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It is shown that in a strong magnetic field H ( r ~ l, r is the Larmor radius, l the electron 
mean free path) the direct current in a sample with a sufficiently good surface (whose dis
tortions are small in comparison with r) falls off rapidly in the direction from the surface 
to the center of the sample ("static skin effect," Figs. 1, 3 ). In very strong magnetic fields 
[ such that r ~ l ( l / d )2 for equal numbers of electrons n1 and "holes" n2, or r ~ l ( l/ d) 
for n1 ¢ n2 , where d is the sample thickness] even the total current flows principally near 
the surface, in a layer of thickness l if the magnetic field is inclined to the surface or in a 
layer of the order of r if the field is parallel to the surface. For n1 = n2 and a polygonal 
cross section, the current flows near the vertices at distances of the order of l from them. 
Such a current distribution in the sample leads to a linear dependence of the resistance on 
the magnetic field (Figs. 2, 5) even for single crystals with closed Fermi surfaces (the con
ditions for observing this dependence and its origin are entirely different from those for the 
linear Kapitza law which holds for polycrystals with open Fermi surfaces). The specific re
sults depend significantly on the conductor configuration and the orientation of the magnetic 
field. The directions of sharp anisotropy of the dependence p( H) are determined (Fig. 4). 
Transformation of a "good" surface into a "bad" one results in a sharp increase in the re
sistance p ~ H2 for n1 = n2, and to a sharp drop in the resistance p- const for n1 ¢ n2 in 
the magnetic field mentioned. 

1. PHYSICAL BASIS OF THE "STATIC SKIN EF-
FECT" 

As is well known, there is a fundamental differ
ence between the behavior of a conductor in a mag
netic field and in its absence. In the absence of a 
magnetic field, all the components of the conduc
tivity tensor a ik (which differ from zero in the 
anisotropic case) are infinite for infinite path 
length of the conduction electrons: aik ~ l- co, 

In a magnetic field H (the z axis is directed along 
H) the components a xx and a yy (and in the case 
when the number of "holes" equals the number of 
electrons n1 also the components a ~Y and a yx) 
are equal to zero when l =co (seeC1af): 

Gafl (H).--- Ga(3 (0) (r/{) 2 .---1-l ~ 0 

( r is the radius of the Larmor orbit; in what fol
lows, these components will be denoted by a 1 ). 

This difference is especially marked in the case 
n1 = n2: for H = 0, the specimen with l =co is an 
ideal conductor, a =co; for H ¢ 0, it is an ideal 
dielectric, a = 0. 

This difference is brought about by two causes. 
For H = 0, the electrons move in all directions 

without collisions at distances of the order l , 
while for H ¢ 0 and r ~ l, the displacement in 
the xy-plane (for closed orbits) is always of the 
order of r. As a result, all the components a ik 
except azz contain r instead of l, i.e., they are 
decreased by the factor l /r relative to the case 
of the absence of the magnetic field. 

The additional decrease of a 1 by the factor 
l/r is associated with the averaging over the 
equivalent random moments of the collision, which 
can occur at any of the l/r revolutions [see Sec. 
2, the discussion of Eq. (5a)] . In this case, the 
randomness of the collisions, the absence of cor
relations between the position of the particle at a 
given moment and at the moment of the preceding 
or following collision, is a consequence only of 
their statistical character (in particular, thanks 
to this random character, the final state in sta
tistics does not depend on the initial conditions). 

In principle, collisions with a sufficiently smooth 
surface have a different character. They are re
liably and uniquely determined by the state 
(coordinate and momentum) of the particle at the 
given instant (of course, it is assumed here that 
"ordinary" exchange collisions do not take place 
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"along the way"). In this sense, collisions with 
the surface are special, "non-statistical" colli
sions. tl 

In a homogeneous field, the determinate char
acter of surface collisions would still not lead to 
new results. The effective conductivity measured 
experimentally corresponds to a connection be
tween the electric field and the current averaged 
over the specimen; the average over the depth is 
equivalent (everywhere, with the exception of a 
layer of thickness of the order r) to an average 
over the collision moments, since one can indi
cate a depth, for any given time of free motion of 
the electron from the surface, at which this time 
is realized (see Sec. 2 ) . 

However, the inhomogeneity of the electric 
field (normal to the surface) which arises near 
the surface makes collisions at different depths 
non-equivalent. As a result, the corresponding 
"surface" components of the conductivity for 
r ~ l are shown to be only smaller than in the 
absence of the magnetic field by the factor Z/r, 
and this means larger by a factor Z/r than the 
"volume" components in the given magnetic field. 

Thus, the metal would seem to consist of two 
parallel combined layers: a surface with a large 
conductivity and a volume with a small conductiv
ity. In a sufficiently strong magnetic field, the 
current flows principally in the thin surface layer
the ''static skin effect" for the current. It must 
be emphasized that, in contrast with the normal 
skin effect, 1) the current in the depth of the speci
men is small but does not approach zero, and 2) 
the projection of the electric field in the direction 
of the total current is homogeneous in depth. It is 
curious that as d- oo ( d is the thickness of the 
specimen) and r- 0 (physically, this corresponds 
to d >> l >> r) the resistance of the specimen can 
never approach the resistance of the unbounded 
metal, bu.t can be completely determined by the 
near surface layer. 

A sharp discontinuity in the current close to a 
smooth surface leads, thanks to the change in the 
boundary conditions, to a bending of the flow lines 
throughout the specimen. This also has an effect 
on the effective resistance (see Sec. 4 ). As are-

1lHere the concrete character of the collision with the sur
face is immaterial; it is only important that the thickness of 
the layer in which the "collision" takes place be a very small 
characteristic dimension of the problem. In other words, the 
presence of some singularity in the mathematical behavior of 
the surface is necessary (where, for example, charge recom
bination takes place or specular reflection of particles, and 
so forth). 

sult, one can neglect the effect of the surface only 
in a sufficiently weak magnetic field, and appar
ently in a sufficiently strong one when r << o, o 
being the characteristic dimension of the random 
distortions of the surface ( in the latter case, the 
"surface" collisions cease to be determinate and 
are different from the "volume" collisions). 

It is clear from the foregoing that if the char
acter of the phenomenon in the unbounded medium 
depends essentially on the random character of 
volume collisions, 2 l then an arbitrary inhomoge
neity (which makes the different collision moments 
non-equivalent) can be shown to be extremely sig
nificant. Consequently, the "static skin effect" is 
possible in the electrical conductivity and the ther
mal conductivity of metals and semiconductors of 
arbitrary dimensions in a sufficiently strong mag
netic field both in the classical and in the quantum 
regions. For these same cases, one can reduce 
the inhomogeneity or the non-static character of 
the electric field to a new dependence on the mag
netic field in the infinite specimen (in the non
static case, it is sufficient that the frequency w 
> c2 ( 27ral2 r 1' which, for l ~ 1 mm and (J 

;::: 1020 sec-t, corresponds to w ~ 100 sec-t). 
The present work is devoted to the classical 

theory of gal vanomagnetic phenomena in a bulk 
sample ( d ~ l) for closed electron trajectories. 

2. STATEMENT OF THE PROBLEM 

Let us consider a plane parallel slab of thick
ness d (the z axis is directed along H, ~ is di
rected along the normal to the surface; x 1 z, ~; 
71 1 x, ~; 0 ::::: ~ :::::d). Just for simplicity of exposi
tion, we introduce the time of free path t0 and 
consider the reflection from the surface to be dif
fuse (the consideration given below can be general
ized to the case of the collision integral and an 
arbitrary character of reflection of the electrons 
from the surface). 

The solution of the problem is in three parts. 
First, it is necessary to find the connection be
tween the current density j and the electric field 
intensity E, that is, the operator ( in the coordi
nate ~) of the conductivity. In this case, one must 
take into account the discontinuity of the distribu
tion function inside the metal (see below) brought 
about by the non-monotonic character of ~ = ~ ( t) 
( t is the time of revolution of the electron in its 
or.bit), i.e., by the existence of points where v~ 
= ~ = 0. This problem is solved quite simply both 

2lThis can be made clear, for example, by comparing the 
results in the homogeneous and inhomogeneous cases. 
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by means of the kinetic equation for the distribu
tion function and by starting out from simple physi
cal considerations analogous to those of Chambers 
[2] 

Second, from the electrostatic equation 

E~ (£) = 4n p' 

( p' is found from the kinetic equation) one can ex
press E~ ( ~) in terms of homogeneous Ex and E71 
(since curl E = 0), and thus write h ( ~) and 
j 71 ( ~) in terms of Ex and E71 • [The equation of 
continuity is j~ ( ~) = 0, so that the relation j~ 
= const in a metal follows quite automatically from 
the kinetic equation for the electron distribution 
function f, leading only to the boundary condition 
at the surface: j~ = 0.] It is easy to understand 
that p' ~ aE/v0, where v0 is the characteristic 
velocity of motion of the electrons and a is the 
conductivity, and therefore, in metals (and gene
rally in good conductors, for which v0/aa ~ 1, a 
being the characteristic distance over which the 
field changes), the equation for E~ reduces to 
p' = 0. Since p' = 0, the collision integral in 
the approximation of the free path time t0 can be 
written in the form (af/Bt>coll = (f- f0)/t0 (f0 is 
the equilibrium distribution function), and the 
equation p' = 0 is now equivalent to the equation 

j~ (s) = 0, j" (£) = canst = j" 1 c = 0, (1) 
~ c. c. sur ace 

which is obtained from the kinetic equation by in
tegrating it over all momentum space with account 
of the fact that p' = 0 (the relation (1) is shown to 
be not a consequence of the kinetic equation, but 
an independent equation because our writing of the 
collision integral is possible only as a consequence 
of p' = 0 ). 

The determination of E~ ( ~) is the most dif
ficult part of the problem, since Eq. (1) for E~ 
(the right hand side contains Ex, E11 ) is inhomoge
neous integral ( since the current at the point under 
consideration is determined by the values of the 
field E~ ( ~) at all points lying at a distance of the 
order of l cp + r from the given point, where cp is 
the angle between z and TJ ), and non-difference 
(since the current at a given point depends on the 
time of flight of the electron from the surface to 
the given point-generally speaking, a non-single
valued, function of the distance to the surface). 
The exact solution of this equation of course can
not be obtained. However, by taking it into account 
that r << l, and starting out from the form of the 
kernel and of the right-hand side of the equation, 
it is possible to deduce the character of the de
pendence E ~ ( ~) and, by using the physically clear 

uniqueness of the solution of the equation, estimate 
the order of magnitude of the quantities. This is 
sufficient to find the asymptotic values of the re
sistance and the Hall potential difference with ac
curacy up to a multiplicative factor of the order of 
unity. This factor is unimportant, even though it 
does actually depend on the concrete form of the 
collision integral, on the character of the reflec
tions of the electrons from the surface, has a very 
complicated form and, in any event cannot be used 
to obtain any additional information on the elec
tronic spectrum of metals. 

Thus, because of the failure of the exact solu
tion of the problem, it is only possible to make 
clear what is required for the answer to all the 
questions of physical interest. 

Finally, in the third place, by averaging 
j s ( s = x, 1J ) over ~, we obtain the tensors of the 
effective conductivity & and the resistivity p: 

d 

-T ~ j, (£) ds = ], = cr,,E,,, 
0 

s, s' =X, l]. (2) 

Knowledge of p makes it possible to determine 
the resistance of a plate (that is, of a specimen 
that is arbitrarily long but is limited in the p, di
rection: 0 s p, s d1 ) • 

The presence of additional boundaries leads to 
an additional weak dependence of the electric field 
and the current on the coordinate p, which, of 
course, it is not necessary to take into account in 
the kinetic equation but which gives, in correspond
ence with div j = 0 or J j · dS = 0 (where S is any 
closed surface), the boundary condition on 
the "new'.:_ surfaces: j / p,=o,d1 = 0 or the integral 
condition j /J. = 0, which is equivalent to the fore
going but which is more convenient for us. (This 
condition gives the closing of the current lines. 
We note that in the homogeneous case the vanish
ing of the component of the current normal to the 
surface at the surface leads to j p, = j~ = 0 every
where in the specimen; there is a current only in 
the direction v, v 1 p,, ~. In the inhomogeneous 
case, a "circular current" arises in the ~ p, 
plane.) Therefore, since T~ = T p, = 0, 

P = Ev!lv = E ·J/j · j= Pss'n,n,,, n, = j:;J = is/iv· (3) 

We proceed to the program of solution of the 
problem described above. The connection be
tween the current density j and the field intensity 
E in the approximation of free path time has the 
form [see, for example, Eqs. (2.3)-(2.5) of the 
work of Kaner [3]] 
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~' 

X dt' exp(1-r:' -"(t) vk(t') Ek (s + -fr-~ v~d-r:1); 
(4) 

A(~;~> 

£+ Q-1 ~ v~ (t1) dt1 = 0, d; (5) 
~ 

Here A (;, T) is the first root of Eq. (5) preceding 
T; if Eq. (5) does not have a solution, A = - oo; T 

= Qt, where .t is the time of revolution in the or
bit, and Q is the cyclotron frequency; y = 1/Qto. 

From this formula, it is easy to obtain the re
sult that in a homogeneous field, with accuracy up 
to y inclusive at a depth ; , r < ; ::::: l , 

v = ae!ap, (5a) 

where the bar indicates averaging over T, and the 
angular brackets averaging over pz. (The physi
cal meaning of this formula is very simple: each 
of the electrons bears a current ev, and the num
ber ~n of the electrons moving in this direction 
is proportional to the displacement of the Fermi 
surface, i.e., the energy acquired in the electric 
field is ~E = eE~r.) 

If A. corresponds to a collision with a smooth 
surface, then A= A.(t); if the collision is an ordi
nary, random one, one must average over A.; if 
correlation between A and t is absent, A. does not 
depend on t. 

It is seen from (5a) that, first, the "surface" 
components cr 1 are of the order of y, while the 
"volume" components are of the order y 2, i.e., a 
strong inhomogeneity takes place in the current; 
second, averaging over the coordinate [ di; = v; (A.)dA.] 
causes this approximation to vanish (since Vx = vy 
= 0) and, consequently, in the third place, the 
vanishing is connected essentially with the formerly 
assumed homogeneity, which makes it possible, in
stead of determining E; (;) and then averaging 
jx, j1) over ; , to carry out the averaging over ; 
at once (see Sec. 1). From (5a), it is also easy to 
discern the physical reason for the given order in 
y of all the components cr ik· 

In the works of Kaner [3] and Gurevich [ 4] on 
the determination of the effective conductivity, the 
kinetic equation for the distribution function was 
solved by expansion of the distribution function in 
a Fourier series in the coordinate. In this case, it 
was not taken into account that the distribution 
function experiences a finite jump, not only at the 
surfaces of the plate (; = 0, d) but also inside it 
In a magnetic field parallel to the surface of the 

plate, the jumps correspond to depths at which 
many electrons can generally arrive, these collide 
with the surface and have the given t and Pz (i.e., 
they arrive at a given depth in an orbit of given 
radius, determined by Pz• after passing through a 
given section of the orbit determined by the elapsed 
time t). In an oblique field, the jumps correspond 
to depths at which the electrons which collide with 
the surface have an additional rotation. It is easy' 
to understand that, for example, for cross sections 
where v; = 0 (the central cross section Pz = 0 is 
always such a cross section, owing to the central 
symmetry), the jumps can be absent only in a mag
netic field that is strictly perpendicular to the sur
face of the metal, if the corresponding orbit in 
ordinary space is plane, which is itself a special 
case. 

The value of this jump can easily be determined; 
its contribution to the conductivity is not taken into 
account in [ 3 ,4]. [The method of transition to equa
tions for the Fourier components in the coordinate 
was used earlier for the calculation of the high 
frequency surface impedance of metals both in a 
constant magnetic field [ 5- 7], and also in its ab
sence. [B] However, the jump of the distribution 
function in the magnetic field in the depth of the 
metal could not be taken into account there because 
of the high attenuation of the high frequency field 
with the depth, and also owing to the insignificance 
of the contribution of the electrons colliding with 
the surface ( see C7J). In the static field, the elec
trons colliding with the surface play a dominant 
role, and a correct consideration of the disconti
nuities arising there is necessary (see also [ s]). ] 

We now turn to the solution of the problem under 
analysis. For simplicity, we assume that all the 
trajectories are closed. First we write 

where the superscript infinity corresponds to the 
ordinary solution without account of the surfaces 
of the sample (evidently, E~ = Ex, Ery' = E1)' 

~fkEk = O), such that E00 = const, A.=~ oo, and. 
cr' is determined only by the electrons mtersectmg 
the surface. We get 

j,_ = a~E'k- cr~k(S) E'k + Ua.~E~= aa.{lE{l- a~k (£) E'k 

(a, {3 ~ x, 1); i, k ~ x, ;, 1) ), where fia{3 is the 
ordinary tensor of "longitudinal" conductivity 
(joo = 0). 

(6) 

(7) 
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Using [ta], we write out the equations for a 
and Ef. We put down the final formulas only for 
the two cases considered in what follows: a mag
netic field parallel to the surface, and an essenti
ally oblique magnetic field ( the angle between the 
magnetic field and the surface cp ~ 1; by y, which 
is not under the integral with respect to the mo
menta, we mean both here and in what follows a 
quantity having the order of magnitude of y). We 
get 

a) in the case cp = 0, so that Tl = z, ~ = y: 

(8) 

b) in the case cp ~ 1: 

E'[' =- E1l ctg <p-\-- y (o1Ex-\-- 62£11); 

cr = (12~~1 ' 11ll:~v + 12~~2) ; 
cro -1612~v + 12~12 1"~22 

a,~' o ~ 1, 

The solution of the second and third parts of 
the problem is conveniently carried out separately 
for cp = 0 and cp ~ 1 (in accordance with this, 
electrons reflected from the surface penetrate to 
a depth of order r or l). We shall first consider 
the simpler case cp = 0. 

3. RESISTANCE OF THE PLATE IN A MAGNETIC 
FIELD PARALLEL TO THE SURF ACE 

We return to the determination of Ey(y). We 
write down Eq. (7) in the first non-vanishing ap
proximation in y, not making any previous assump
tions on the form and order of Ey(Y). In this case, 
it is necessary to assume that 

1) vy = Qdry/dT = p, where ry ~ r and is pe
riodic in T with period 21r (a consequence of the 
relation p = ( e/ c) v x H and the periodicity of 
motion in a closed orbit); 

2) by the definition (5), ry(A.) = ry(T)- y, and 
only those electrons collide with the surface for 
which this equation for A. has a solution, i.e., for 
which y :::: dlarg [ dlarg is the orbit diameter d(Px) 
largest in pz, d(pz) = rmax( Pz)- rmin(Pz)], the 
max and min of ry are taken in T (this imposes 
a limit on y) d ( Pz) :2: y (this imposes the limit 
on Pz ), and ry ( T) :2: y + rmin (the limit on T), so 
that 

*ctg = cot. 

), l.+~n 

~ = (e2"Y _ 1 tl s_ ~ 
-co A 

S_ =c S (ry ('r) -- Tmin- y), s+= 1- s_; 

s (w) = 1 for w > 0, s (w) = 0 for w <:: 0 

( s+ guarantees the absence, and s_ the presence, 
of a collision with the surface); 

3) c1y (T') E~(y -- rv (r) +- ry ('t')) dr' = dF (p- p'), 

X 

F (x) = ~[:'~ (y Q- 1 p') dp'· 
(J 

For simplicity, this equation is written close to 
the surface y = 0; for d> dmax• the "interference" 
between these surfaces is clearly absent. Ey (y) 
is determined by the solution of the problem for 
the half -space. 

As a result, one can show that Eq. (7) has the 
form 

,~ \. K ( y -__!(_ L) E' ( y'_) _tty'_ 
J \ r ' r Y\r r 

=r{x1 (+)Ex+ x2(-'HEz}; 
X1 (0) ~ Xe (0) ~ I. (10) 

The kernel K and the functions Xt and x2 do not 
depend upon l (which is natural, since the surface 
is shown to exist only at distances of the order r) 
and are damped out (the kernel for both argu
ments) at distances of the order of unity. Physi
cally, this takes place because at a given point in 
y there can pass without "volume" collisions 
only those electrons which are at distances of 
order r away from it. 

The zeroth approximation vanishes both on the 
left and on the right because vy = 0. The first ap
proximation in y on the left is absent because the 
electron which is reflected from the surface col
lides with it again at the same depth, traveling a 
path of the order r; the difference between the 
cases of equal and unequal numbers of "holes" 
and electrons does not appear because for colli
sions with the surface not only n1 and n2 are es
sential, but also the quantity d ( Pz), which is dif
ferent for electrons and "holes;" the fundamental 
effect of the surface is connected with the fact that 
the electrons which would have the path length l 
have the path length r as a result of the collision 
with the surface. 

Equation (10) shows that 

E~(y) = y-1 {X3 (y!r) Ex-\-- xiy!r) Ez}, 

X3 (0) ~ X4 (0) ~ 1, (11) 
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where the functions x3 and x4 have the same char
acter as x1 and x2• and are determined from an 
equation which no longer contains any parameters. 
These functions could easily be represented in 
terms of the function G ( ~, e ) : 

~K (£, £') G (£', £") d£' = s (£- £"). 

We note that a comparison of (11) and (8) shows 
a sharp inhomogeneity of the Hall field Ey for 
ni = n2. 

The solution of Eq. (7) close to the surface y 
= d has of course quite a similar character. Sub
stituting the expression for Ey in Eq. (6), we get 
as a fundamental approximation in y (the functions 
Xik have the same character as x3 and x4 ): 

a, ~ == x, z; 

(12) 

(.· 12~a + Xn 1[312 + X1~) f 
s~B = or n = n 

1 - !~12 + X21 f3zz + X22 1 2 · 
(13) 

The value of E Jl in the plate is determined, as 
was shown above, from the condition T Jl = 0. Here 
it is easy to see that the current density changes 
appreciably over distances of the order r, and for 
n1 = n2 and 11 ¢ z, it falls off appreciably at this 
distance (Fig. 1)-the "skin effect" for the static 
current. However, it must be kept in mind that, 
in contrast with the skin effect in a variable field, 
1) the current at infinity does not tend to zero but 
to a small finite value; 2) the tangential field does 
not depend on the depth. 

By averaging the relation (13) over y, in accord 
with (2), we can convince ourselves that for n1 ¢ n2 
the resistivity tensor has in the first approxima
tion in y the same form as for an infinitely thick 
plate: the resistance approaches saturation in 
strong fields ( r ~ l). 

For n1 = n2, the resistivity tensor [which is ob
tained from (13)] has the form 

r !/ 

FIG. 1. Damping of a 
constant current in a paral
lel magnetic field. 

(14) 

For y ~ l/d, i.e., for r ~ t2 /d, which corresponds 
to the "intermediate" region of magnetic fields 
Ho << H ~ H0l/d, H0 ~ cp0/el, the tensor p has the 
usual form. For r << l2 /d, i.e., H >> H0l/d, in the 
case of a specimen with good surface (6 << t2/d, 
6 is the characteristic dimension of the random 
deformations of the surface) 

, _ _ 1 ( [3~ r 1d/l f3~d/l) 
p-Go [3~d/l [3~ ' 

(15) 

This signifies [see (3)) that in almost all directions 
of the magnetic field in the plane of the plate rela
tive to the current, for H ~ H0d/l and apparently 
for H.$ H0l/6 (see Sec. 1 ), a transition takes 
place from the quadratic increase of resistance 
with the magnetic field to the linear increase: 
from p ~Po ( H/H0 )2 to p ~ Po ( H/H0 ) d/l ~ p0d/r 
(see Fig. 2 ). As was emphasized above, this takes 
place only in specimens with good surface. In this 
connection, the transformation of a bad surface to 
a good one leads for H ~ H0d/l to a sharp decrease 
in the resistance and the transformation from p 
~ H2 to p ~ H. The case H II j is an exception, 
in which the resistance tends to saturation for 
H ~ H0 in any case. 

As is seen from the foregoing, the transition to 
the linear law p ~ H is associated with the un
usual "static skin effect" for a current in a strong 
magnetic field. We note that the linear law as
sumed here differs in principle from Kapitza's 
law: the former takes place both in single crystals 
and in polycrystals with closed electron orbits, 
but only for a good surface on the specimen, i.e., 
for r ~ 6; the latter is possible only in polycrys
tals with a definite type of open trajectory [ib] and 
does not depend on the state of the surface of the 
specimen. 

To conclude this section, we note that for all 
discussions we have essentially assumed only d 
> 2rmax• i.e., the absence of "interference" be-

FIG. 2. Dependence of 
p(H) for n, = n2 • 

p 
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/ 
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/ 
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tween the surfaces of the plate. Therefore the 
formulas that have been obtained are valid both 
for l < d and also for l > d > 2rmax· 

4. RESISTANCE OF THE PLATE IN AN OBLIQUE 
MAGNETIC FIELD 

The solution for the oblique magnetic field is 
more complicated than for the parallel case. This 
is associated with the fact that 

which entered into the argument E~ at the right 
hand side of Eq. (4) is not a periodic function of T 

in contrast with ry ( T), which determines the 
argument of Ey in the parallel field. Therefore, 
it is not possible to write down the first approxi
mation in y of (7) without making assumptions 
about the form of the function E~ ( ~ ). 

Inasmuch as d ~ l, we limit ourselves, as was 
done in Sec. 3, to the determination of the shape of 
E~ ( ~) near the surface ~ = 0 (that is, for ~ .$ l). 
By computing the first approximation in y of the 
right side of Eq. (7), we establish the fact that it 
is the sum of terms of two types: these fall off and 
change 1) at a distance of the order of l, and 2) at 
distances of the order of r. The ''interference'' 
terms, which fall off at a distance l and oscillate 
over the distance t.~, l >> t.~ ~ r, are absent [ the 
latter is not accidental; it can be shown that the 
presence of similar terms would have led, gene
rally speaking, to the absence of a solution of Eq. 
(7)]. This suggests that perhaps E~ ( ~) also con
sists of a similar sum. The origin of the terms 
which are damped over a distance l is quite evi
dent: the electrons reflected from the surface and 
passing into the depth of the metal carry with them 
information about the surface and about the field 
near it; they are damped as a result of volume 
collisions, i.e., exactly over a distance of the order 
of l . 

In addition, there are electrons [always, with 
exception of the magnetic field normal to the sur
face and of r ~ ( T) which is monotonic for all or
bits] which, upon being reflected from the surface, 
return to it and again collide (such, for example, 
are the electrons of the central cross section which 
generally do not reach the depth of the metal, hav
ing v~ = 0 as a result of the central symmetry of 
the Fermi surface). Such a repeated collision is 
possible for electrons which "in the mean" are 
flying both to the surface and away from it ( v~ 
< 0 or v~ > 0), but only at distances of the order 
of r. Consequently, there is a change in the dis-

tribution function and in the current at distances 
of the order of r. (In a magnetic field parallel to 
the surface, all collisions of the electrons with the 
surface are of this sort, and both the current and 
E~ change only over a distance r.) 

In this connection, the electrons must be divided 
into three groups for all computations: 1) v$ > 0, 
with A. ~ -~I I v~T I; cp ~ 1 was taken precisely 
to make this formula valid (for cp = 0, v~ = 0, ~ 

~ r, A. "' 1T is possible); 2) v~ < 0, ~ and p such 
that the electrons do not collide with the surface, 
A. = -co; 3) v~ < 0, ~ and p such that the electrons 
having A. "' 1T collide with the surface. It is con
venient to introduce the discontinuity function, as 
was done in Sec. 3. 

Thus we make the following assumptions. We 
set 

E~ (£)=X(£) · 'lJ (£), (16) 

where the function lj! ( ~ ) falls off and decreases 
over a distance l, while x ( ~ ) does the same over 
the distance r. Comparing similarly changing 
terms separately 3 > we get the same equation for 
x, lj!. Transforming to dimensionless variables, 
and setting a<~>= a(l ~ 1 >. b <O ='b (r~t>. where 
a and b are functions which change over the dis
tances l and r, respectively, we finally get 

co 

,~ ~L (£1. £~)X(£~) d£~= rx(a)(£1)Ea + yh (£1) ~ x(£;kt£; 
0 

00 

· f- ~ K1 (£1. £~l ~ (s;l d~;. (17) 

co 

\ K (I £1- £;1)~ (s;) d£; ~"~~(a) ( tl Ea. 
•' 
II 

00 00 

+rP(£1) ~ x(s;) d£~ + i 2A (£1) ~ Kz (£~)X (s;)d£~. (18) 
0 () 

where all the known functions (i.e., all functions 
except x and 7j}) are of the order of unity at zero 
and change over distances of the order unity. 

The Wiener-Hopf equation (18) makes it possi
ble to express "ij) in terms of x and, by substituting 
it in (17), to find X· The physically evident unique
ness of the solution of the initial integral equation 
makes it possible to conclude that the correct for
mula for E~ ( ~) is obtained in the same way, and 
that, consequently, the substitution justifies the 
initial assumption (16). 

It is not difficult to understand from (1 7) and 
(18) that 

3)In other words, from f,(.; /r) + f2 (.; /l) ~ 0, where f,(x), 
f2 (x) are damped out at x - 1 when r ... 0, we get f2 = 0, 
whence f1 = 0 also. 
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co 

x (o) ~ r-1 • ~ x (s'~> ds~ ~ 1, ~ (0) ~ y; (19) 
0 

x ( ~ 1 ) and I{! ( ~ 1 ) change and are damped out over 
distances of the order of unity. As was to have 
been expected, the form of E~ ( ~) is the same for 
n1 = n2 and n1 o;r ~ (for the same reasons as in 
Sec. 3 ). 

Now, substituting (16) and (19) in Eq. (6), we ob
tain the connection between ja(~) and Ea(a =x, 1J ), 

and from j J.l = 0 we find E J.l and the relation of 
j 11 with E 11 • Here x leads to a sharp, almost anti-

oc: 

symmetric (since x2 ~ y-1, and J x d~ 1 ~ 1) change 
0 

in the current density over distances of the order 
of r, and ljJ leads to a sharp change over distances 
of the order (Fig. 3) l-the "static skin effect" for 
the current. 4 l 

Averaging the current density over th~ depth, 
we get the effective conductivity tensor a: 

; ( r2~~1 
ao = - yl\12 ~v + y2~~2 + r {l/d) 1\1 cos qJ 

y612~v + Y2~~2 ) 

y2~~2 + r (Lid) 62 cos (jl J' 

btk ~ 6; ~ I. (20) 

-t 

FIG. 3. Damping of a 
constant current in an ob
lique magnetic field; 

Uo = uiH=O· 

It is seen from (20) that, as also for cp = 0, the 
ordinary formulas are valid in the field H0 << H 
<Z:: H0 (d/l ). [ 1] For cp = rr/2, that is, in a field 
normal to the surface, the ordinary formulas [ 1] 

are valid for H >> H0• Physically this is easy to 
understand. All the effects brought about by the 
surface, as was mentioned in Sec. 1, are connected 
with the fact that the inhomogeneity of the field, 
which arises because of the surface, changes the 
asymptote (averaged over the depth) of the "sur
face" conductivity tensor. If now ~ = z, then only 
Ez is inhomogeneous (Ex, Ey = const), and the 
asymptotic values of aiz and azk do not depend 
on the randomness of the volume collisions and 
therefore do not change. 

The absence of corrections to a ~a is the re
sult of Vx = 0; this is also easy to obtain by con
sidering the order of E~. 

We return to the resistivity in the case of a 
very strong field H ::?> H0 l ( r cos cp)-1, when 

"screening" of the current by a layer of the order 
of l takes place. For n1 = n2, we have 

r~ , r-"~1 r"i'l2 \ 
Po = ( y-1 (d/1).[33 y-1 (d/1) ,34} ' (21) 

Consequently, a difference from the ordinary 
formulas arises here when the direction of the re
sulting current, the magnetic field and the normal 
to the surface lie in a single plane. In this case, 
there is a linear law (Fig. 2) 

r ~ Po (d/l) (H!Ho) ~ Pudfr, 
(22) 

and all the conclusions are analogous to the con
elusions of Sec. 3, only the current density falls 
off over the distance l by a factor of y-1 and not 
over r by a factor of y~, as for the case cp = 0. 
Inasmuch as the P1)1J ~ p 0 when cp = 0, the depend
ence of p on the angle cp between the magnetic 
field and the plane of the sample (that is, between 
z and 1J) has the form shown in Fig. 4a, i.e., the 
resistance changes quickly over a narrow range of 
angles close to cp = 0, and also close to cp = rr /2 
if ljJ = 0 ( ljJ is the angle between 11 and 71 ) . Upon 
rotation of the magnetic field in the plane of the 
plate (cp = 0), just as in the ordinary case, a sharp 
anisotropy takes place close to the direction j II H 
(only the transition takes place from p ~Po ~ Pod/r, 
and not to p ~ y-2 p 0, as in the ordinary case ) . The 
essential difference from the ordinary case lies in 
the presence, at cp 7- 0 or rr/2, of a strong aniso
tropy close to the H direction, which lies in the 
~~~ plane, upon rotation of the magnetic field which 
makes the given angle with the surface (Fig. 4b). 

4lFor cp = 0, the "skin effect" does not vanish at n, = n,, 
owing to the sharp rise in Eg as cp -> 0. 
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(23) 

Here only P1)1J always goes to saturation in strong 
fields H >> H 0, as in the ordinary case. [ 1a] For 
all other directions of the magnetic field, the re
sistance is appreciably larger than in the ordinary 
case and increases linearly with the magnetic field 
and nowhere tends toward saturation: 

p --- Po (//d) (HI H 0) ~ PoN rd ";;::> Po (24) 

(see Fig. 5). For r ;::. 6, a transition evidently 
takes place to the ordinary formulas; for the exist
ence of a linear portion on the curve p (H), it is 
necessary that 6 ~ l 2 I d. The form of the polar 
diagrams of p/p 0 in cp for lj! >" 0 and in lj! for 
cp >" 0, rr/2, in accord with Eqs. (21) and (23), are 
similar to p ( lj!) for cp = 0 in Fig. 4b (only 0 ::5 cp 
::5 rr/2 ); for cp = 0 there is no strong anisotropy in 

lj! and for lj! = 0 there is no strong anisotropy in cp, 
as in the ordinary case. 

At first glance, it appears that the increase of 
resistance (24) contradicts the fact that, in com
parison with the ordinary case, the conductivity 
tensor of the deep layers of the metal does not 
change, the surface conductivity a 1)1) increases 
[see (20)] and the conductivity of the metal is de
termined by the surface layer (of thickness of the 
order of l ) . The reason for the increase in the 
resistance lies in the following. As is seen from 
(9), in an unbounded metal, where the current flows 
in the same direction everywhere, the larger con
ductivity (p ~ p0 ) is associated with the appear
ance of the Hall field, y-1 times larger than the 
field along the direction of the current. The in-

crease of a' in the case under our consideration 
leads to the result that there arises an anomalously 
large surface current. The condition for the con
tinuity ]11 = 0 is guaranteed in the first approxima
tion only in the surface layer, which gives (in the 
whole specimen) a Hall field of the order of the 
longitudinal field Ev. As a result, the current in 
the v direction in the interior of the specimen falls 
sharply off in comparison with the case of the un
bounded metal, showing significantly less "sur
face" current which, in turn, is much less than 
the "bulk" current in the case of a bulk con
ductor. (In addition, in contrast to the unbounded 
sample, a rotational current arises in the metal.) 
Thus the increase in the resistance is associated 
with the sharp fall-off in the anisotropy of the 
"surface" conductivity tensor, which leads every
where to a Hall field that is much less than the 
Hall field in the unbounded sample, and to j J.l >" 0 
in the depth of the specimen. This is a consequence 
of the change of the "effective" boundary condi
tions, of which we spoke in Sec. 1. 

5. RESISTANCE OF A WIRE IN A STRONG MAG
NETIC FIELD 

A knowledge of the solution for the plate makes 
it possible, for d >> l, to find the resistance of a 
thin wire with d ~ l. We isolate a layer of thick
ness of the order of l close to the surface of the 
wire. Outside this layer, in the depth of the wire, 
there is no surface, E = const = E00 , and ji ~ 
af'kEk'. In the layer isolated by us, any section 
of length d1 with l ~ d1 ~ d can be regarded as 
a plate. Since all the quantities, and in particular 
the distribution function, vary appreciably only 
along the direction of the local normal ~, to the 
surface, one can repeat the discussions of Sec. 2. 
Inasmuch as the surface layer is decisive in a suf
ficiently strong magnetic field, a knowledge of the 
effective conductivity of the plate a = 1/ p for n1 

>" n2 immediately yields j v = a ({3, H) E v , and the 
resistance of the wire is equal to 

2~ 

p = 2rt/~ a(~, H) d~; 
0 

{3 determines the direction of .; 1• If H is not di
rected along the axis of the wire v, then for r 
~ l 2 /d the distance p ~ p 0l 2 /rd (if H II v, p ~Po 
everywhere); the current flows in a layer of thick
ness of the order of l . 

For n1 = n2, the conditions for the appearance 
of the "skin effect'' become somewhat more strin
gent. The fact is that, in accord with Sees. 3, 1, 
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account of the dependence of the Hall effect on a 
single coordinate only leads to a ''skin effect'' for 
selected values of {3. The boundedness of the 
dimensions of the specimen in the two directions 
gives a dependence of the Hall fields on two co
ordinates (in the kernel of the integral equation, 
A. depends on two coordinates). As a result, carry
ing out calculations similar to the one-dimensional 
case, and determining F ( E = - grad F) from the 
condition p' = 0, we get in all components of the 
effective conductivity tensor contributions of the 
order yZ2/d1d2 ( d1, d2 are the characteristic di
ameters of the wire), and for r << l (Z2 /d1d2 ) the 
value p ~ p0 (l/r)(d1ddZ2 ). The cases Hl v, 
where p ~Po (l/r )2 , and H II v, where p ~ p 0, are 
exceptions. 

It is curious that if the transverse cross sec
tion of the wire is polygonal (with a sufficient de
gree of accuracy) and H is not parallel to one of 
the planes that bound the wire and is not perpendi
cular to its axis, then the "skin effect" takes on an 
unusual character: for o ~ r ~ l (Z 2 /d1d2 ) the 
total current also (and not only the current density) 
flows fundamentally only in the angles of the poly
gon at distances from the vertices of the order of 
l. The difference between the case of a smooth 
curve which bounds the transverse cross section 
and the polygon lies in the fact that in the first case 
there is everywhere a weak dependence on two co
ordinates, and the current is fundamentally uni
formly distributed in a layer of the order of l; in 
the second case, there is a region of essential de
pendence on both coordinates-in the angles of the 
polygon, where the same current is centered; in the 
remaining places, close to the surface, the depend
ence on the second coordinate is exponentially 
weak. 

It is clear from the foregoing that the presence 
of hills and valleys on the surface can have a strik
ing effect on the resistance of the wire, because of 
the strong anisotropy of the effective conductivity. 
The parts which are oriented in a special manner 
relative to the magnetic field (for example, for the 
case n1 = n2, the parts of the surface parallel to 
the magnetic field, where the conductivity has a 
sharp maximum) give an anomalously high (and in 
a sufficiently strong magnetic field, the definitive) 
contribution to the conductivity. In particular, the 
character of the anisotropy p of a polygonal wire 
differs essentially from the character of the ani
sotropy of p for a cylindrical wire. 

As a result, the resistance is seen to be very 
sensitive to the form of the configuration of the 
wire surface. For H not parallel and not perpendi-

r 
I 

I - p-H? 
c-j_-, -------r-~ l2"/d,---------;-;H 

FIG. S. Dependence of p(H) for n1 f n2 • 

cular to v, and for cylindrical wire, p (H) is the 
same as in Fig. 5 for n1 ;r n2; for n1 = ~· the form 
of p (H) differs from that shown in Fig. 2 only in 
that the linear portion begins at r ~ Z3/d1d2. 

The anisotropy of the resistance (as also the 
values of the Hall field in all cases) can easily be 
found from the formulas that have been given (in 
particular, for a cylindrical wire and n1 = n2, the 
dependence of p on the angle ( z, v) is the same 
as p ('(J) for -q; = 0 in Fig. 4a). 

We note that the temperature dependence of the 
resistance has a similar character; this can be ob
tained directly from the given formulas upon the 
substitution z-1 = Zi1 + l£le + Ze1ph• where Zi ~ const, 
l e ~ T-2, l eph ~ T- 5 are the lengths of the paths 
determined by collisions with impurities, electrons, 
and phonons respectively. 

6. CONCLUSION 

1. In a sufficiently strong magnetic field, the 
resistance of a wire with a "good" surface (o 
~ r) is generally proportional to the magnetic 
field. For n1 ;r n2 and H not parallel to v, the 
resistance p ~ p 0Z2/rd1 for r<<Z 3/d1d2 (for Hll v, 
we have p ~ p 0 ); for n1 = n2 and H · v ;r 0, the 
value of p is p ~ p 0d1ddrZ for r ~ Z3 /d1d2 (for 
H · v = 0, we have p ~ p0y-2 ); d2 > d1. In the first 
case ( n1 ;r n2 ) the temperature dependence of p 
is determined by the relation p ~ l, in the second 
( n1 = n2 ) , by the relation p ~ z-2 • 

The transformation of a "bad" surface into a 
"good" surface leads in a sufficiently strong mag
netic field, for the case n1 = n2, to a decrease in 
the resistance by a factor of Z3 /rd1 d2, while for 
n1 ;r n2 it leads to an increase in field by a factor 
of Z2 /rd1. 

2. The resistance of the plate (the length of 
which d1 >> Z2 /r) for n1 ;" ~ has the following 
form in the general case: p ~ p 0 l 2 /rd. We have 
the following exceptions when p ~ p 0, as in the 
"ordinary" case: a) the magnetic field parallel 
or perpendicular to the surface of the plate; b) the 
magnetic field lying in a plane with the normal ~ 

to the surface of the plate and to the direction of 
the total current v . 
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The dependence of the resistance on the angle 
l.fJ (between H and ~) and lj! (between the projec
tion of H on the surface of the plate and ") is 
shown in Fig. 4. For lj! = 0 and 1.fJ = 0 and rr/2, 
the strong anisotropy is absent. 

3. The resistance of the plate (the length of 
which d1 >> l2 /r) for n1 = n2 is the same in the 
general case as ordinarily: p ~ H2 . An exception 
is the case of the magnetic field parallel to the 
surface ( I.{J = 0) but not parallel to the total cur
rent, or lying in a single plane with ~ and " ( lj! = 0), 
but not perpendicular to the surface of the plate: 
in both cases p ~ p 0d/r. The anisotropy of the re
sistance is shown in Fig. 4. 

4. The transformation of a "bad" surface (with 
deformations of the order r) of the plate into a 
"good" surface (with deformations much smaller 
than r) leads to cases which differ from the ordi
nary (see points 2 and 3 in the conclusions) to an 
increase ( n1 ;;.! n2 ) or decrease ( n1 = n2 ) in the re
sistance by a factor z2 /rd. 

5. All the new effects noted above are associated 
with the "static skin effect" for a current in a 
strong magnetic field. In a magnetic field parallel 
to the surface, the current flows primarily in a 
layer of thickness of the order of r, in an oblique 
field, in a layer of the order of l in the plate and 
in a cylindrical wire, and at angles ( at distances 
of the order l from the vertices of the angles) of 
a polygon, if the transverse cross section of the 
wire takes such a form. In a multi-connected 
sample, both the external and internal surfaces are 
important. 

6. The experimental investigation of the de
pendence p (H) makes it possible to determine the 
length of path l, the radius of the orbit r and the 

dimensions of random deformations of the surface 
(which characterize it qualitatively) from a large 
number of characteristic points in a single experi
ment on a single specimen. 

The determination of l and r from different 
points for a single specimen makes it possible in 
addition to make clear to what degree the values 
of l and r are characteristic for the material and 
do not depend on the concrete experiment. 

Note added in proof (February 12, 1963). It is easy to note 
that the form of the statistics did not play a role in the conclu
sions; therefore upon satisfaction of the conditions given in 
the work for r and l, these results will be valid for semicon
ductors also. 
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