, f* (obviously we
must neglect terms of the form % ).

According to Eq. (4), to determine Typy we must
calculate the quantities FuvFuns J2xe, L, x;. Keep-
ing only terms of the indicated orders in the calcu-
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lation of these quantities, we get

FMFvA = FSAF\?)‘ + {FﬁxF&A -+ F;ILAF(;’A} -+ {Pﬂlfvh + fﬂpg)‘}
4 {FOF 4 FOFh 4+ FRFYY,
=0, L=L (1, 0) 4 (U 4+ I 1 J") 5 0, 0)

5 I 0y, (7, 0)/0J

%=1 0 + U + 72 4 1) oy, (9, 0)/07,

+ g I 3, 0, 007 (40)
Noting that
;IP- =0, np.nv =_;" (6p.v +épév) 7]2’ npnvn). =0,

and using the relations (4), (40), (12), (22), and
(32’), and also the formulas (9), (11), (20), and (30),
which give the quantities Fj,, F},,, F,,, and £,
we get after simple but rather cumbersome calcu-
lations

T = 5 Cla+ 4 & (e — e}
+2cfh+ 5 7 Ot — )
X (B —E%) 4 3 C{—h —hy
o T (ot by — iy — n*ho)} frka. (41)

Be means of the formulas (18), (19), (28), and
(21), which give the quantities gy, g, f;, and f;, we
find

(o8]
1
& -I——T,‘% Mg, —g) = S 2dn,
n

it = O — ) =FC.

By using the formulas (32) and (38) we can put
the coefficient of f‘;_,‘ pér in Eq. (41) in the form

1
— by — b+ = 2 (b -+ hy — 17h, — nPh)

_j’_i(’l_")__i
T nddy \z ) 2

Thus to find the equations of motion it is not
necessary to solve the equation (36) for the quan-
tity hy, since the answer involves only the quantity
h, for which the explicit expression (38) has been
found. The result is that Eq. (41) takes the form

oo

o, = by Cf 2dn — Claba 5 C* & — b,

]
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and, according to the dynamical principle (39’), the
equations of motion are of the form

2 ¢ . . 2 P

FClzdnb = CRab x5O E—BE).  (2)
0

We still have to connect the quantity

c S 2dn

']

2
3

with the mass of the singularity. To do this we
calculate the integral - f T,4dx for the field of a
single stationary singularity. Since in this case,
according to Egs. (4) and (9),

Tu=L + %:Fir, Fop = igoxs

and n =x, ny = 0, when we integrate by parts and
use Eq. (10) we can verify that

[ee]
8nC :
= )

0

ST“dx= — =\ zdn.

Consequently the mass of the singularity is given
by

o

m= —S Toudx = %‘-“-S 2, (43)
0
and the equations of motion (42) take the usual
form
- . 2 et e oo
mb, = efrbr 5 4 (B —E28,). (42")

Here we have used the fact that the constant C is
connected with the charge of the singularity by the

relation
v

C = e/4n.

In conclusion the writer expresses his gratitude
to A. I. Akhiezer and P. I. Fomin for a discussion
of the results of this work.
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