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The radiation from atoms moving in the field of a standing wave is considered. The expres
sions derived are applied to the calculation of the power radiated by spontaneous and stimu
lated emission from a gaseous quantum generator. 

1. INTRODUCTION 

IN a number of publications [ 1- 5] the probability 
of stimulated emission from a stationary atom has 
been evaluated, where the atom is immersed in a 
monochromatic field of frequency w which is close 
to the frequency Wmn of the transition m - n. 
The formula derived remains in force also in those 
cases when the atom moves (gas), but the external 
field consists of a progressive plane wave. In 
fact, in the reference frame moving with center of 
mass of the atom, the frequency will be w - k · v, 
[ v is the velocity of the atom and k is the wave 
vector] (Doppler effect) and it is therefore suf
ficient to replace w by w - k · v and average over 
the velocity. If the atom also moves in a field that 
consists of a superposition of progressive waves 
of the same frequency but various directions of 
propagation, then w - k · v will be different for the 
various waves. Thus the interaction of a moving 
atom with such a field is equivalent to the inter
action of a stationary atom with a non-monochro
matic field and the formulae of [ 1- 5] are as a rule 
inapplicable. Under such conditions a number of 
singularities also arise in the spontaneously 
emitted radiation. 

It is namely such a case which occurs in quan
tum generators-the field set up in them is a su
perposition of two progressive waves propagated 
in opposite directions. Because of this, we con
sider below the radiation emitted by atoms in the 
field: 

E = £ 1 cos (wt- k1 · R + 61) + £ 2 cos (wt- ~ · R + 62); 

(1.1) 

The interaction of an atom with such a field is de
scribed by the system of equations 

i (am + y mam) = Van, i (an + y nan) = V'am. (1.2) 

Here am, a0 and 1/2Ym· 1/2y0 are the probabil
ity amplitudes and lifetimes of the states of the 
atom, and, 

V = p £1i-J/"'rnn1 = i("'nu,-w)t [G ei(k,R.-o,) --"- G"ei(k,R.-o,l]· 
/11/l 1 I - 7 

R = Ro + v (t- to), G1,2 ~= PmnEl,2j21i, (1.3) 

where Pmn is the dipole matrix element and R0 

is the coordinate of the atom at the initial moment 
of time t0• 

Having determined am and a0 from (1.2), we 
can evaluate the current (~*I j I ~) induced by 
the field, and the power P ( t - t0, R, R0 ) of the 
stimulated emission at the point R at the moment 
of time t, produced by an atom excited at the 
point R0: 

(1.4) 

With the aid of the function P ( t - t0, R, R0 ) it 
is possible to evaluate the various characteristics 
of forced emission of individual atoms, and media. 

In what follows we will be interested in the fol
lowing quantities: 

00 

A(R0,v)= ~ Pft-t0 , R(t), R0ldt, 
t, 

t 

A (R, v) = ~ P [t -t0, R, R0 (t0)ldt0• (1.5) 
-0.) 

The first of these is the total energy radiated by 
some particular atom after its excitation at time 
t0 at the point R0; the second is the average energy 
of stimulated emission at the point R, per excited 
atom (with velocity v). Averaging A ( R0, v) over 
R0 and v or A (R, v) over R and v, and multi
plying by the number of excitations Q per cm3 

per second, we obtain the average power of stimu
lated emission per unit volume. 

635 
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~P) = l'iwmnQW == Q <A (R0 , v))=Q <A (R, v)). (1.6) 

Knowing the fundamental system of solutions for 
equations (1.2), it is possible to calculate the prob
ability of spontaneous emission. We designate 
these solutions by am1, an1 and am2, an2. We in
troduce into (1.2) a small perturbation V 1-l: the 
perturbation corresponds to a propagating mono
chromatic wave with wave vector k/J- = ( wl-l/c )/ni-l. 
By including this perturbation to first order, it 
is not difficult to obtain: 

(1. 7) 

t 

!,,1 =' JP~) \/~(I') a,ll (I') Clmt (I') exp {(Y, -7- Yn) (t'- 10)} dt, 
t., 
I 

/111 '~' ~ 1~1i \ V:, (I') an(!') a111 (t') exp {('( 11,-+- Y,) (t'- 10)} dt'. 
0 • 

I" (1. 9) 

Here W0 is the Wronskian of the fundamental sys
tem of solutions at the initial instant of time, t 0• 

The physical significance of the functions Cfu 
and cfi can be understood from the scheme of 
radiative transitions in Fig. 1. Under the influence 
of a strong field the atom executes transitions 
from state m to state n and vice versa ( vertical 
arrows in Fig. 1). In addition, an atom may make 
a transition from state m to state n, and radiate 
a photon ww The contribution of such transitions 
to the probability amplitude of states m and n is 
given by the functions cin and c~. Transitions 
are also possible which correspond to the absorp
tion of photons of frequency, ww Their contribu
tion is given by the functions cffi and c0. From 
Fig. 1 the role of the strong field in radiative tran
sitions of frequency wl-l is evident. If the strong 
field is absent, then for the initial conditions 
am ( t 0 ) = 1 and an ( t0 ) = 0 only photons of fre
quency wl-l can be emitted, whereas for am ( t 0 ) 

= 0 and an ( t 0 ) = 1 they can only be absorbed. The 
presence of a strong field leads to "mixing" of the 
states m and n, as a result of which both emission 
and absorption take place for any kind of initial 
conditions. 

FIG. 1. Diagram of transitions 
between the states m and n of an 
atom under the influence of strong 
(vertical arrows) and weak fields. 

We note that the values of the sums cj!U + c~ 
and c~ + cn follow directly from a calculation of 
the probability amplitudes. The fact that they sep
arate out in this way leads, as is evident from (1.8) 
and (1.9), to the indication that cin,n is expressi
ble in terms of vp. and cffi,n· in terms of Vw 

The probabilities of absorption and emission of 
a photon in the frequency interval t:.wl-l and over 
angles t:.O are given by (1.10) and (1.11) respec
tively: 

co co 

Wa (kl'-) ~w"~O = 2r"' ~ I c;;,/ 2 dt + 2r" ~ 1 c~ /2 dt, (1.10) 
to t 0 

co co 

w, (kp) ~w[L~O ='c 2r,, ~ I c~,/ 2 dt + 2rn ~ j c~ [2 dt. (1.11) 
to t0 

The true absorption (or emission) actually ob
served experimentally is determined by the dif
ference of these quantities. The probability of 
spontaneous emission can be calculated from (1.11) 
by substituting into the expression, for cin and c~ 
the value of Vl-l which corresponds to the interac
tion of an atom with null oscillations of the field: 

, ') !iw P~n tlku. Amn . 
i V[L /" = 8n 2 fi" F (kp.) (~:n:)a = S:n:" F (k[L) ~wl'-~0, (1.12) 

where Amn is the Einstein coefficient for spon
taneous emission from an isolated atom for the 
transition m - n. The function F ( k/J-) depends 
on the number of oscillators of the field, t:.n, per 
unit volume in the interval t:.k/J-, in the following 
way: t:.n = ( 27T )-,'3 F ( ~) t:.k/J-; for free space F ( ~) 
=1. 

Equations (1.10)-(1.12) are valid for suffici
ently small values of the perturbation V/J- such 
that the integral transition probability at frequencies 
wl-l is small compared to Ym + Yn· In particular, 
the equation for spontaneous emission is valid for 
the condition, Amn = 2Ymn ~ 2(Ym + Yn>· 

2. WEAK FIELD 

In the general case the system (1.2) with the 
perturbation (1.3) is not integrable. We therefore 
consider first the case of a weak field, when it is 
possible to limit oneself to first order perturba
tion theory. This enables one to elucidate some of 
the characteristic properties of radiation from 
moving atoms. Integrating system (1.2) in this 
approximation for the initial conditions am = 1, 
an = 0 when t = t 0, we obtain 
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The time dependence of P is determined by two 
factors-relaxation processes (damping with con
stants Ym and Yn) and by the reciprocating motion 
of an atomic oscillator in a field. The latter factor 
is associated with the phase difference between the 
field at the point R and the current ( -.{1 I j I -.{1) in
duced in the atom, this phase difference being de
termined by all interaction processes occurring 
between the atom and the field. In the general 
case when k1 ¢ ~. the parameter P (®, R, Ro) 
depends not only on Q1, n2 , Ym• Yn· and ® = t - t 0, 

but also on R (or R0 ) and on the relative orienta
tion of the vectors k1, ~ and v. In order to ex
plain specifically these interference effects for 
k1 ¢ ~. it is useful to compare the cases k1 = ~ 
(progressive wave) and k1 = - ~ (standing wave) 
with each other. 

For kt = ~ we have 

(2 .3) 

A (R ) _"' ~n + 'Yn Gi + G~ + 2G,G2 cos (/h- 62) 
o~ V -- rU.Dmn ., • 

1m Qi+(rm+r,Y 
(2.4) 

If Q 1 = 0, then P > 0 for all ®; if on the other 
hand Q 1 ¢ 0 then oscillations that depend on n1, 

Ym· and Yn occur, and P can take on both positive 
and negative values. At the same time A (R0, v) 
is always positive, as it should be for the chosen 
initial conditions. The magnitude of P depends 
only on ® and is independent of R and Ro· Simi
larly, A ( R0, v) is independent of R0• In other 
words, all points in space are equivalent when 

ki = ~· 
We now pass to the case k1 = - ~. assuming 

for simplicity w = Wmn and writing out only the 
expression for A ( R0, v): 

, (R ) "' \Ym + lnl I Ym {G" o 11 V = tHiJ "-'- " 
o• mn (kv)2 +(1m+ Ynl' 1 ; G" 

lim (Ym + Yn)- (kvfl cos 1]- hv-(ym + j") sin 1]1 X ,. 
(kv)' + r7" J ' 

Here v is the projection of v on the direction 
k1• It is easily shown that in this case also 

A (R0, v) > 0. However in contrast to (2.4), the 
interference term in (2.5) depends on the point of 
excitation, namely because it contains terms pro
portional to cos 11 and sin ry. In this case the first 
term is an even function of v and the second 
changes sign when the sign of v is changed. For 
atoms excited at nodes and antinodes of a standing 
wave the second term is zero: if R0 is a point 
A./8 away from a node or antinode, then the term 
has its maximum value. This result arises from 
the fact that a standing wave has symmetry about 
nodes or antinodes but is unsymmetrical about all 
other points. The term in (2.5) which is antisym
metric with respect to v, can play a very important 
role. For example, when (kv)2 = Ym (Ym + Yn) 
we have 

A (R 0 , v) 

!iwmn {o2, G2±2 G v~. } = ;:,_ ("' _L 2'~' ) l -~- 2 Gl 2 --_L- SID 'I'] , 
'm 1n 1 1m 1m 1 1'n 

(2.6) 

where the two signs correspond to the two direc
tions of motion of the atom. Thus when 
-./ Ym (Ym + Yn) ~ 1 a change in sign of v, and 
also a change of the coordinates of the point of ex
citation, changes A ( R0, v) by a large factor. For 
I kv I ~ Ym + Yn· and neglecting small terms, we 
obtainfrom (2.5) 

A ) - n r,, -L '" r 2 , o2 2G o ·r,, 1 (Ru, V - Wmn ;::----(k-;-):!1 G1-,- 2 -- 1 2-. ---, -COS lJj . 
lm \.'- l I Ill-;- In 

(2. 7) 

The condition I k ·vI >> Ym + Yn implies that the 
atom covers many wavelengths during the lifetime 
of the excited state. Nevertheless A (R0, v) de
pends significantly on changes of the initial coordi
nates of an atom by amounts of the order of A./8, 
although it does not depend on the direction of 
motion of the atom. All these effects are closely 
connected with the properties of the reciprocating 
motion of the atomic oscillator as it moves in the 
standing wave field. 

As a result of averaging (2 .5) over v (here and 
in what follows the velocity distribution of the atoms 
will be assumed to be isotropic) the antisymmetric 
term in v disappears. If, in addition, the average 
velocity v is large enough so that kv>> Ym + Yn· 
then the interference term in (2.5) is of the order 
of (Ym + Yn)/kv and can be neglected. 

We now evaluate the function A ( R, v) which 
determines the power radiated to a fixed point of 
the volume, R [see (l.S,] . Assuming for simplic
ity that G1 = G2 = G, we have for k1 = - ~: 
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., 1m -i- In 
A (R, v) = t!Wmn-~,-

- lm 

>< G2 {[ 1 +cos£+ ~sins] 
\. lmi'Yn 

In accordance with (1.1), the square of the ampli
tude of the field at the point R is equal to E2 

= 2 (11/Pmn )2 G2 [ 1 + cos~] . From (2 .8) it is evi
dent that A ( R, v) contains terms with the factor 
[kv/(Ym + Yn)] sin~, which violate the direct pro
portionality between A(R, v) and E2• Their role 
is most important when I kv I >> 'Ym + 'Yn- In this 
case the sign of A ( R, v) can be either positive or 
negative depending on R and the sign of v. This 
means that some regions of space emit whereas 
others absorb; for a fixed region in space emission 
changes to absorption when the direction of motion 
of the atom is changed. 

On averaging over the velocities, terms linear 
in v drop out. Therefore (A ( R, v)) ~ E2 and is 
positive. Thus, although radiation from individual 
atoms at the point R is controlled by their inter
action with the field over a region of dimensions of 
the order of I vI I ( 'Ym + 'Yn), the total radiation 
from a fixed element of volume of gas is propor
tional to the square of the field at the point R. 

We introduce now an expression for the quanti
ties averaged over the velocity v and the spatial 
coordinates. From (1.6) and (2.1) it is clear that 
on averaging over R, the interference terms drop 
out and 

W- 1rn+ln_1_ 
- 1m Vn 

1 

00~ - v';v' [ Gi G~ ] d_v , (2. 9) 
x e 0 2 I ( _L ):! + 0 2 -~ (" + " )2 V 

_ 00 ""1 -.- 1m 1 In ""2 I lm •n 

i.e., the average probability of stimulated emission 
in the standing wave is determined by the sum of 
the probabilities for each of the progressive waves. 

3. STRONG FIELD 

In considering the saturation effect, it is neces
sary to find an exact solution of system (1.2). As 
has already been noted, (1.2) cannot be integrated 
for arbitrary values of the parameters. However 
for k1 = - ~ and for some special values of the 

parameters, the solution has a comparatively sim
ple form. Namely, if 

(3.1) 

then the solution of the system (1.2) is 

am= Aam1 + Bam2• am1 = e--yt cos f (I), am2 = e--yt sin f (t), 
an = Aan1 +- Ban2, an1 = - iei(S,+S,) am2• an2 = - iei(S,+S,) am1; 

t 

f (t) =~IV I dt =~~[sin (kR- Cl)- sin (kRo- Cl)], 
t, 

(3 .2) 

The first two of the conditions (3.1) are close to 
those which occur in actual operations: the reflec
tion coefficients of the interferometer mirrors are 
high, and the amplitudes of the two waves set up in 
the generator system are roughly equal; the case 
w = wmn is also the most interesting. As is known, 
this is not achieved with regard to the condition 
'Ym = 'Yn in the optical region of the spectrum. 
Nevertheless we consider this case since it is the 
only one which permits analytic investigation. 

The constants A and B in (3 .2) are governed 
by the initial conditions. Below, the case, am (to) 
= 1 and an ( t) = 0 is considered; then 

am = e-Y(I-I,) cos f (t); an = - ie-Y(I-I,) sin f (t) ei(S,+s,) · 

(3.3) 
Substituting (3.3) in (1.5) one can show that, 

00 

A (R 0 , v) = 1 j21iwmn { 1 - 2r ~ e-2-y(l-t,) cos 2f (t) dt} · 

~ ~-~ 
Further computation cannot be carried out in 
general form. However, for the optical and near 
infrared region of the spectrum one can use the 
fact that the Doppler width is generally much 
larger than the broadening produced by damping, 
i.e., kv ::?> 2y. The simplifications connected with 
this condition are apparent from the following con
siderations: cos 2f ( t) is a periodic function of t 
with a period 27r/(k·v); during the oscillation 
period the factor e- 2 yt changes to 1 - e-.t7ry/k·v; 
when kv ::?> 2 y this change is negligibly small for 
the majority of the atoms. Consequently the chief 
contribution in (3 .4) is made by the value of the 
function cos 2f ( t) averaged over one period, and 
is equal to 

(4G . 1'J) (4G)' 
COS kv SID T J 0 kv , 

where J 0 is a Bessel function of the first kind and 
order zero. Using this result, we find 1> 

1>When both states are excited it is necessary to replace 
in the formula for the radiated power the probability of excita
tion of the state m by the difference in probabilities of ex
citation of the states m and n . 
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ro 
- 1 
W =-z{l- / 0}, 

I = _1_ I ·J2 (4G ') -v•/v• ~ 
o Vn ~ o kv e v 

-00 

(3 .6) 

From (3 .5) it is evident that for large enough values 
of 4G ~ k · v, there is a specific dependence of 
A (R0, v) on R0 which, as can be shown, is pre
served even after averaging over v. This differ
ence from the weak field case [compare the dis
cussion of (2.5)] is associated with the properties 
of the reciprocating motion of an atomic oscillator 
under saturation conditions. 

As an estimate shows, the error in (3.6) does 
not exceed 2..fi ( 2y/kv) ln 2 and in many cases 
it is unimportant. An exception occurs for small 
values of G < y, when the second term 10 in the 
curly brackets in (3.6) approaches the value unity, 
and the value of W itself turns out to be small. 
Thus (3.5) and (3.6) do not enable one to procede to 
the limiting case G - 0. 

In the limiting case G ::?> kv, (3.6) takes the form 

(G>kv~2y). (3. 7) 

It is worth noting that in (3. 7) the term 4G/kv ap
pears ( the ratio of the "saturation width" to the 
Doppler width) and not the square of this para
meter, as might have been expected on the basis 
of the corresponding equation for a traveling wave. 

For intermediate values of the parameter 
4G/kv, a general analysis of (3.6) is complicated, 
and a numerical integration has been performed, 
the results of which are depicted in Fig. 2, curve 
1. For comparison, curves corresponding to a 
traveling wave are also given in this figure. Curves 
2 and 3 correspond to the amplitude of a traveling 
wave being equal to the sum of G1 and G2, (curve 
2) and ( Gi + G~ )112 (curve 3). Curve 4 corre
sponds to stationary atoms in a standing-wave 
field, where the distribution of frequencies of the 
atoms is assumed to be Gaussian with natural width 

FIG. 2. Dependence of the probability of induced emission, 
W, on 4G/kv. 

kv. The general character of all the graphs is 
roughly the same. As can be seen, curves 1 and 2 
practically coincide; this can be considered as a 
demonstration that two waves with amplitudes G 
and wave vectors k and - k are equivalent (in 
the sense of stimulated emission) to a single pro
gressive wave of amplitude 2G and arbitrary di
rection of propagation. In other words satura
tion conditions, the waves G1 and G2 have the 
property of "amplitude addition," whereas in the 
weak field case it is the squares of the amplitudes 
which are combined [see (2.9)]. 

4. POWER OF GENERATED RADIATION 

The amplitude of the field established in a quan
tum generator can be evaluated from the energy 
balance. If the reflection coefficients of the mir
rors are large enough, then 

(4~ )2 = ~~ g_ W (G); 
\kv V n kv Qo 

(4.1) 

where Q0 is the threshold value of the excitation 
probability Q at which generation ensues, R is the 
resolving power of the interferometer or, in an
other terminology, the Q of the resonator. 

From Fig. 2 and (4.1) it follows that near the 
excitation threshold, i.e., for small 4G/kv, 

- 4G w ~0.60-=-; 
kv 

(4.2) 

Thus for small 4G/kv the generated flux is pro
portional to the excitation probability and for a 
given excess over the excitation threshold (i.e., 
for Q/Q0 =constant) the degree of saturation de
creases as ( 2 y /kv)2 • The use of (4.2) is limited 
to a region where the graph in Fig. 2 is a straight 
line (upper limit) and where the condition (3.6) is 
valid, namely G > y. Since typical values for 
kv/2y are = 102, Eq. (4.2) covers all excitation
probability cases of practical interest, except 
regions right near the threshold where Q/Q0 < 2. 

For considerable saturation ( 4G > kv), the 
value of W is close to its limiting value of 1/2, 
and Eq. (4.2) reduces to 

(4.3) 

Thus in order to achieve a significant degree of 
saturation, the limiting threshold must be exceeded 
by a factor of roughly kv/2y. We note that such a 
result occurs in the case of crystals with non-uni
form broadening and arises directly from averag-
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ing the emission probability over the transition 
frequencies. 

5. SPONTANEOUS EMISSION 

We now pass to a consideration of the spon
taneous emission from an atom moving in a stand
ing-wave field. It will be convenient for what fol
lows to expand (3.3) in a Fourier series and rep
resent the wave function of an atom perturbed by 
a strong field in the form 

1f ='I'm 2J As exp { -i !Emfli- skv- iy] t} 

+ 'l'n 2JBs'exp {- i !En(li- s'kv- iy] t}, (5.1) 
s' 

where As and Bs' are the coefficients of the 
Fourier expansion. According to (5.1) an atom 
moving in a standing-wave field is described by 
wave functions of the same type as a system with 
quasi-stationary states, m, s; n, s'. The energies 
of these states Em - sn k · v and En - s'n k · v 
form two equidistant systems of sublevels with a 
splitting k · vn equal to the Doppler shift (see Fig. 
3 ). The amplitudes As and Bs depend on the 
field and on the initial conditions. It can be shown 
that these coefficients are significantly different 
from zero for Is I, Is' I .S 2G/k · v, while the max
imum values of I As I and I Bs I are reached near 
the boundaries of this region. 

We note that the damping constants of all s
and s '- sublevels are identical and equal to y. 
This follows from the result that Ym = Yn and 
w = Wmn· In the other cases it is to be expected 
that the damping constants will depend on s, s', 
w - Wmn• and the field strength. 

m 

En+!!~~A. -
-
-

n En 

En-26'n -

c~o v=a 
4CA 
w=5 ;; =10 

FIG. 3. System of sublevels s and s'. The length of the 
lines are proportional to 1Asl2 and 1Bs'l2 • 

Substituting (1.8) in (1.11) and using (1.9) and 
(3 .2) we obtain, under the initial conditions am (t0 ) 

= 1 and an( to) = 0, the following expression for 
the spectral and angular probability density for 
spontaneous emission w ( kp,): 

oo I 

w (kl'-) = r;nn•! F (kl'-) ~ e-2Y(I-I,) dt { / ~ [I +cos 2fl eiD.I' dt' \2 

fo fQ 

I 

+ 1 ~sin 2fei!ll' dt' n . 
t, 

Equation (5 .2) relates to atoms having a fixed 
speed and must be averaged over v. 

(5.2) 

In calculating the inner integrals of (5.2) it is 
convenient to expand cos 2f(t') and sin 2f(t') in series 
analogous to (5.1). Squaring the result of the integra
tion leads to a series of squares of the moduli of the 
individual terms and a double series of cross pro
ducts. If kv >> 2y then, as can be shown, the 
cross terms can be neglected since their contri
bution is 2 y /kv smaller than the contribution of 
the squared moduli. Then, (5.2) takes the form 

(5.3) 

where Jj is a Bessel function of the first kind. 
From (5.3) it is apparent that the line spon

taneously emitted from an atom moving in a stand
ing wave field consists of components of dispersive 
form and width 2 y. The individual components are 
spaced by equal distances k · v from each other and 
are almost completely separate from each other 
when the condition k · v ~ 2 y is fulfilled. It is for 
this very reason that the cross-product "inter
ference" terms rejected above are of no impor
tance. The intensities of the components depend 
onthe field strength. In particular, when G- 0, 
the series in (5.3) reduces to zero, J 0 - 1, and 
(5.3) leads to the usual expression for spontaneous 
emission. 

Equation (5.3) contains a cosine term which de
pends on the coordinate R0 of the excited atom: 
TJ/2 = k · R0 - o. If the field is not very strong, 
4G/k · v ~ 1, then the change in R0 depends only 
slightly on w ( kJ..t ). If however 4G/k · v ~ 1, then 
a change in the coordinate R0 by a fraction of a 
wavelength, i.e., by a small fraction of its mean 
free path, changes the amplitude of the first term 
from [l+J0 (4G/k·v)]2 to [l-J0 (4G/k·v)]2, 

i.e., by a large factor. This effect arises only in 
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saturation ( 4G ~ k · v) and is produced by inter
ference effects (see Sec. 2). 

We now average (5.3) over the velocities and 
the coordinates. After averaging over TJ• the nu
merator of the first term in (5 .3) turns out to be 
equal to 1 + 3JE. Averaging over v is more dif
ficult. We observe, first of all, that w ( kJ.t) de
pends generally speaking, on the mutual orienta
tion of kJ.t and k, i.e., on the angle between the 
axis of the generator and the direction along which 
the spontaneous emission is observed. We con
sider first the case when kJ.t is perpendicular to 
k. Noting that kv >> 2y and I kJ.t I ~ I k I = k, we 
obtain from (5.3) 

r f(k)' -
w (kp.) = ~~ J [I + 3/ 0 ] exp {- (wp.- Wmn)2 I (kv)2} 

16n 'rkv l 
00 00 

, '\. 1 1 \ J 2 (4G ) { k2 2 
'-~ Vn _t i kv exp - I v 

No 

+ (wp.- Wmn + jkv)2 ] I (kv)2} ~}. (5 .4) 

The first term in (5.4) evidently defines a Gaus
sian line profile with a Doppler width kv and a 
maximum at the frequency wmn· This part of the 
line has the same appearance as a spontaneous 
emission line from an isolated atom. The differ
ence is only in intensity, which in the given case 
depends on the amplitude of the external field (I0 

has been calculated in Sec. 3). 
The terms of the series in (5.3) give line com

ponents displaced with respect to wJ.t = Wmn- Ac
tually the integral in (5.4) will have its largest 
value when the maxima of Jj and the exponentials 
coincide. It is known that Jj is a maximum when 
its argument is roughly equal to its order, i.e., 
4G ~ I jkv I . Consequently the coincidence referred 
to will occur when I w J.t - Wmn I ~ 4G. Since this 
condition is independent of j, all terms of the series 
will have their maximum values over one and the 
same frequency range, wJ.t ~ Wmn ± 4G. 

It is not difficult to show that the ratio of the 
integrated intensities of the displaced and undis
placed parts of the line is ( 1 - I0 )/ ( 1 + 310 ). For 
a weak field I0 - 1, i.e., all the energy is concen
trated in the undisplaced component of the line. In 
the limiting case 4G >> kv the integral I0 - 0, and 
the intensity ratio is close to unity. Thus, with in
creasing G, the integral line intensity decreases, 
the line broadens, and for large enough field, 4G 
~ kv, satellites show up near the frequencies wJ.t 

= Wmn ± 4G, each with intensity roughly half the 
intensity of the undisplaced part of the line. 

The results obtained can be interpreted in terms 
of a simple qualitative explanation if the formation 

of a spontaneous emission line is interpreted as a 
consequence of transitions between the systems of 
sublevels in Fig. 3. To each term in (5.3) it is 
possible to ascribe a transition between the sub
levels Em -stik·v and En- (s -j)tik·v. The 
central and two displaced (by ± 4G) parts of the 
line correspond to transitions between groups of 
the most densely populated sublevels. We em
phasise that this description is only a qualitative 
interpretation which is applicable under the condi
tions kv ~ 2y, since the sublevels s and s' are 
generally speaking not independent. This is indeed 
the cause, in the general case, of the interference 
terms in the expression for w (kJ.t) [see the deri
vation of (5.3)]. 

We now consider the case when kJ.t and k are 
parallel. Then 

1 { 1 00~ 1 + 3J02 (4Gjkv) - dv 
W (k ) - mn F (k ) -V''u' 

~'- -- 8n2 P. Vn ~oo (wp.- wmn- kv)2 + (21)2 e ' ~ 

00 1 00 
Jj (4Gjkv) e-v•;v' ~\ 

(wl'-- wmn -f- (j -1) kv)2 -1- (21)2 v { • + ~ vn- ~ 
-oo 

(5.5) 

Equation (5.5) describes the intensity distribution 
in a line with a total width of the order of kv. The 
most notable feature of this distribution is the 
existence of a narrow peak with a radiative width 
2 y and a maximum at Wmn- This peak corre
sponds to the term j = 1. 

FIG. 4. Dependence of I, 
on 4G/kv. 

J,. ' 
{ ? I 

(5 .6) 
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ItC/kV 

The production of this narrow line is connected 
with the mutual compensation of the Doppler shifts 
kw v and k · v when s - s' = 1. 

The integral 11, which determines the intensity 
of the narrow line, tends to zero as G- 0, since 
the appearance of this line is a strong-field ef
fect. In the limiting cases we have 

8 4G 
I 1 = ------v -=-

3n ' kv 
( 4~ ~ 1); 

kv 

I 4~~ 1). 
\ kv 1 

(5. 7) 
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Figure 4 shows the general course of It as a 
function of 4G/kv. The maximum value of It oc
curs in the region of 4G/kv ~ 1 and is equal to 
0.17, which is 7% of the integrated intensity of the 
whole line. The ratio of the corresponding "peak" 
intensities will be 0.07 kv/2y, i.e., it can be very 
large for kv~ 2y. Using (5. 7) and (4.2) it is not 
difficult to show that the "peak" intensity of the 
narrow line is comparable to the intensity of the 
broad part when Q exceeds the threshold value by 
a considerable margin, i.e., the effect can be ob
served under physically realizable conditions. 

We have considered above two limiting cases, 
spontaneous emission along and perpendicular to 
the direction of generation. With regard to the 
radiation in other directions we note the following 
features. The axial symmetry of the generation 
and the equivalence of the directions k/-! and - k/-! 
result from (5.3). Within the angular range of 
order 2y/kv between k/-! and k the narrow line 
does not change much; on increasing this angle 
above 2y/kv, the narrow line splits into a doublet, 
the maxima shift to the positions wmn ± 4G, and 
the line width rapidly increases. 

We note that all the analysis is based on the 
assumption that F ( kl-' ) = 1. This assumption has 

also been intentionally made for directions perpen
dicular to k. For directions close to the generator 
axis, however, the function F (kl-') ;.! 1 and depends 
on the generator parameters (length, diameter, re
flection coefficients of the mirrors, etc.). In each 
actual case the form of this function must be found 
by solving the problem of the natural modes in the 
resonator. 

In conclusion we present the equation for the in
tegrated probability of spontaneous emission 

WI'-= (Ymn12y) (1 + fo) = (Ynuh) (I- W). 

Here, W is determined by (5.6). 
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