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Formulas for the cross section of inelastic scattering of electrons in a polarizing medium are 
derived in first-order quantum perturbation theory. The formulas can be employed for ana­
lyzing the characteristic energy losses of electrons in thin films. 

!STARTING with the classical work of Tamm, 
Frank, and Fermi the study of the influence of the 
polarization of a medium on electromagnetic pro­
cesses accompanying the passage of fast particles 
through matter has attracted increasing attention. 
The Cerenkov radiation has been explained in de­
tail, the slowing down of fast particles in condensed 
media with allowance for polarization effects has 
been studied, and various other electromagnetic 
phenomena associated with the polarization of the 
medium (for example, transition radiation) have 
been investigated. Recently, polarization phenom­
ena have also been included in the description of 
Coulomb collisions of particles in plasma-like 
media. Thus Rukhadze and Silin, [t] in the calcu­
lation of the collision integral, have given an expres­
sion for the collision matrix element in which the 
polarization of the medium is taken into account 
and obtained the following expression for the scat­
tering probability: 

Wo1 = (2n/ti,) I 4ne1e2/k~~e~j(w0I)kbl 12• (1) 

Here e1 and e2 are the charges of the colliding 
particles; kot = ko - kt; Wot = Wo - Wo; nko, llWo, and 
nw1 are the momenta and energy of the struck par­
ticle before and after the collision; and Eij is the 
dielectric tensor of the medium. In this paper, in 
particular, we shall derive the relativistic generali­
zation of the collision integral with allowance for 
the polarization. 

Theoretical studies of inelastic collisions in a 
medium usually employ the methods of classical 
physics. It turns out (see [2 ,3]) that the probabil­
ity for an energy transfer nw to the medium is 
proportional to the quantity 

(2) 

and bears a resonance character; there is peak at 
E = 0. 

In quantum mechanics, judging from (1), we 
should obtain a similar result, but, as is shown 
below, the proportionality constant differs from the 
classical expression in a number of details. This 
has important meaning to the theory of character­
istic energy losses by fast electrons based on the 
expression (2). 

The probability of a quantum transition in first­
order perturbation theory, as is known, has the 
form 

Here w~n is the transition matrix element; Wmn 
= wm - wn; the remaining notation is the same as 
in (1). We will need another modification of formula 
(3). For this, we note that in the derivation of this 
formula the attenuation of the atomic wave functions 
was neglected. Allowance for the attenuation, as 
is known, leads to the following expression for the 
transition probability: 

• 2 Tm~~ 
dw = h2 I W~n (woi) 12 (w - (i) )2 + r2 • (4) 

01 mn mn 

Here Ymn is the half-width of the transition line 
m - n. In the limit Ymn - 0, expression (4) goes 
over into (3). 

In the nonrelativistic approximation of the per­
turbation energy the quantity ecp appears, where cp 
is the Coulomb interaction potential. The matrix 
element of this quantity will be calculated first from 
the wave functions of the incident particle and then 
from the wave functions of the struck particle. The 
wave functions of the incident particle will be taken 
in the form of plane waves: 

(5) 

The medium was taken into account by means of its 
dielectric constant E. It is readily noted that the 
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matrix element constructed from the incident-par­
ticle wave functions can be determined for the Cou­
lomb field potential in the dielectric medium by the 
equation 

(6) 

where the indices 0 and 1 denote the initial and 
final states of the incident particle. Solution of 
this equation, with allowance for (5), has the form 

e1 exp {i (k01r- w,11 t)} 
<Jlol = (2 )'' ( ) k2 n .. e ffiot 01 

(7) 

( e1 is the charge of the incident particle). By 
means of this expression we obtain the following 
expression constructed from the wave functions of 
the colliding particles: 

f (k ) = ( e-ik"r,\·,* •h dr 
mn 01 J 't m 'Y n ' (8) 

where 1/Jm and IJ!n are the wave functions of the 
struck particle before and after the collision, re­
spectively. 

The probability of the transition is calculated 
by the substitution of (8) into (4). Noting that the 
cross section for the collision is expressed in our 
case through dw by means of the formula 

da = (2rr) 3dw/v, 

we obtain 

(9) 

This expression can serve for the analysis of in­
elastic collisions in the medium. However, the 
quantities y appearing in (9) are small, and hence 
we can bring (9) to a simpler form if we set all 
Ymn equal to zero, including those which enter into 
E. Noting that 

lim (Im e)= 0, 
Y-}'0 

Im e 
i3[2 = rro (e), lim 

lmE~o 

we find that 

where ilmn are the roots of the equation E(U) = 0. 
Close to the resonance peak w = Umn we can, 

neglecting spatial dispersion, approximate E(w) by 
the function 

e (w 01) = (w~1 - Q~zn) I (w~l - W~nn), 

(12) 

where n is the number of electrons in a unit vol­
ume, fmn is the oscillator strength. Substituting this 
into (10) and taking into account the properties of 
the 6 function, we find 

For a vacuum w0 = 0, and consequently nmn = Wmn­

In this case (13) will coincide with the well-known 
expression (see [ 4]) for the scattering cross sec­
tion for fast electrons on isolated atoms of the 
medium: 

The influence of the medium roughly reduces 
not only to a difference in the finite quantities of 
energy lost by a fast particle in an individual col­
lision (it is equal to ll.Umn in a medium and nwmn 
in a vacuum), but also the quantities fmn<kod· In 
fact, the wave functions IJ!m and 1/Jn of the struck 
atomic electron in an isolated atom differ from the 
wave functions of an electron in a condensed medium. 
The energy spectrum of the atom is of a discrete 
character, while in a solid body the outer atomic 
electrons produce a band spectrum and are fre­
quently described by nonlocalized wave functions 
such as plane waves modulated by the lattice period. 

The angular distribution of the scattered elec­
trons is described in (3) by a formfactor fmn ( k 01 ) 

taking into account the structure of the struck atom 
before and after the collision and also by the quan­
tity k01 • In our case 

k~1 = 2k~ -- 2mQ/fi- 2k0 V k~ -- (2mWTt) case, (15) 

where e is scattering angle and nk0 is the momen-
(10) tum of the incident particle before the collision. 

where 

F (w,n) = lim 
Ymn40 

lmn 
. . ---------. 
[(Wot- Wmnl2 + r;.,J lm E (roo,) 

(11) 

This function has no poles for w = wmn and is non­
zero for all w for which E = 0. Hence, according 
to (10), the loss occurs in finite quantities hilmn• 

For an elastic collision U = 0 and therefore 

fmn = 1; 

here expression (14) goes over into the Rutherford 
formula. 

Formula (9) can also be used for considering the 
ionization of the atoms of the medium and, in gen­
eral, for collisions with an energy transfer nw 01 
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such that E ( w01 ) is known not to vanish nor to di­
verge. In particular, it is applicable to the con­
sideration of elastic collision of charges in a me­
dium with allowance for the polarization of the lat­
ter. In such cases the transition to the limit y- 0 
in (9), in view of the foregoing remarks, leads to 
the following expression: 

4e2e~ J f mn (kol) J2 
d:; = 7i: 1 0 (W01 -- Wmn) dk 1 . (16) 

·v k01 l e (wvl) 12 

For collisions of free electrons we have fmn = 1, 
and hence (16), as is readily seen, is equivalent to 
expression (1.1) given by Rukhadze and Silin. [t] 

It should be noted in conclusion that for near 
collisions (for which w01 is large) the quantity 
E ( w01 ) differs little from unity, and hence the in­
fluence of the medium on such collisions is very 
small. The obtained expressions are therefore con­
venient not only for an analysis of distant collisions 

(for which the need to take into account the medium 
is known), but also for near collisions, for which 
there is no specific need to set E equal to unity. 
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