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It is shown that a rarefied low pressure ( p ~ H2 /87r) plasma confined by a magnetic field is 
"universally" unstable with respect to local short-wave disturbances which do not distort 
the magnetic field, for any ratio between the space gradients of density and temperature. An 
analog of such a "universal" instability in the hydrodynamical approximation is an insta­
bility due to the finite magnitude of the thermal conductivity along the magnetic field lines of 
force. 

1. INTRODUCTION 

AN investigation of the stability of equilibrium of 
a plasma in a magnetic field, based on the magneto­
hydrodynamic model of the plasma, leads, as is well 
known, to many different instabilities, depending on 
the configuration of the magnetic field (such insta­
bilities are conveniently designated as ''configura­
tion" instabilities). One of the important problems 
of stability theory has been to find the optimal 
stable configurations of a plasma in a magnetic 
field. However, a description of a low-density 
plasma within the framework of the simple mag­
netohydrodynamic model does not exhaust all the 
possible types of motion. There exist short-wave 
perturbations (with wavelengths considerably 
shorter than the characteristic mean free path of 
the particles), which can be considered in a con­
sistent fashion only within the framework of kinetic 
theory, based on the Boltzmann equation with self­
consistent electromagnetic field. It turns out that 
an account of several types of such short-wave per­
turbations leads to local instability (independent of 
the configuration of the magnetic field). In this 
sense, such an instability is universal. 

A consistent development of the theory of local 
instability of the plasma on the basis of kinetic 
theory is difficult. It is therefore reasonable to 
consider two limiting models: 

a) When the magnetohydrodynamic description 
of the plasma is no longer valid, but the mean free 
path is not too large, so that the plasma can be re­
garded as two interpenetrating fluids (electronic 
and ionic). For this case we use the so-called 
two-fluid hydrodynamics. 

b) When the collisions become so rare that they 
can be completely disregarded. For this case we 
use the kinetic equations without the collision in­
tegral. 

It is known that a plasma sufficiently far from 
thermodynamic equilibrium can become unstable 
against self excitation of various types of plasma 
oscillations. By now the instabilities of a "homo­
geneous, infinitely extended" plasma, the non­
equilibrium nature of which is manifest in the non-
Maxwellian particle velocity distribution, have been 
well investigated. An important circumstance in 
this case is that the instability occurs not for all 
non-Maxwellian velocity particle distributions. In 
other words, the plasma has a certain "stability 
margin'' near thermodynamic equilibrium. 

As applied to the problem of "magnetic thermal 
insulation" great interest is attached to an investi­
gation of the stability of plasma states for which 
the non-equilibrium nature manifests itself in the 
presence of spatial gradients of the density and of 
the temperature (even if the local particle velocity 
distribution is as close to Maxwellian as desired). 
The main problem here is as follows: does the in-
homogeneous plasma have a certain "stability 
margin" or not, that is, does the instability begin 
for as small temperature gradients and density as 
desired, or is it necessary that the spatial gradient 
exceed a certain critical value if the instability is 
to appear? 

If we follow the analogy with the instability of a 
homogeneous non-Maxwellian plasma, for example 
"sausage" instability, it may turn out that the 
presence of such a critical gradient is natural. In­
deed, for the occurrence of "sausage" instability 
it is necessary that the average electron velocity 
relative to the ions exceed the phase velocities of 
propagation of the corresponding waves. (Some 
such "threshold'' instabilities are considered in 
[1 ,2J .) 

In an inhomogeneous plasma, however, the situ­
ation also changes qualitatively. To verify this, 
let us turn to Fig. 1. Let the magnetic field H be 
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H,z 

FIG. 1 

directed along the z axis (we are considering 
local instabilities, so that we can assume that H 
has the same direction "everywhere") and let it 
depend on the spatial coordinate x; accordingly, 
the ion and electron distribution functions in the 
unperturbed plasma have the form fi e<v. x). We 
now consider a small perturbation p~opagating in 
such a plasma, along the z axis, exp [ i ( wt - kz )] . 

In a homogeneous plasma, the main source of 
the imaginary part in the dispersion equation is 
the term of type (eEz/m) af/azl Vz=-w/k· In a 
Maxwellian plasma, it is responsible for the damp­
ing of the wave (the so-called "Landau damping"). 
Naturally, terms with such a structure are re­
tained also in a weakly inhomogeneous plasma. 
However, additional terms appear, resulting from 
the term v · V'f in the kinetic equation. For ex­
ample, at low frequencies ( w << ~ i = eH/Mc), 
when the motion of the ions and electrons trans­
verse to H has the form of a drift, the term v · V'f 
yields for the "electric" drift a contribution 
c ( Ey/H) af/ax. This term, naturally, can make an 
additional contribution to the imaginary part, owing 
to the corresponding half-residue c ( Ey/H) 
x af/ax I v=-w/k· When Ey ~ Ez [which occurs, 
for example, for vortex-free perturbations (curl 
E = 0) with a spatial dependence exp i ( kyY + kzz) 
with ky ~ kz], this addition may exceed the "Lan­
dau damping" even at small gradients, and the 
plasma will be unstable. 

To verify this, let us estimate the work per­
formed by the electric field of the wave on the 
plasma particles (w/kz >>vi, Ve >> w/kz ): 

TE- = ev f1E I . ~ 2' z z 
v2 =~w/k2 

where 

n (x) Vm ( mv~ ) 
fo = V2nT (x) exp - 2T (x) . 

As can be seen from (1.1), for sufficiently low fre­
quencies the transfer of energy from the particles 
to the wave, connected with the inhomogeneity 
(second term), aqtually exceeds the Landau damp­
ing. 

Under the assumptions made (vi~ w/kz ), we 
can neglect the motion of the ions along z and the 
continuity equation for these assumes the form 

(2.1) 

On the other hand, the electrons moving along the 
force lines with velocity Ve ~ w/kz, have time to 
attain a Boltzmann redistribution 

(3 .1) 

From (2.1) and (3.1), using Ey =- ikycp, we obtain 
the frequency 

(4.1) 

In the derivation of (4.1) we have assumed that for 
ions one can employ the drift approximation (that 
is, the Larmor radius is assumed to be much 
smaller than the wavelength). 

Substituting the obtained frequency (4.1) into 
(1.1) we obtain the following instability criterion 1): 

d In Tid Inn < 0. (5.1) 

Thus, in the "zero Larmor radius" approximation, 
the region that remains stable is ( see [3]) 

0 < d In Tid Inn < 2. (6.1) 

If the finite Larmor radius is taken into account, 
the frequency w decreases, so that the role of the 
inhomogeneous term irr (1.1) increases and the gap 
(6.1) may close. 

The reason for the decrease in the frequency 
when the wavelength becomes shorter than the Lar­
mor radius is the decrease in the effective electric 
field averaged over the particle orbit. Therefore 
the average drift velocity of the particles vx in 
equation (2.1) decreases. Thus, at sufficiently 
large kyrH, the velocity Vx will be of order 
~ cEyiHkyrH. Indeed, a rigorous analysis with 
the a1d of the kinetic equation shows that the gap 
(6.1) closes, so that the plasma turns out to be 
universally unstable . 

It is curious that the two-fluid hydrodynamics 
analogs of the kinetic instabilities obtained as a re­
sult of the half-residues 

~ c (Eu!H) at/ax iv=-w!k' 

I)If an analogous estimate is made for the case w « kzvi, 
we can obtain the limit of the stability region for positive 
dln T/dlnn, namely dln T/dlnn = 2. 
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are instabilities that arise when account is taken 
of the finite heat conductivity along the force lines 
of the magnetic field (Sec. 3). 

2. INVESTIGATION OF THE STABILITY OF A 
DILUTE INHOMOGENEOUS PLASMA IN A MAG­
NETIC FIELD, NEGLECTING COLLISIONS 

1. Let us consider the dispersion equation. In 
the derivation of the dispersion equation the follow­
ing is assumed: 

1) p << H2 /8rr-the plasma pressure is small 
compared with the magnetic pressure; 

2) the plasma is quasi neutral, that is, ni = ne; 
3) The electric fields of the perturbations are 

potential, that is, curl E = 0 (this is true if w/ky,z 
<<H/..J4rrp). 

Rosenbluth et al [ 4] introduced a dispersion equa­
tion for the investigation of the stabilization of mag­
netohydrodynamic instability arising in an inhomoge­
neous plasma supported by the magnetic field 
against the force of gravity, with a finite Larmor 
radius. We use the method employed in that refer­
ence to obtain the dispersion equation of interest 
to us, without imposing the limitation kri ~ 1. 

Unlike [4], we take into account also the inhomo­
geneity of the temperature. Therefore, the distri­
bution function of the unperturbed plasma assumes 
the form 

f1 = f 1 + (x + v)D) dldx] fOi' (1.2) 

where 

is the Maxwellian distribution function (we retain 
the notation of[4J), whereas the function used in [ 4] 

is 

f 1 = [ 1 + (X + ~:; ) ;0 ~:0 J f oj" (2 · 2) 

In addition, we leave out immediately the force of 
gravity, which is of no interest to us, and choose 
the perturbations in the form exp i ( - wt + kzz 
+ kyy). In C4J they were chosen as exp i (- wt + kyy). 

Leaving out the derivation, which differs only in 
inessential details from that of C4J (as can be seen, 
incidentally, even from a comparison of the dis­
persion equations), we obtain in place of the Rosen­
bluth-Krall-Rostoker dispersion equation 2> 

2)In [•] and accordingly in our paper, several inessential 
terms have been left out from the dispersion equation; these 
have for the cases under consideration an order of magnitude 
rH/L, where L is the "characteristic dimension" of the spa­
tial inhomogeneity. For similar reasons we have also left out 
terms containing the second derivatives of x with respect to 

foj· 

(3.2) 

the equation 

(4.2) 

When w ~ rlj and kzVzj ~ rlj, precisely the 
case which we are considering, it is sufficient to 
retain in the sum over l only the term with l = 0, 
so that the dispersion equation (4.2) becomes 

2n "V {[ m ky d J 00~ f idv } --L.J ----A (81) -- = 0, 
T T m .Q1 dx m - kzv 

I I -co 

(5.2) 

where 
C') 

A (6) = ~ e- 1J~ (8t'i•) dt = e-O'i2J0(fPj2), 
0 

As ej- 0 (which corresponds to the approxima­
tion in which the Larmor radius of the particle is 
equal to zero) A (e) - 1 and (5.2) goes over into 
the dispersion equation obtained in [a]. 

Introducing the dimensionless frequency 

ZJ = wlkz (2Timi)'1', (6.2) 

we rewrite (5.2) in the form 

~{1-fAz1 -t q/;:(w(zJ)fzi+r-~zJ]A}=O, (7.2) 

where 
. oo e-t 

w (z) = -it ~ 2"_ 1 dt, 
-oo 

r(o)-- ---~ ---- ---(1 + o) t a [ dn 1 1 dT 1 J 
-- 2 kz dx n 2 dx T ' 

0(0)= 82 [1-0(6''_/ 2)] 
fo(fJ'/2) ' 

1 a dT 1 ( 
~(O)=ykdxT" 8·2) 

z 

The Larmor radius of the electron is assumed to 
be negligibly small ( kyrHe = ee ~ 1 ), so that we 
can put o = 0 and A = 1 in the equation for the 
electrons. 

2. Let us consider the case of "low" frequencies 

w ~kz (2T/M)'1'. (9.2) 

Using the expansion of w ( z) for small z: 

~ (iz)k 
w (z) = L.J 1 (1 + k 1 2) ' 

k=O 
(10.2) 
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we reduce (7 .2) to the form 

2/A + i (z + r) Vil- (~ + 2r) z = 0 (z = z;). (11.2) 

This equation has the following solutions for z: 

y + 4-:t InA . 2 1 I A- ya. 1 R 2 ) 
z = - 1 + 4:x"l n + t -vn- 1 + 4:x" In ' a = - T(P + r . 

(12.2) 

The condition for instability ( Im w > 0) assumes 
the form 

[2 _dInT (1 + 6)] [I _dInT (l + ~ 6 )] 
dIn n dIn n 2 

(13 .2) 

The second term in this inequality can be neglected, 
and, as can be readily seen, instabilities arise when 

d In Tid Inn> 2/(1 + 6). (14.2) 

Taking into account the "finite Larmor radius," 
the boundary shifts from dlnT/dln n = 2 (see Fig. 
2, for 8i-- 0) to dlnT/dln n = 1, since 6--1 
when ai ~ 1. 

3. Let us consider the case of "intermediate" 
frequencies, when 3> 

kz (2TIM)'1• < w < kz (2T/m)'1'. (15.2) 

FIG. 3 

3)Recently B. Kadomtsev and A. Timofeev investigated the 
instability increments corresponding to this case under the 
special assumption dInT/dIn n ~ 0 [n(x) f, const, T(x) = const] 
and found that the neutral equilibrium at kyrH « 1 becomes 
unstable if the finite Larmor radius is taken into account. 

Using in (7 .2) the asymptotic expansion of w ( z) 
with large z for the ions: 

n 

( ) = _.!:_ "'~ r (k + 1f2) + R 
W Z n L., 2k+l n• z~l (16.2) 

k=O z 

and the series (10.2) in powers of z 
trons, we obtain 

for the elec-

)+= 0. 
(17 .2) 

The solution has the form 

~ f3 
Z= _A_(r--) 

2- A 2 

. - ... fm A ( f3 )2 ( 2 - A Yo ) -tY.rt V M(2-A)",r-y I--A-y-rf/2. 

(18.2) 

From the expression for the imaginary part of the 
frequency we obtain the instability condition 

1 
2 (2 I A- 1 -I\) dInT I dIn n + 2 (A - 1) I A ------------> 0. (19.2) 

1 
1- 2 1\ dInT I dIn n 

In the limit of small Larmor ion radii we obtain 
from this the following instability criteria 

dIn Tid In n < 0, 
d In Tid Inn> 2/6, 

(20.2) 
(20' .2) 

the first of which was derived previously. On the 
other hand, if we take into account the finite Lar­
mor radii of the ions, the instability boundary cor­
responding to criterion (20.2) shifts to dlnT/dln n 
= 2. Simultaneously, the instability boundary ap­
proaches the same value from the side of the large 
d lnT /d ln n. Thus, the instability arises for any 
dlnT/dln n. 

4. At "high" frequencies 

i.e. (21.2) 

we can use the asymptotic expansion (16.2) and re­
duce (7 .2) to the form 

I _ A _ A (y- f3 I 2)- (Yo- f3 I 2) 
z 

M 1 + M 1 Yo- 3[3 I 2 _ 0 
-m2z2 m2 z3 - ' 

(22.2) 

where Yo = y when 8i = 0. If 

k0 (2TIM(' Oi ~ w, k0 ~ (nT)'!nT (23 .2) 

the first and the third terms are small and we ob­
tain 

[ M Yo - 3[3 I 2 ]'/, z- 2 
- m A(Y-f312)-(Yo-f312) 

= rl_ ~ (dinT/dinn)-1-1 ]'/, 
m 1 • 

(1- A)+ 21\A (dInT ld Inn) 
(24.2) 



"UNIVERSAL" INSTABILITY OF AN INHOMOGENEOUS PLASMA 619 

The solution (24.2) is applicable only for ei 
<< 1, such that (21.2) is satisfied. In this case it 
has the simple form 

W= (25 .2) 

so that the instability occurs for any value of the 
parameter dlnT/dln n (from which it is required, 
in accordance with the conditions of applicability 
of (23 .2), that it be not too close to the value - 1 ) . 

3. INVESTIGATION OF STABILITY OF AN IN­
HOMOGENEOUS PLASMA IN THE MODEL OF 
TWO-FLUID HYDRODYNAMICS 

In most modern magnetic traps with strong mag­
netic field (of the "Stellarator," "Tokomak" type, 
etc.) conditions such that the collisions can be com­
pletely neglected in the investigation of the stability 
of an inhomogeneous plasma have not yet been at­
tained in practice. At typical temperatures ( ~ 
several times 10 eV) the mean free path (at a 
density 1014 cm- 3 ) which is the order of several 
dozen centimeters (whereas the dimensions of the 
traps are on the order of several meters). On 
the other hand, magnetohydrodynamics is no longer 
applicable here, for generally speaking the elec­
tron and ion gases do not have time to enter into 
equilibrium with each other during a time on the 
order of the time required for the development of 
the instability. It is natural to use in this case the 
two-fluid hydrodynamics of a plasma situated in a 
strong magnetic field [s]. 

As in the preceding section, we are considering 
instability of plasma with respect to vortex-free 
perturbations, curl E = 0, retaining the notation 
of'the preceding sections: H is directed along the 
z axis, T0 and n0 are the unperturbed temperature 
and density. Inasmuch as the temperatures of the 
ions and electrons may differ in the perturbation, 
we introduce T e and Ti-the corrections to the 
electron and ion temperatures. Effects connected 
with the finite nature of the Larmor radius of the 
ions are left out; this means that we deal with 
ky ~ 1/rH. In such a plasma, furthermore, we 
can disregard the heat conductivity transverse to 
the magnetic field. 

We do not write out the general dispersion equa­
tion in the two-fluid model, and confine ourselves 
only to the case of greatest interest, that of "in­
termediate" frequencies vi~ w/kz ~ Ve· At 
such frequencies the ions do not have time to move 
appreciably along the force lines (along the z 
axis), so that their motion along z can be disre­
garded. For electrons, however, such frequencies 

are too low and the inertia of the electrons can be 
neglected. The system of linearized equations for 
the perturbed quantities has the form 

-- ihz (n 0Tc + nT0) - en 0fiz --- 0,71n 0 ikzTc = 0, (1.3) 

- V'_, Pe --- eE 0 _r n -- eE_,n 0 - (e1c) n0 [vH] 

- (elc) n [v 0 H] 0, (2.3)* 

(3 .3) 

Here (1.3) is the equation of motion of the electrons 
along z neglecting the inertia of the electrons, and 
the last term in (1.3) corresponds to the so-called 
''thermal force'' which arises in the presence of a 
temperature gradient; (2.3) is the equation of mo­
tion of the electrons transverse to the force lines; 
(3.3) is the continuity equation, which has the same 
form for both electrons and ions; (4.3) is the heat­
balance equation; v0 is the unperturbed velocity of 
the electrons; k is the coefficient of electronic 
heat conductivity along H; E0 is the unperturbed 
electric field (directed along the x axis). 

From the system of homogeneous linear equa­
tions (1.3) -(4.3) we obtain, as a condition for the 
solvability, the dispersion equation 

-3 (l -:- s) h~ Vn Vr = 0, 

where 

W 0 = w + ku (2vn + vr), s = 0.71, 

Vn ~ -··- cT0n~/elln 0 , Vr '·-- - cT0T~!eHT, X ~c xln0 • 

For the solution of this equation 

W = - _1:__ {(1 .J.. s) ky VT -f<yVn- 2 - i/?2 X} 0 ~ I ;3 z 

[ 1 ( ) k k 2 .,~ \Q ± 4 { 1 + S yVT - .tf Vn - 3 li?z XJ-

(5.3) 

(6.3) 

we can obtain the instability condition (for kyvn, T 
~ k~x): 

d 1n Tid Inn< 0. (7.3) 

The maximum increment is of the order of 

(8.3) 

*[vH]=vxH. 
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We note that if we leave out from the dispersion 
equation (5.3) the heat-conduction coefficient x. 
then the instability disappears. Condition (7 .3) co­
incides with the instability condition (20' .2) obtained 
for the analogous limiting case. 

Thus, an inhomogeneous rarefied plasma is 
"universally" unstable. However, since the insta­
bility develops at short wavelengths, it should lead 
not to a rapid escape of macroscopic plasmoids 
from the magnetic traps, but to slow turbulent 
"diffusion." This problem calls for a special 
study. 
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