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Internal conversion of radiation of the magnetic and electric types in the K-shell is consid­
ered for transitions of arbitrary multipolarity. Closed-form expressions for the conversion 
coefficients and angular distribution of the conversion electrons are obtained with an accu­
racy to terms of the order of aZ. 

THE calculation of the internal-conversion coeffi­
cient with allowance for the Coulomb field of the 
nucleus leads to radial integrals of a complicated 
form, which can be obtained only by numerical 
methods. Therefore, along with tabulating the co­
efficients calculated numerically by using exact 
Dirac wave functions of the electron in the Coulomb 
field, interest attaches to various approximate 
methods, which yield expressions for the conver­
sion coefficients in closed form. 

In the present paper we calculate the internal 
conversion coefficients, using for the electron 
wave function in the continuous spectrum the 
Furry-Sommerfeld-Maue function [t, 2J 

\jJ = e'"'~ 12 f (I+ i£) eipr [I- U(V/28] F [- i£, I; 

- i (pr + pr)] u (p), (1) 

where ~ = a Z E/p; E are p are the energy and mo­
mentum; u ( p) is the Dirac bispinor of the free 
electron; y4 and ")' are Dirac matrices; 
F [a; c; x] is the confluent hypergeometric func­
tion (it is assumed here and throughout that t:i = c 
= m = 1 ). 

Calculations with the aid of this function enable 
us to obtain the internal-conversion coefficient 
with allowance for terms of order a Z ( Z is the 
nuclear charge and a is the fine-structure con­
stant). The character of the employed approxima­
tion becomes clear if we compare the function (1), 
expanded in powers of the momenta l, with the 
exact function, also expanded in the momenta. It 
turns out here that the exact function goes over 
into (1) if we neglect in each term of the exact 
series the quantity a 2 Z2/Z2 compared with unity 
(see [3J). Therefore in those cases when small l 
give an insignificant contribution, the results ob­
tained by using (1) are close to accurate. In the 
general case, the Furry-Sommerfeld-Maue func­
tion has an accuracy of order aZ. In the internal-

conversion process, the value of the momentum l 
is determined by the difference between the spins 
of the initial and final state of the nucleus. There­
fore the error introduced in the calculations by the 
approximate wave function of the final state de­
creases with increasing multipolarity of the transi­
tions. 

We note that the wave function of the final state 
of the electron should have at large distances the 
form of a sum of a plane and spherical convergent 
waves, which corresponds to the occurrence of a 
particle in a continuous spectrum. The function 
(1) satisfies this condition. 

The differential conversion coefficient, which 
is the ratio of the probability of the conversion 
transition with emission of an electron in the mo­
mentum interval from p top+ dp to the probabil­
ity of emission of the 'Y quantum in the same nu­
clear transition, is determined by the expression 

dR(i,) - CHO "' I M(),) 12 ~" ( ' + - ) 
t-'L -- 4 L..! 1 LM 1 (Z:n:)" U 8, (t) Ef , 

(),) \- (),) 
MLJ\1 = .\ 1!JrBLJI11!Jidr, (2) 

where w is the energy released in the nuclear 
transition, L is the difference between the spins 
of the initial and final state of the nucleus, l/Ji and 
1/J f are the electron wave functions, BZ'k is the 

potential of the magnetic ( A = 0) or electric 
(A = 1) multipole radiation, and the summation is 
carried out over the polarizations of the electrons 
in the initial and final states. 

For the wave function of the initial state (K­
shell) we choose in accordance with the accuracy 
of the analysis the function 

'ili = 'iln +'ilill, 
(3) 

where Ni = 1] 312 1r-112 , 17 = aZ, n = r/r, and u0 
= u ( p )p=o is the bispinor of the electron at rest. 
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Using an expansion analogous to that obtained 
by Gordon [7] 

f(1- i~) e-iprF[i~. 1; i (pr + pr)l 

v 4 ( .) 1 r u - 1 - is) 
occ ..;..J Jt -- l __ (2_/_l)~-

[111 I 

x (2pr/ e-ipr F [ll 1-fi~. 2/ +2; 2 ipr lY1m (v)Y;," (n), ( 4) 

(where v = p/p, Yzm ( v) is a spherical function) 
and the formula for the gradient of the spherical 
function, we obtain the following representation of 
the wave function of the final state 

\l) 11 = u (p) ~N; (2pr)1e-iw F 1 (r) Ytm (v) Y;m (n), 
lm 

1, - ( ) '(4 ~ ,,' ( 2 )I -ipr 
1yf![ =cUp 2e LJlVI Pf C 

lm 

x {ipF! <rrV 21 ~ "(Y;. l-1. Ill (n) Ytm (v) 

- ipF1 (r) v:1
1 ~~ 11 "(Y;. 1 i 1• m (n) Y,m (v) 

+[(1--l/s +ip)Fdr) + '+\-i~ F2(r)] 

,/-1 ' 
X V "2/ + 1 "(YI. 1-1. m (v) Y!Jn (n) 

where 

F1 (r) = F (l + 1 + i~; 2/ + 2; 2ipr), 

F 2 (r) = F (l + i~, 2! + 2; 2ipr), 

N' _ 4 ( .)t ~~ 2 r (I+ 1 - i£) 
t - Jt - z e (21 + 1)! . 

(5) 

Yj lm ( n) is a spherical vector (for definitions 

see [4•5]). Along with the system of spherical vec­
tors Yjlm (n), l = j, j ± 1 we shall use also the 

system Yj~(n), IJ. = 0, ±1 (see[6J). 
The second terms in the wave functions, i.e., 

1/Jiii and 1/Jfii, have a relative order aZ. In the 
calculation of the matrix elements Mtk it is 

therefore necessary to discard their products, 
which have a relative order ( aZ )2• 

CONVERSION OF MAGNETIC-TYPE RADIATION 

We represent the matrix element of the con­
version of a magnetic multipole in the form of a 
sum of three terms 

M 1 = ~ 'l'nBt:W\j]ndr, 

M e\- B(O) d 
3 = .. tPi!I LMtPil r 

and calculate the values of M1, M2, and M3, using 
the following expression for the potential: 

Bt~~ (r) = - i"( Y}~'11 (n) GL(wr), 

GL(wr) = (2J£) '1'i L(wr'1' H2~· ,(wr), (7) 

where 
kind. 

(1) 
HL+t/2 (wr) is a Hankel function of the first 

The integration over the angles in M1 is readily 
carried out by taking into account the fact that 

(8) 

The angle integral in M2, which is equal to 

~ Y;,n(n) ("(YLLM(n))("(n)d0n, (9) 

reduces to (8) if we use the relations 

I:=["("(] I 2i, 

- i [nYL, L, M (n)l = Y~t+~ YL, L-I, M (n) 

+ v2LL+1 YL, L-!1. M (n), 

(10) 

(11) 

where Eikl is a unit antisymmetrical tensor of the 
third rank. 

In M3 there arise angle integrals of two types: 

~("(Yll±1. m (v)) ~ Y;m (n)("(Y LLM(n))dOn, (12) 
m 

h Ytm (v) ~ (yY;, 1±1. m (n)) (yY LLM (n)) dOn. 
m 

(13) 

The first can be calculated in the following 
manner: we express the spherical vector of the 11 

direction in terms of a spherical function, using 
the differential relations 

y /, l-1, m (v) == {Y "2/ ~ 1 v + v 1(2;-j-1)- v.} Y,m (v), 14) 

Yt, l-!1. m (v) = {-V~~~\ v + .r-o_p_, __ v.} Ylm (v). 
r 1("21-,1) (l4a) 

We then take the integral in accordance (8) and 
following this we differentiate with respect to 11. 

The latter can be readily carried out if it is noted 
that 

diV Y LLM (v) = 0, 

rot YLLM (v) = ...!_{YZ~ (v) +VL(L + 1) YLA.tl(v)}. (15) 
p 

The second type of integral, (13), is calculated 
in analogy with the integral arising in M2• 

As a result we obtain the following expression 
for the matrix element: 



488 V. F. BOLDYSHEV 

Mt~ = - iu (p) yYLLM (v) u0 N~N;/1 (L, L) 

Q = _ L + 2 + i£ I (L L) + i (L -f 1) (L + i~) I (L L) 
L- i£ 1 ' p (L- i~) 2 ' 

+ i (L + 1) (L + 1- i~) I (L L) 
p (L- i~) 3 ' ' 

__ L-1-i~ L iL(L+1-i~) 
A - - L + 1 + i£ I 1 (L, ) - P (L + 1 + i£) I 2 (L, L) 

Q = N• N. ictZ -.. I e + 1 Q 
2 Lz2V e' 

Q _ N* N. ictZ -.. I e + 1 A 
3- L ' 2 V e . (20) 

Integration over the electron emission angles 
yields the total conversion coefficient of the mag­
metic multipole on the K-shell 

(o) ctwpe {I Q L + 1 Q L Q 12 

~L = 4 (2:n:)3 1 - 2L +f 2 - L + 1 3 

(21) 

iL (L + 1 - i~) I L L + p (L + 1 + i£) 3 ( ' ), 

where 

In the limiting case of small Z, i.e., in the 
(16) Born approximation ( ~ « 1), the values of Q2 

and Q3 can be neglected in comparison with Qt. 
In this case 

00 

/ 1 (1, n) = ~ (2pr/e-ipr F [I-!-- l + i£, 2l 
0 

00 

12 (l, n) = \ (2pr/e-ipr F [l + l + i£, 21 
·' 0 

+ 2; 2ipr] Gn (wr) e-~r rdr, 

00 

/ 3 (1, n) = ~ (2pr/e-ipr F [l + i£, 21 

+ 2; 2ipr] Gn (wr) e-~'rdr, (17) 

I are radial integrals, the evaluation of which will 
be considered below. In the derivation of (16) we 
used the relations between the confluent hyper­
geometric functions 

F [a+ l, b + 2; x] = b(b+;t~x-b) F [a, b, x] 

+ b• (1~:~ 1) F [a·- l, b; x], 

F [ 1 b 2. ] (a- 1)(b- 2 + x) F [ b· J a - , - , x = (b _ :2) (b _ t) a, , x 

b-a [ J +b_ 1 F a-l,b;x. 

After summing in the usual fashion the squares 
of the moduli of the matrix elements over the 
polarizations of the electrons, we obtain the differ­
ential conversion coefficient 

/R(") __ wop£ {I Q _ ~Q __ L_ Q lz [2 
Gf'J. -'l(:!:n:)" 1 ZL+I 2 2L--;-i 3 JYLLM(V) 

(o) ctwpe [ [2 
(~L )B = 4 (2:n:)3 q • 

__ oo 

I. Q 4 ( ·)L Ll ( Z)'/, -';,-..le-1 (" (2 )L -ipr 
q= i! 1= l1 -t (2L+1)! a l1 v-e-.\ pre 

0 

x F [L + l, 2L + 2; 2ipr] GL (wr)r2dr. (22) 

Noting that 

F [L + l, 2L +2; 2ipr] (23) 

= (2L + 1)! (2pr)-L iP'-.. ~ J 1 (pr) 
L! V 'i:j}( L+ ;, ' 

00 

(" (1) d 2 ( p )L+'Iz 1 .) h+'!, (pr) HL+'J, (wr) r r = lti w pz- w•, (24) 
0 

where JL+1/2 ( pr) are Bessel functions, we obtain 
the well known formula [B] for the conversion co­
efficient in the Born approximation 

(~}~>)B=2a(aZ)3 ~ (r + !t+'1'. (25) 

CONVERSION OF ELECTRIC TYPE OF 
RADIATION 

The potential of the electric multipole radiation 
B~~ ( r) is given by the expression 

(26) 

The right half of (26) consists of two terms, the 
first corresponding to a scalar potential and the 
second to a vector potential. Accordingly, we 
represent the matrix element of the conversion 
also in the form of two parts: 
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S = ~ 'i)1y4Y LM (n) GL (wr) tjJ,dr, 

V = i ~ 'ilt'r YL. L-1 , M (n) GL-1 (wr) tjl, dr. 

Let us calculate the values of 8 and V, retaining 
the principal terms, terms of order aZ, and 
neglecting terms of order ( aZ )2• Proceeding in 
analogy with the case of the magnetic multipole, we 
write 

s2 = ~ 'ilnr 4 y LM (n) GL (wr) tpm dr' 

s3 = ~ 'iltiiY4YL!vl (n) GL (wr) tpndr. 

The quantity 83 is calculated in analogy with 82• 

Using relations (18) and (30), we obtain the follow­
ing result 

S a,l- N' -./_L_ 
3 = - 2 u (p) jYL, L-1. M (-v) Uo LN; V ZL+i 

[ 2 (L i (L + 1 - i£) L 
X l+i+i~ I 1 ,L)-\- p(L+1 +i's/d ,L) 

(32) 

Integrating 81 over the angles, we obtain 

sl = u (p) Y4 UoN~NYLM MIl (L, L). 

To calculate the vector part of the matrix 
element V, we write it also in the form of three 

<27 ) terms 

To calculate 82 we note that 

~(j) (l) Ytm (-v) ~ v;m (n) y LM (n) n dOn 
lm 

v2 = i~'IJnrYL, L-1. M(n) GL 1 (wr) tpmdr, = qJ (L- 1) v2LL+1 Y L, L-1, M (-v) 

-. /L+i 
-qJ(L-\- 1)V 2L+iYL,L+1.M(-v). (28) v3 = i~'i)fli"(YL, /.-1, M (n) GL-1 (wr)tpndr. 

Therefore The integration over the angles in V 1 leads to the 
S crl - { • "~ ;-L- expression 
"=·-zu(p) NL-1 v ZL+ 1 Il(L-1,L)yYL,L-1,M(-v) 

111 = {u (p)"(YL, L-J, M (-v) u0N~-1NJ1 (L- 1, L- 1). (33) 

N• _ .2L(2L+1)N• 
L-1 - l L _ i~ L , 

N' _ (· . L + 1 - i£ • 
. L+l- - t) (2L + 1)(2L + 0) N L 

( 30) 
and use the recurrence relations (18), we get 

a,l- • 'I /-L-
S2 =- 2 u (p) jYL, L-1. M (-v) UoNLNi V 2L + 1 

[ L + i£ iL (L + i~) 
X - L- i~ I 1 (L, L) + {i(L- i~) I 2 (L, L) 

+ iL (L + 1- i£) I (L L)J 
p(L- i£) 3 ' 

'lfL+1 [L+1-i£ 
X V 2L + 1 L + 1 + i~ I 1 (L, L) 

+ i (L + 1)(L + 1- i£) I (L L) 
p (L + 1 + i~) 2 ' 

i (L + 1) (L + 1- i£) I L L J 
p (L + 1 + i£) s ( ' ) . (31) 

The angle integration V2 is also readily carried 
out, if we use the representation of the vector 
YL,L-t,M (n) with the aid of the transverse vector 

Y~:k ( n) and the longitudinal vector Yi~ (n): 

y ( ) -. /L + 1- y(ll ( ) 'I /-L- y( -1) ) 
!., L-1. ,\1 n = V '2L.J...l LM n + V '2L+i LM (n 

' ( 34) 

and the properties of the 'Y matrices given by 
formula (10). The result is 

iL(L-i£) 
- P (L + i£) I 2 (L - I, L - I) 

iL(L-i£) J 
+p(L+i£) I 3 (L-I,L-I). (35) 

In the expression for V3 there are three angle 



490 V. F. BOLDYSHEV 

integrals: 

"\,' }T ( ) \' ( (-1)' ......; tm 'Y '(Ytlll (n))(jYL,L-J,M(n))d011 , 

/1!1 "' 

(36) 

'\' . (' ' ......;(YYI,/11, 111 (v)) \yilll(n)(yY, .. 1.--1. ,lr(n))dOn. (37) 
{II/ • 

The first is perfectly analogous to the integral in 
the expression for V2• The calculation of the two 
others is carried out by the same procedure as 
the angle integral ( 12). As a result we obtain the 
expression 

[ ') 

X - L-~;·/ 1 (L-l,L-l) 

i(L-i£) 
- ~(L . - ... -) I 2 (L - 1, L - I) 

p -;---I; 

i (L-i~) J 
+-/)(L-1-i£) 13 (L-I,L-I). (38) 

Gathering together the obtained values of S 
and V, we obtain the matrix element for the con­
version of the electric multipole 

where the following notation is introduced: 

• '1fc+ 1 
R1 = NLNi v-E-· /1 (L, L), 

R =- crZN•N-./c-l{_L-2+i£ I (L L) 
2 2 L 'V E L- i£ 1 ' 

+ i (L -1) (L+i£) I (L L) 
p (L- i£) 2 ' 

+ i (L -1) (L + 1- is) I (L L)_} 
p(L- i£) 3 ' ' 

R = _ crz_ N* N. '1 / e- 1 {L + 3- i£ I (L L) 
3 2 L ' V e L + 1 + i£ 1 ' 

+ i (L + 2) (L + 1- i£) [I (L L) -I (L L)l}. 
p (L + 1 + i£) 2 ' 3 ' , 

(40) 

_ icrZ • -./e + 1 { L + 2- is P2 -- -2 NL-IN,. v-8 - - ------r:+~/1 (L -- 1, L- I) 

_ i(L-t-l)(L;:--is) [!.(L-I L-l) 
p (L + u;) • ' 

- I 3 (L - I , L - I)]} , 

P.= }3!:._N•_N"~/8 +l{_L- 2 -i;J (L-1 L-1) 
a 2 L 1 t v e L _:_ i£ 1 ' 

_ i(L-t)(L-i£) [!. (L _I L _I) 
p (L -t- r;) • ' 

- 13 (L- I, L -l)lt. (40a) 

The radial integrals I( l, n) are defined by for­
mulas (17). 

Substituting expression (39) in (2) and summing 
over the electron polarizations, we obtain the dif­
ferential conversion coefficient 

dRII) -- r:J.(J)Fp f/ L I p ·p jl2 I yrn) ( ) 12 
1-'L -1(2rr)"tr2L-!-1(R2+Ra) -r- 1-1 J LM 'Y 

I • L + 1 R ·p ' p 12 I y ( ) 21 dO 
T I '>L -'-1 3 - ! 1 ·j- 2 1 UH 'Y [ ( v· 

... t I j 

( 41) 

Integrating over the directions of electron 
emission, we obtain the conversion coefficient of 
the electron multipole on the K-shell (for two 
electrons) 

Rll) r:J.(J)p£ {j L . '2 
f-'L = 4(2rr)" 2L+1 (R2 +Ra) -Pl + tPaj 

+ -L ~- 1 1 R 1 - i 2L \ 1 R 2 + i ~/+\ R 3 + iP 1 _ p 2 n . 
(42) 

In the limiting case of small Z and ~ « 1 
(Born approximation), we can neglect the values 
R2, R 3 and P 2, P 3 compared with R 1 and P 1• In 
this case 

( R(l)) _ crwpe {I iff' J2 + L I 171 ·ct. 12}. 
f-'L B - 4 ('2.rr)3 L ·+- 1 ./1- - lcr , 

Ct. - I' p - '4 ( ')L-1 r (L) ( Z)'/, -'/, ve- 1 cr - Jill 1 -- I :rt -I --~~ a :rt --
~~o (2L- 1)! e 

00 

x ~ (2pr)L-1 e-irr F [L, 2L; 2ipr] GL-I (wr) r2 dr, 

0 

.1t =lim R 1 = 4;,: (-i)L ~ (L + 1) (aZ/1'rt'/,-. /e + 1 
~-->() ('2.L + 1)! V e 

00 

X ~ (2pr)Le-ipr 
0 

XF [L + 1, 2L + 2; 2ipr] GL (wr) r 2 dr. (43) 

Taking formulas (23) and (24) into consideration, 
we obtain 
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Substituting these expression in ( 43), we obtain 
the conversion coefficient of the electric multipole 
in the Born approximation: 

(l) 1 I 2 '1---' ([ 
(~L)B• 2C~.(aZ) 3 --(1-f---)- -• --

w \ (Jj 

( 44) 

When Z = 0 this formula agrees with the well 
known formula obtained in the Born approximation 
by Dancoff and Morrison [B]. 

We note that in the case of magnetic multipole 
radiation, both functions lead to the same result. 

CALCULATION OF THE RADIAL INTEGRALS 

The general formulas (21) and (42) contain the 
quantities Q, R, and P, which are determined in 
accordance with (20), ( 40), and ( 40a) through the 
radial integrals It, 12, and I3• These radial inte­
grals can be expressed in terms of the hypergeo­
metric functions F [a, b; c; x J. To this end, let us 
use the well known representation of the Hankel 
function of half-integer order 

' L H~t~- (wr) ~'--GL(wr) = (2rr)' i -v-'----- = 8rr ..:::..; 
(U( 1<-0 

(-1)'' (L -'-i<J! ~ 
k! (L -1!) 1 (2iwr)I<~-L · 

Substituting this expression, say, in It ( L, L) 
yields 

L 

I (L, L) = 8rt 'V (-1)k (L + k)! (2r/- 1 k, 
1 k~o k\ (L- k)! (2iw}"' 1 

co 

(45) 

Jk = \ e-[i(p-o>J+~lrrL-k+l F [L -1--1 -+ i~, 2L -;- 2; 2ipr) dr 
0 

= (L -k -1-- !)! [i (p -w) +YJ)k-L-2 F [L -f--1 + i~,L 

--k -+-2; 2L + 2; 2ip /(Y] + i (p- w))l. (46) 

The last equation follows from formula 
00 

~ e-i.rr"F [a, c; xr) dr 

[ X] =f(n-f--lp-n-Jf a,n-f l;c;"--, Re"->O, 11 -1. 
(47) 

We analogously calculate the integrals 12 ( L, L) 
and 13 ( L, L ) . 

The most distinguishing feature of the hyper­
geometric functions contained in the final result 
is that the second and third parameters of these 
functions are integers. In this case the hypergeo­
metric series can be converted into a polynomial, 
an important consideration in numerical evalua-

tion. Such a conversion can be readily carried out, 
for example, with the aid of the well known rela­
tion 

- . . . - - r (c) )' (c -- a - /!) • h 
F [a, !J, c, xl -- -r(c=--UjT'(c_:_:_7;) ,\ 

[ 
X- I I 

x F !J, !J + 1 - c; a :. !J " 1 - c; x - j 

_j ~~_(0_r~- h-cL ( 1 -x)c u-l•x:' c 
I j' (UJ 1' (IJ) 

x F [ 1 - b, c -I!; c ; 1 --a - /;; -' --~ / . (48) 
, X I 

In all the expressions encountered in the present 
work, c and b in formula (48) represent positive 
integers, with c > b. Consequently, the quantities 
b + 1 - c and 1 - b are either equal to zero or to 
a negative integer, and the series for the hyper­
geometric functions of the right half of (48) end 
after a finite number of terms. It must be noted 
that this peculiarity in the series of the present 
work is due to the character of the approximations 
in the wave functions. Calculations with exact 
wave functions do not lead to termination of the 
series. 

If we calculate with the aid of formula (21) the 
internal-conversion coefficient of magnetic quad­
rupole radiation for the specific case Z = 40 and 

w = 1, we obtain (,8~ 0))FSM = 7.5 x 10-3 • In the 

Born approximation we obtain for this case 

(,8~0))B = 5.6 x 10-3• According to the tables of 
Sliv and Band [9] we have in this case ,8~ 0 ) = 8.7 
x 1o-3• 

The author expresses his gratitude to A. I. 
Akhiezer and V. B. Berestetskil for suggesting the 
topic and for valuable discussions. 
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