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Then J.tHc is of the order 

As shown by the present author, [ 4] this situation 
occurs only in metals of the "Pippard" type for 
which the depth of penetration in a weak field is 
Op « ~ 0 = tivF /Tc. Metals of "London" type 
transform from the normal to the superconducting 
state by a phase transition of the second kind in a 
field Hc2 > He, where 

.. -1 ·v4 " 2 I 2 uL == JlJve me, 

OL is the "London" depth of penetration ( OL > ~ 0 ). 
(At the moment of the transition there is no Meiss
ner effect. For metals of "Pippard" type the field 
is Hc2 < He and has the meaning of the supercool
ing field.) 

Substituting Eq. (2) we find the critical field for 
pure "London" superconductors (among which are 
obviously [ 4J such materials as pure La, V, Nb, Ta 
and others, which do not obey the Rutgers formula): 

f-tH c2 ~ Tc (Tc I BF) < Tc. 

Thus also in these pure superconductors the criti
cal field never exceeds 102-103 G. 

The situation is different in superconducting 
alloys. The present author [5] showed that for al
loys with an electron mean free path l « op (i.e., 
a path which is small compared with the depth of 
penetration in a weak field) we have: 

Hc2~Hc6Lfl. 

The transition in a magnetic field in alloys is al
ways of the second kind. 

To make our estimate we shall use the expres
sion for the field Hc2 at T = 0 obtained by 
Shapoval [6]: 

(3) 

The validity of the above formulas is limited to 
the region PFl » ti, i.e., to defect concentrations 
for which the mean free path l is large compared 
with the interatomic distances a f:::l ti/PF· To esti
mate the upper limit of the critical field in alloys 
we shall assume that ti/pFl f:::l 1, whence we obtain, 
using Eq. (1), He max f:::l 104T0 G. We emphasize 
once more that such high fields ( f:::l 105 G) can in 
principle occur only in alloys. The less careful 
the preparation of these alloys the higher the crit
ical field. The electron mean free path or the re
sidual resistance of a sample can be used as a 
measure of its critical field. In particular for rela
tively low defect concentrations Eq. (3) can be re
written in the form [6] 

3 ecyTc 
Hz----c - 2n c:sk ' 

where y is the coefficient in the linear law for the 
electronic specific heat of a unit volume and u is 
the conductivity. When the mean free path becomes 
comparable with the atomic distances we reach the 
upper limit of the critical field for alloys. As far 
as the author is aware the conductivity of such 
alloys has not been measured. It would be inter
esting to investigate in what region the law of 
proportionality of the critical field and the resid
ual resistance is valid. If we had a graph of the 
dependence of He on p = u-1, which should be a 
curve with saturation, we could quite accurately 
predict the upper limit of the critical magnetic 
field for superconducting alloys. 
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WooDRUFF [1] and Dransfeld [2] made an attempt 
to explain the absorption of sound in superfluid He II 
at temperatures below 0.6°K. At such low tempera
tures we are dealing with a special case. On one 
hand the mean free path of phonons is considerably 
greater than the wavelength of sound, but on the 
other the energy of the sound quanta tiw is still 
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small compared with the energy of thermal pho
nons kT. The long mean free path ensures that 
the indeterminacy in the energy of the acoustic 
phonon is small and this allows us to consider 
direct absorption of an acoustic phonon by thermal 
phonons. Woodruff and Fransfeld assumed that the 
acoustic phonon is absorbed by a three-phonon 
process. However, it is well known that the phonon 
spectrum in He II is stable against phonon decay 
and, therefore, the three-phonon process is for
bidden. At low momenta the energy spectrum of 
phonons departs from linearity and is given by the 
approximate formula [3] 

e (p) = cp (I - YP2), (1) 

where E(p) is the phonon energy, p is its momen
tum, and c is the velocity of sound. With this sign 
of phonon dispersion, the three-phonon process is 
forbidden because it is not then possible to satisfy 
simultaneously the laws of conservation of energy 
and momentum (the phonon velocity is always 
smaller than the velocity of sound ! ) . Consequently 
the calculations of Woodruff and Dransfeld, based 
on the three-phonon process, are not quite correct. 

The acoustic phonon can be absorbed in He II 
only by a four-phonon process. Such processes 
have been considered earlier ( cf. [3]). Of the pos
sible processes the important one is that shown in 
Fig. 1, where q is the momentum of the acoustic 
phonon; p, p', p1 are the momenta of the thermal 
phonons; I q I « p. The lifetime T of an acoustic 
phonon of frequency w in such a process is given 
by [3]: 

(2) 

Here u = ( ac/ op )( p/ c ) ~ 3, and p is the density 
of He II. The absorption coefficient of sound is 
equal to 

1 5 (u + 1)4 (kT)" w 
a = Tc = 8:n;3 (pc)2 r nc c , (3) 

i.e., it is proportional to T6 and the first power 
of the frequency w (Woodruff and Dransfeld ob
tained a different temperature dependence with a 
proportional to T4 ). 

The available data of Chase and Her lin [ 4] on 
the absorption of sound at 12 Me do not contradict 
the T6 law at T < 0.4°K, as shown in Fig. 2. A 
quantitative comparison of the experimental results 
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FIG. 2. Temperature dependence of the absor~tion coef
ficient of sound according to Chase and Herlin.[• 

with Eq. (3) is somewhat difficult because the quan
tity y, representing the dispersion law of phonons, 
is not well known. 1> 

It is difficult to obtain any information about 
this quantity from neutron diffraction because its 
magnitude is small. However, the recent results 
of Henshaw and Woods [5] indicate that in any case 
the dispersion is very slight at low phonon mo
menta. Quantitative agreement with the results of 
Chase and Herlin at T = 0.2°K is obtained by as
suming that y = 1.5 x 1035 (g.cm/sec )-2• 

The temperature variation of a obtained above 
is asymptotic as T- 0. At temperatures of the 
order of 0.3°K the indeterminacy in the energy 
ti/ T becomes of the same order as the nonlinear 
correction in the law of energy conservation for 
the three-phonon process, 3yp2tiw; in the estimate 
we assume that p ~ 3kT/c (cf. [GJ). 

Consequently from this temperature ( 0.3°K) 
upwards the absorption of sound is governed not 
only by the four-phonon process but also by the 
three-phonon mechanism. The resultant complex 
situation needs special consideration. 

The author is grateful to R. G. Arkhipov and 
I. E. Dzyaloshinskii for valuable discussions. 

l) An estimate obtained in[ 3] by interpolation of the total 
energy curve (including rotons) gives values of y which are 
obviously too high. 
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As is well known, interelectronic collisions in 
sufficiently pure conductors, can become appre
ciable at low temperatures. This is connected with 
the fact that the frequency of the collisions between 
electrons decreases with the temperature much 
more slowly than the frequency of the electron
phonon collisions. However, collisions between 
electrons give rise by themselves to electric re
sistivity only if umklapp processes are taken into 
account ( Peierls ), for in the opposite case these 
collisions do not lead to a change in the summary 
momentum of the electrons. On the other hand, 
umklapp processes are possible only if certain 
conditions are satisfied. Roughly speaking, it is 
necessary that the Fermi surface reach the center 
of the Brillouin cell. In the opposite case the prob
ability of a collision accompanied by an umklapp 
process is exponentially small. It is clear that at 
low temperatures umklapp processes are practic
ally impossible in many metals and semiconduc
tors. In this case the electric resistivity is obvi
ously determined by the loss of momentum when 
the electrons are scattered by different inhomo
geneities of the lattice (impurity atoms, phonons, 

dislocations, etc.) and on the boundaries of the 
specimen. 

If lv is the mean free path connected with the 
scattering by the inhomogeneities, and d is the 
characteristic transverse dimension of the con
ductor, then the resistance for lv » d is deter
mined essentially by collisions between the elec
trons and the boundaries and, it might appear, by 
the effective mean free path leff ~ d. Actually, 
however, the interelectron collisions can greatly 
influence the process of momentum transfer to the 

boundaries. This is simplest to understand in the 
limiting case 

(1) 

where lee is the length characterizing the inter
electron collisions without the umklapp processes. 
When lv, lee » d, an electron situated deep in the 
specimen reaches the wall practically without col
lisions during a time T ~ d/v0, and, accordingly, 
leff ~ d (v0 is the limiting velocity). Then, as in 
the case (1), the electron, moving like a Brownian 
particle, covers a distance ~ d during a time T 

~ d2/leeVo (since d ~ ...j T l v0 ), and consequently 

l eff ~ d2 / lee· (2) 

This result can also be obtained by starting from 
a hydrodynamic description of the electron gas, 
introducing the kinematic viscosity v S;; v 0lee /3. 

The hydrodynamic description is convenient be
cause it is applicable for any ratio of lv to d, pro
vided lee « d, lv; consequently, this description 
enables us to take into account volume collisions, 
too. The corresponding equation for the average 
electron velocity v differs from the Navier-Stokes 
equation for stationary processes only in the term 
v/Tv, which describes the volume collisions: 

eE jm = v~v + v fr:v. 

Let us consider by way of an example the result 
of the solution of this equation for a wire of radius 
r in a longitudinal electric field E. The electric 
conductivity is 

ne2 

a= -leff> 
Po 

l l [I 2 /l(x)J 
eff = V -X fo (x) ' 

where n is the electron densit;;, Po the limiting 
momentum, x = rfi(Zeelv)- 1 2, and In(x) are 
Bessel functions of the imaginary argument. For 
X« 1 we have leff S;; lvx2/8 = 3r2/8lee• in accord
ance with (2). The figure shows the approximate 
course of the temperature dependence of the re
sistance R( T) for the wire. In the region of the 
lowest temperatures, so long as lee » r we have 
leff ,..., d and the resistance is constant. Then, 
starting with the temperature Tto at which lee ~ r, 
up to a temperature T2, for which lv ~ r 2/lee. the 
resistance decreases quadratically with increasing 
temperature [according to (2); lee ,..., a( E0 /T )2, 


