
SOVIET PHYSICS JETP VOLUME 17, NUMBER 3 SEPTEMBER, 1963 

EFFECT OF COLLlSlONS ON THE DlSTURBANCES AROUND A BODY MOVING IN A PLASMA 

L. P. PITAEVSKII 

Institute of Physics Problems, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor October 8, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 969-979 (March, 1963) 

Formulas for the Fourier components nq of the disturbances of the electron density around a 
body moving in a plasma in a magnetic field are deduced in various limiting cases by taking 
into account collisions of the ions with one another and with other particles. The calculation 
is performed on the basis of kinetic equations with exact collision integrals. The relation between 
the expressions for nq and the plasma dielectric constant is found by taking into account spa-
tial dispersion. 

1. FORMULATION OF THE PROBLEM 

THE present work is devoted to an account of the 
influence of collisions of ions with ions and with 
other particles on the perturbations of the electron 
and ion density around a body moving in a plasma. 
In earlier papers [ 1•2] the authors calculated the 
Fourier components of the ion-density or electron
density perturbations nq for the case when 

( 1) 

( R0 is the characteristic dimension of the body) . 
The plasma was assumed rarefied, that is, the 
mean free path of the ions was assumed to be suf
ficiently large, 

l.~Ro· (2) 

By virtue of this we neglected in [1] the effect 
of collisions on nq. In this case the Fourier com
ponent of the perturbation of the ion distribution 
function satisfies in the absence of a magnetic 
field the equation 

iq (u- Vo) [q + (efT) f 0 (u) iqmpq =I (u), (3) 

where f0 ( u) = n0 ( M/27TT )312exp (- Mu2 /2T), M is 
the ion mass, V0 the velocity of the body, n0 the un
perturbed ion density, u the ion velocity, T the 
plasma temperature measured in energy units, 
and I( u) the so-called "integral for the collisions 
between the ions and the body," which takes into 
account the scattering of the ions by the surface of 
the body and by the electric field surrounding it. 

Since the velocity of the body is small com
pared with the average thermal velocity of motion 
of the electrons, a Boltzmann electron distribution 
can be assumed. In addition, at low values of q 
it follows from the Poisson equation that the ion 

density is equal to the electron density, accurate 
to terms "' ( Dq )2 ( D is the Debye radius in the 
plasma). Therefore, 

nq = ~f qd3u = n0ecpqjT. ( 4) 

In a magnetic field it is necessary to add to the 
left half of (3) a term with Lorentz force, so that 
the equation assumes the form 

dfq e e au Me [uH] + iq (u-V0) [q + T f0 (u) iqucpq = /(u). (5)* 

Equation (4) remains the same. 
As was already mentioned, no account was 

taken of the ion collisions in (4) and (5). To be 
able to do this, however, condition (2) is not suffi
cient. Certain conditions must be additionally im
posed on q. These conditions are different with 
and without the magnetic field. Namely, the colli
sions without the magnetic field can be neglected if 

(6a) 

( v is the effective number of ion collisions). 
In a magnetic field the condition for neglecting 

the collisions has the form 

(6b) 

where q 11 is the projection of the vector q on the 
direction of the magnetic field. Condition (6a) is 
actually satisfied under the conditions of the iono
sphere for the values of q of interest. At the same 
time, in a magnetic field the limiting case that is 
inverse to (6b) can also be satisfied, when 

(7) 

In this case the collisions are very important. 
We shall henceforth consider precisely this case. 

*[uH] = u x H; qu = q•u. 
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In order to take the collisions into account, it 
is necessary to add the collision integral to the 
right half of (5). This is usually done by intro
ducing an effective number of collisions. In par
ticular, formulas with collision integral were ob
tained in the form 

Here foe ( u') = n0 ( m/27rT )312exp ( - mu'2 /2T ), 
m is the electron mass ( it is easy to show that 
when collisions are taken into account a Boltzmann 
electron distribution can also be assumed with the 
required degree of accuracy). 

If the plasma is weakly ionized, then the colli
sions between the ions and neutral molecules are 

(8) the most important. The corresponding collision 
integral can be written in the form [4]: 

The formulas obtained in this manner, however, 
can only be interpolative. Furthermore, the quan
tity v contained in (8) is determined only as far as 
order of magnitude is concerned, and the final re
sult depends strongly on the exact value of v. 

In the present investigation we carry out the 
calculations with exact collision integrals. It turns 
out here that in the limiting cases 

lqJ.iVTJM>Q, 

I q1.l VTJM ~Q 

(9) 

(10) 

( ql is the projection of the vector q on the plane 
perpendicular to the magnetic field and Q = eH/Mc 
is the Larmor frequency of the ions), the calcula
tions can be carried through to conclusion. 

The collision integrals can be linearized in the 
present problem, for by virtue of condition (2) the 
collisions begin to influence nq only at large dis
tances from the body, where the perturbations of 
the distribution function are small. If the plasma 
has a degree of ionization on the order of unity, 
the principal role is assumed by ion-ion and ion
electron collisions. The linearized integral for 
collisions of singly-charged ions with one another 
has the form [3] 

a ·<ll> 
yUt) = _ _!__lk_ 

M auk ' 

·Ui) _ ne'L ~ {t ( ) a to (u') + f ( ) at q (u') _ f (u')ato (u) 
1 k - M q u a , o u a , q au, u, u, 

-f ( ')afq(u)\w2f;tk-wtwkda' 
oU a J a U u, w 

= n~L ~ {[ a::~u') + M;; fq(u') J fo (u) 

_ [ a~:~u) + M;1 fq (u) J fo (u')} W261k:3 wtwk d3u'; 

De2 
w=u-u'; L= ln-y-· (11) 

The integral for collisions between ions and 
electrons has a similar form 

y<im) = ~ W (u, U1; u', u) [fq (u') fmo(U~) 

- [q (u) fmo (u1)l d3u'd3u1d3u~. ( 13) 

Here W is the probability of collision between an 
ion and a molecule with corresponding change in 
velocity 

fmo (ul) = n0m (M1/2nT)% exp (- M 1uii2T), 

M1 is the mass of the molecules and nom their 
unperturbed density. We shall see later on that 
the collision integrals of the form (1)-(2) and (13) 
lead to essentially different results. 

2. CONNECTION BETWEEN DENSITY PERTUR
BATIONS AND THE DIELECTRIC CONSTANT 
OF THE PLASMA 

Before we proceed to our main problem, namely 
taking collisions into account, we derive general 
formulas which are of independent interest and 
which enable us to simplify the calculations appre
ciably. Namely, we show that the term linear in 
the potential (/Jq in the equations leads to multi
plication of nq by a factor which is simply related 
to the dielectric constant of the plasma with allow
ance for spatial dispersion. The proof will be pre
sented in a form which is also suitable when ac
count is taken of the magnetic field and of the colli
s ions between particles. 

As was already mentioned, at small values of q 
the quantity fq satisfies an equation that can be 
written symbolically in the form 

[[q = - quf0ecpq/T + I (u)/ i, ( 14) 

where L is a linear operator acting on the func
tions of the velocity u. An equation of the form 
(14) is valid also in the case of a magnetic field 
and when collisions are taken into account. 

It follows from (12) that 

[q =- (e/T) cpql-1quf0 - il-11 (u), 

where t- 1 is an operator inverse to L. Integrating 
with respect to d3u and taking (4) into account, we 
obtain 
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nq = ; ~L -1/(u) £i3u j [ 1 + ~L -1qu ~ dau J 

( 15) 

where the functions f1 and f2 satisfy the equations 

L{1 = - if (u), Lf2 = qufofno. 

The function fq is obviously expressed in terms 
of f1 and f2 by the formula 

(16) 

In order to relate the function f2 with the di
electric constant, we apply to the homogeneous 
plasma an external longitudinal electric field 

E = E0eiqr = - iq<p. 

Under the influence of this field the electron den
sity changes by an amount 

bn, = n0e<p!T, 

and the change in the ion density is determined by 
the equation 

bn; = ~fd3u, Lt =- quf0e<p/T 

or, taking (15) into account, 

bn, =-no e; v2d3u. (17) 

As is well known, the divergence of the dielectric 
polarization of the medium is equal to the negative 
density of the charges produced under the influence 
of the field 

div P =- e (bn;- bn.) = n~cp {~ {2d3u + 1}. 

On the other hand 

Pt = (etk - btk) E,,/4n = - i (ezkQk - q1) <p/4n, 

where Ezk ( q) is the dielectric tensor of the me
dium. Thus, 

\ { 2d3u + 1 =- i (D 2BtkQtQk(-D2 q'"J::::::: iD2BtkQtQk (18) 

and finally 

We now recall that we are carrying out the calcu
lations in a system of coordinates fixed in the body. 
On going over to a stationary coordinate system, 
the field which is static in the moving coordinate 
system and has a vector q acquires a frequency 
w = qV0• Therefore 

e1k = Bik (qV0, q), (20) 

where Eik ( w, q) is the dielectric tensor of the 

stationary plasma. As is well known, the connec
tion between the frequency and the wave vector of 
longitudinal waves propagating in a plasma is given 
by the equation 

e;k [w (q), q] q;qk = 0. (21) 

If the wave-dispersion law defined by (21) is 
w = w ( q), then for those values of q satisfying the 
relation 

qV0 = w(q), (22) 

the expression for Ilq will have a pole. Since we 
are interested only in real q, these poles are es
sential only if they lie at values of q that are real 
or complex with small imaginary part. For this it 
is necessary first that w ( q) be almost real, that 
is, that the waves be weakly damped. Second, it is 
necessary that the phase velocity of the waves in 
the region of weak damping be smaller than the 
velocity of the body. 

Indeed, it follows from (22) that 

qV0 = qV0 cos{} = w (q), V0 > w(q)/q. (23) 

If (22) has an almost real root, this will lead to a 
strong scattering of the radiowaves with q close 
to this root. (We recall that in the scattering q 
is the change of the wave vector [t].) The spatial 
distribution n ( r) then acquires relatively weakly 
damped oscillating terms. The condition (22), as 
should be the case, coincides with the condition for 
Cerenkov radiation of the corresponding waves by 
the body. 

3. SIMPLIFIED EQUATIONS WITH COLLISION 
INTEGRAL OF THE GENERAL TYPE 

We have already mentioned that the collisions 
are most essential for values of q satisfying the 
inequality (7). In this case, if we take into account 
also the inequality which is satisfied in the iono
sphere 

Q~v, 

the equations can be greatly simplified. We use 
henceforth the results of the preceding section and 
seek nq in the form (14), where f 1 and f2 s31tisfy, 
if we spell out the meaning of the operator L for 
our case, the equations 

iq (u- V0 ) f1 + ~c. [uH] ~~ - Y[fi] = /(u), (24) 

. ( V ) f e H at. y f . fo (25) zq u- 0 2 + MC[u lau- [ 2l=tqun;. 

Introducing the vectors q1 and u 1 , which are the 
projections of q and u on the plane perpendicular 
to H, and the angle {3 between q1 and u 1 , we write 
(24) in cylindrical coordinates: 
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ar,_.QIIUII-qVot_·q.lu.lcosf3f I ~Y[f]--_!_ 
af3 z Q 1 z Q 1 -r Q 1 - Q • 

We now change to a new unknown function: 

f1 (u) = g (u) exp (iq.l u .1 sin ~/Q) = g (u) eh sin 13, 

r = q.L u .1/Q. 

g ( u) satisfies the equation: 

ag;a~-i(q 11 u 11 -qV0)/Q 

+e-lY sin 13 Q-1 Y (exp (ir'sin ~') g (u')l 

= _ e-iy sin 13 /(u)/Q, 

r' = q.l u~/Q. 

(26) 

(27) 

(28) 

In order to arrive at the sought simplification, 
let us expand g ( u) in a Fourier series in {3: 

g (u) = g0 (u 11 , u) + g 1 (u 11 , u .l) e113 + g_1 (u 11 , u .1) e-113 + 

... + gm (u 11 , u .1) eiml3 + . . . (29) 

We now estimate the order of the individual terms 
in (29) subject to condition (7). All but the zeroth 
term of the series can be found by comparing the 
largest first terms in the left and right halves. 
Thus, 

If, as we shall assume henceforth, I( u) does 
not depend on the angle (3, then 

27t 21t 

2~ ~ d~e-iYSini3J(u)d~= 2~ ~fiysinl3d~/(u)=Jo(r)/(u) 
0 0 (31) 

( J 0 is the zero-order Bessel function). 
We can subject (25) to an analogous simplifica

tion. For this purpose we must put 

f2 = folno + h (u II• u 1_) e1Y sin 13. (32) 

The final equation for h will differ from (30) for 
g only in the substitution 

I(u)--+ qVofo(u)/no. (33) 

We note that in cases (9) and ( 10) the answer 
for 1 + J f2d3u can be written down immediately 
without calculation. Indeed, if 

qj_ VT7M < Q, 

then the right half of (25), and hence also the func
tion f2, is small so that the integral of f2 can be 
neglected. Therefore 

1 +~f2d3u= 1, q.l VTIM<Q. (34) 

In the second limiting case, when 

q_l_ VTIM ~Q, 

the right half of the equation for h turns out to be 
For the zeroth term the derivative Bgo/8{3 vanishes, small because of the fast oscillations of the func
and we should estimate g0 by comparing the second tion exp ( iy sin {3), so that we can put f2 = f0/n0 and 
or third term with the right half. Then 

Thus, subject to the condition (7) 

go~ Qgm/v ~ gm. 

As a result we can confine ourselves in g only to 
the term g0, taking the zeroth Fourier component 
of (28), that is, averaging it over the angle {3. 

Ultimately g = g0 ( u11, u 1) satisfies the equation ° 

27t 

_ 2~ ~ d~e-iY sin 13y (ely' sin Jl' g (u'11 , u~) J 
0 

21t 

= ~ \ d~e-iY sin i3 J(u) d~. 
2rr J (30) 

'lThe idea of our approximation is analogous to the approxi
mation developed by Budker and BelyaevJs] We, however, do 
not assume that f and cp vary slowly in the direction perpen
dicular to H. Our formulas therefore coincide with those that 
follow from the approximation[s] only in the particular case 
q1 V TIM« n. 

To illustrate the method we shall apply Eq. (30) 
to the collision integral (8), for which we have al
ready obtained a solution [2]. Substituting (8) in 
(30) and calculating the integrals with respect to 
d{3, we obtain 

(i(q 11 u 11 -qV0)+vlg-v ~:J 0 (r)~J0 (y)gd3u 

= J o (r) I (u). (36) 

From this we get 

\ f,d 3u = \ J0 (r) gd3 u = \ J~ (r) du3 

J J J i (q II u II - qV0) + v 

[ 1 v ~ f/~(1) d3 ]-1 X -- u 
no i(q 11 u 11 -qVo)+v • 

(37) 

If we now put, as was done in [t, 2], 

(38) 

where cr0 is the transverse cross section of the 
body, then, writing down an analogous formula for 
the function f2 and calculating the integrals with 
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respect to d3u, we obtain 2> We now recognize that under condition ( 10) the 
function ei'Y sin f3 is rapidly oscillating. This 

nq = -cr0V0no V M/2TF(a2) exp (- q}_TIMQ2 ) lo (q}_TIMQ 2 ) allows us to neglect the term in the right half 

_ 1 [ iqVo-Zv. ( q}_T) (q}_T )]-1 · under the integral sign, so that (42) reduces to 
X q 11 2 + . v ta2F(a2)exp - MQ2 10 MQ" , 

lq o-v [i(qllull-qVo)+VtM]g=Jo(r)/(u), (43) 
~2 2 

F (a2) = ( Vn + 2 i ~ ex' dx ) e -a2, 
_ qV0 + iv VM 

a2- 2T. q II 

(39) 

In the case when q1 u 1/Q ...., q1 .j T /M/Q » 1, we 
can use the asymptotic expressions for Jij: 

J~ (x) = 2 cos2 ( x- ~) / nx = [ 1 + cos (2x- ~) J j nx. 

The second term [cos ( 2x - 1r /2) ] makes a small 
contribution to the integral and can be omitted. 
.Taking (37) into account we obtain ultimately 

Q \' I (u) d"u 
nq = 2q..Ln ~i(q 11 u 11 -qVo)+v u..L (qtv~ ~ 1). 

In the second limiting case ql .j T jM/Q « 1, 
we obtain after simple calculations 

(40) 

nq =~I (u) d3uj(- iqV0 - vq}_T/2MQ2). (41) 

In the next section we shall compare formulas 
(40) and (41) with the formulas obtained from equa
tions with exact collision integrals. 

4. SOLUTION OF EQUATIONS WITH EXACT 
COLLISION INTEGRALS IN DIFFERENT 
LIMITING CASES 

In the present section we derive formulas for 
nq with the aid of equations with exact collision 
integrals (11), (12), and (13). In this case the 
answer can be obtained in explicit form for limit
ing cases, given by inequalities (9) and ( 10). 

Assume initially that inequality (10) is satis
fied. We consider first the case of collisions be
tween ions and neutral particles, that is, the colli
sion integral (13). Substituting it into equation (30), 
we obtain 

i(q 11 un ~qV0)g 

+ g ~ W (u, u1; u', u~) fMo (u1) d3u'd3u1d3u~ ~~ 

- ;n ~ e-iysin ~d~ ~ W (u, ul; u', u~) fMo(u~) eiy'sin Wg 

(42) 

2lTo evaluate the integrals with respect to duL it is neces
sary here to employ the formula 

00 

~ -<' 0 1 -o:'/2 ( et2 ) e · J• (ax) xdx= -e 10 -
0 2 2 ' 

0 

where 10 is the Bessel function of imaginary argument. 

where the velocity-dependent effective number of 
collisions is given by the formula 

VtM (u) = ~ W (u, u1; u', u~) fMo (u1) d3u'd3u1d3u~ ~~ . (44) 

Solving ( 43) and replacing J 0 by its asymptotic 
expression, we obtain an expression for nq: 

(45) 

Expression (44) is analogous to (40), except that 
now v depends on the velocity. 

We now change over to the case of ion collisions, 
that is, to the collision integral (11). It is clear 
beforehand that the term in Y in which the unknown 
function is under the integral sign is again small, 
owing to the oscillating factor. We can therefore 
write down immediately y(ii) in the form 

The integral in Azk can be expressed in terms 
of the probability integral. Leaving out these 
transformations, we write out the answer imme
diately 

Azk = n0 (T/2nM) 'b [a (u2) UzUklu 2 + b (u2} Ozk), 

a (u2) = I(Mu2/T- 3) V2T/ Mu2 <D (V Mu2/2T) 

X 

<D (x) = ~e-x' dx. ( 47) 
0 

Returning now to (30), we note that 

(48) 

where q 1 is a vector perpendicular to ql and H, 
with I q1! = I qll· Substituting (48) and (47) in (30), 
we take account of the fact that if ql .j T /M/ Q is 
large we should differentiate with respect to u 
only the exponential. The integration with respect 
to d/3 reduces to averaging over all directions of 
the vector q 1 in the plane perpendicular to H. 
Thus, 
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21t 

___!_ i dA -iy sin f3y(ii) [ /y' sin /3'g] = ne4L gq-q A 
2n ~ t'e e MQ2 11 1k tk 

0 

ne4L ( 1 u3_ ) ( T )'/, q~L T = MQ• q3_ b + 2 a 11.2 no L.nM = MQ• Vlt (u) g. 
(49) 

Substituting (49) in (30) and solving the equation 
we obtain 

(Collisions between the ions and the electrons 
make a small contribution in this case.) Formula 
(50) differs from (40) not only in the dependence of 
v on u, but also in the large factor qi T /MQ ahead 
of v. This means that in the region where the 
true collision integral has the form (10), the inter
polation formula (39) yields too high values of nq 
when qi T jMQ 2 » 1. 

We now go to the other limiting case (10) 

ql_ VTIM < Q. 

We see that in this case the collisions are s ignifi
cant only if 

q 11 VTIM ~ qV0 ~ q3_Tv/MQ2 < v. (51) 

We introduce again the vector q 1 [see (48)] and 
expand the left half of (30) in terms of q 1 • u. We 
obtain 

27t 

- 2~ ~d~(l- i~u)Y[(I+ iit')g]=l(u). (52) 
0 

To estimate the function g, we integrate (52) 
with respect to d3u. Then the main term contain
ing Y drops out because of the ion-number conser
vation law. Therefore 

(53) 

If we substitute a quantity of the same order in 
(44), there arises, however, a large term Y(g) 
'""vi/q • V0 » 1. To cause this term to vanish, we 
must seek g in the form 

g = const · fo (u) = nqfo (u)/n0 

(We have taken directly into account Eq. (34), 
according to which nq = J gd3u in this case.) 

(54) 

Substituting (54) in (52) and integrating with re
spect to d3u, we get 

nq =~I (u) d3u j [- iqV0 + v2 ~~;. J; (55) 

v. = - 3~0 ~ d3u uY[u'fo (u')]. (56) 

Formula (55) has the same form as formula ( 41), 
obtained with the aid of the effective number of 
collisions. 

Substituting in (56) the value of Y from ( 13), we 
get v 2 for collisions with molecules: 

V2 = V2M = 3~0 ~ W(u, u1; u', u~) (u2-uu') f0 (u) 

(57) 

The situation is more complicated in the region 
where the principal role is played by collisions of 
charged particles. The point is that the integral 
for collisions between ions and ions satisfies the 
momentum conservation law, by virtue of which 

~ py<iild3u = M ~ uY(ii)d3u = 0. (58) 

It therefore is necessary to take Y in (56) to mean 
the ion-electron collision integral y(ie). Recog
nizing that m « M, we can reduce y(ie) to the 
form 

w26 - w w ~ u'26 - u' u' 
B _It (u') tk 1 kdau'~ f (u') tk 1 k d 3u' 

lk - .) oe wa -- oe u'3 

(59) 

(We have allowed for the fact that w = u - u' 
~ - u', since the electron velocity is much larger 
than the ion velocity.) 

Substituting (69) in (56) we obtain 

(60) 

This express ion is v mjM times smaller in order 
of magnitude than the effective number of collisions 
v. Thus, whereas formula (6) gives an exaggerated 
value of nq for the collisions between charged 
particles when q1 VT/M/Q is large, it under
values nq in the region ql v T jM / Q « 1. 

We note in conclusion that the assumption that 
I ( u) does not depend on {3 is not essential. It is 
easy to generalize formulas ( 45), (50), and (54) to 
the case of arbitrary I ( u). 
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