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The nonsymmetric ultraviolet asymptotic behavior of many-particle Green's functions in the 
unphysical region (pt- oo) is determined by the diagrams involving an exchange of the min­
imum number of particles. The asymptotic expressions are given with a power-law accuracy. 

DuRING the past few years certain interest has where G is one of the Feynman diagrams of the 
been shown in the ultraviolet asymptotic behavior process under consideration 1). (The divergences 
of higher-order Green's functions in renormalized have been eliminated for the expressions of G ob-
field theories. In the weak coupling case these tained from the usual rules of perturbation theory.) 
problems have been investigated from the stand- The sum in Eq. (1.4) is to be understood in some 
point of the renormalization group ( cf. [ 1], where generalized sense, which we shall not analyze here. 
references to earlier work are found) up to log- We divide all the diagrams G into non-over-
arithmic terms. In Weinberg's paper [2] the asymp- lapping classes and we assume that the power esti-
totic behavior has been estimated up to a power- mates obtained for each diagram of a certain class 
law accuracy. In what follows a similar estimate are also valid for the sum of all diagrams of that 
with a power-law accuracy is obtained by a method class. This is a strong assumption and it is not 
differing from the one in [ 2]. The methods devel- clear whether it is possible to prove its validity. 
oped here are useful for an analysis of physical Furthermore we restrict ourselves to the consider-
phenomena at high energies. ation of renormalized theories only. 

1. FORMULATION OF THE PROBLEM 

Let us consider a process involving N particles 
with momenta Pi• ... , PN· This process is de­
scribed by the Green's function 

G (Pr. ... ' PN) =- i (0 I /:iNS I " 
Otjl (PI)··· c5tjl (PN) O /' 

(1.1) 

n N N 
~ p;=l=- 2; Pk, 2; Pk = 0. (1.2) 
i=l k~n+l k=l 

Let the momenta Pn+i• ... , PN be fixed and let 
the momenta Pi• ... , Pn simultaneously tend to 
infinity so that all their components are large and 
of the same order 

iP7i-Jp;pi]~P2 >-m2,l2 , 1-'(:i,j<;;n. (1.3) 

Below we shall investigate the asymptotic behavior 
of G ( p) in this region. 

One can put the function G in correspondence 
with the series of the usual renorinalized pertur­
bation theory: 

(1.4) 

We enumerate the properties of such a theory 
which are important for the present work ( cf. 
e.g. [3]). 

1. To each vertex 11 of the diagram there cor­
responds a certain number 

(1.5) 

Here the sum runs over all lines originating in 
the vertex f.l. In particular rl equals 0, 1, or 2 
for spin-0 particles (and photons), spin-1/2 par­
ticles and spin-1 particles (and also if the La­
grangian contains the coordinate derivative of a 
spin 0 particle), respectively, etc. The theory is 
renormalizable if all w(f.l) ::::: 0. However inter­
actions for which w(t..t) < 0 are unlikely, so that 
for simplicity we assume w(t..t) = 0 2). 

2. Strongly (weakly) connected diagrams can 

I)ln what follows the same notation will be used for a par~ 
ticle, its momentum and the corresponding line in the diagram, 
as well as for a diagram and its contribution to a Green's 
function, etc. 

2lJt is easy to see that our result also holds for w (/l) < 0. 
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(can not) be converted into unconnected diagrams 
by removing one line. For each strongly connected 
diagram F (after eliminating the singularities of 
lower order inside the diagram) one can find the 
index of the diagram or the conventional rate of 
growth with momentum. Under these assumptions 
this index depends only on the nature of the exter­
nal lines lext of the diagram: 

w (F)= 4 -i~ (rz +2). (1.6) 
lex! 

2. THE CONNECTION BETWEEN THE ASYMP­
TOTIC BEHAVIOR AND THE TOPOLOGY OF 
THE DIAGRAMS 

To each pair of diagrams Ga and G7 we put 
in correspondence two other diagrams Ma 7 and 
M Ta in tl_:_e following manner: we construct the 
diagram Ga which is the Hermitian conjugate of 
Ga and then connect all the lines pi ( 1 :::: i :::: n) 
of the diagrams Ga and G7 with each other ( cf. 
Fig. 1) 3': 

n 

Ma, ~ ~ GaDc (p1) dp1 ••• De (pn) dpnG,o( p p1 -l). (2.1) 
t=1 

FIG. 1 

If Ga and G7 are strongly connected diagrams, 
the index of the diagram Ma 7 is defined as 4 >: 

N 

W (Ma-r) = W (M,a) = 4.- ~ (rz + 2). 
l=n-f-1 

On the other hand, assuming that 

Ga (p) ~ p-naHa (p), 

~I Ha (p) l 2 ~p• = {<QO, J p QO, 

(2.2) 

(2.3) 

one can obtain from Eq. (2.1) by direct computation 
n 

N 

na = + ~ (rt + 2)- 4. 
1=1 

Let us denote the numbers of particles with rz 
equal to 0 and 1 by band f, for 1:::: l =sn and 
by b' and f' for n + 1 :::: l :::: N, respectively 5>. 
Then 

na=b+ff-2+(b'+-ff'-2). (2.5) 

We note, however, that if the diagram Ga is 
weakly connected, then Eq. (2.5) is in general, no 
longer valid for it. In this case an estimate of the 
type (2.5) is valid for each strongly connected part 
of Ga. It is easy to see in this case that if the 
large momentum p is contained in each of these 
strongly connected parts Ga, then the estimate 
(2.5) remains valid 6>. Let some strongly connected 
subdiagrams Ga 7> not contain p and let the mo­
mentum transfer in the vertex connecting these 
subdiagrams with the subdiagrams containing p be 
small (i.e., constant as p2 - oo). Let us denote by 
ba and fa the numbers of boson and fermion lines 
connecting such strongly connected subdiagrams of 
Ga with the rest of the diagram Ga (in which all 
strongly connected subdiagrams contain the mo­
mentum p ). For example, in Fig. 2.a, for n = 3 
we have ba +fa = 3 and in Figs. 2.b and c for 
n = 3 we have ba + fa = 2 ( the circles denote 
strongly connected diagrams). Then it is easy to 
see, as before, that 

(I) (Ma-r) = 4- [ba + b, + f (fa + {,)}' (2.6} 

na = b + f f - 2 + ( ba + f fa - 2) . (2 • 7} 

The quantity na takes on its minimal value 
when ba + 3/2 fa is minimal. Depending on the 

FIG. 2 

w (Ma,) = - na - n, + ~ (r1 + 2) - 4. (2.4) SlFor simplicity we assume that there are. no lines with 
1=1 r 1 = 2. 

Carrying this out for the diagram Ma a one can 
see that 

3lHere Dc(p) is the causal function: for bosons it is Dc(p) 
and for fermions it is sc(p). 

4)rz corresponds to the particle PI • 

6lHere we use the natural assumption that the power-law 
dependence of the complete Green's functions Dc(p) on p is 
the same as for the free [)c(p), i.e., for e: ·> 0 

lim De (p) [De (p))-1 p-• = 0. 
p-.oo 

7) A subdiagram of Gu is a strongly connected part of Gu 
which is connected to the rest of Gu through a line connec­
ting vertices with fixed momentum transfer. 
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FIG. 3 

nature of the particles Pi ( 1 :s i :s n), such a min­
imum can be attained by virtue of the conservation 
laws either for bu = 1 or for fu = 1, or for bu 
= 2 ( corresponding to diagrams of the types rep­
resented in Figs. 3, a and b and Figs. 3, c and d, 
respectively. 

Let us introduce the notation 

Then the minimal possible nu is 

(na)min = b + ~ f - 2 + g (n). (2.9) 

This minimum is reached for those diagrams Gu, 
where the "bubbles" from which the lines Pi with 
1 :s i :s n and Pj with n + 1 :s j :s N originate are 
connected into weakly connected diagrams with a 
minimal amount of lines. According to the com­
position of the group of fast particles these are 
diagrams of the forms represented in Figs. 3, a 
and band Figs. 3,c and d. 

The contributions from these diagrams decrease 
most slowly for p2 -- co, and for large p2 their 
contribution to G is the essential one. Asympto­
tically (for p2 _. co ) the behavior of the function 
G is determined only by the diagrams of the form 
Figs. 3, a-d. With the restrictions mentioned 
earlier one can consider that for p2 _. co these 
diagrams are already summed (the circles A and 
B on Figs. 3, a-d will then correspond to the com­
plete sums of the perturbation theory series for the 
corresponding subdiagrams ). By including in GA 
the propagator joining A and B we obtain: 

G = GA (pn+l' · · ·• PN) GB (PI• · · ., Pn; {). (2.10) 

3. DISCUSSION 

The result (2.10) means that for large p2 the 
interaction can be considered peripheral. For 

n = 2 (2 .10) goes over into the result obtained 
earlier in [ 4]. If there are particles with vanishing 
mass in the theory (photons ) , it is important to 
consider together with the given process also pro­
cesses involving the emission of an arbitrary num­
ber of soft photons. It is easy to see that our re­
sult (2.10) remains valid also in this case, but Eq. 
(2.9) will be valid only to order a ( cf., e.g., [3,5]). 

The finer, logarithmic, details of the behavior 
of the function G for large p2 can be obtained by 
considering only the "right halves" GB of the 
diagrams in Figs. 3,a-d, i.e., diagrams with a 
smaller number of particles than G. It is possible 
that in this case the situation gets less complicated, 
because all arguments of GB with the exception of 
one ( l) are large, i.e., we are dealing with 
"almost symmetric" asymptotic behavior. For 
weak coupling a recipe for obtaining such asymp­
totic behavior is indicated in [t J. 

The result (2.9) almost completely coincides 
with the results of Weinberg [ 2], which were ob­
tained by means of a much more involved method. 
The difference consists in the fact that in [2] dia­
grams of the type in Fig. 3,e are admitted, in addi­
tion to the diagrams in Figs. 3, c, d, i.e., Eq. (2.10) 
is not obtained in the case b' = 2. The result (2.9) 
is also close to the result of Medvedev and Poli­
vanov [s], obtained for n = N, by means of the 
axiomatic approach. 
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