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A differential-difference equation is written for the probability of some optical and nonradi
ative transitions in semiconductors. The appropriate expression at T = 0 is taken as the 
"initial" function. In a number of cases approximate solutions of the obtained equation are 
successfully found. Under certain assumptions the equation transforms into the diffusion 
equation and is solved exactly. Hence, the proposed method permits the construction of the 
investigated expression Jw ( E; T) by means of its values at T = 0. 

1 
1. Optical transitions of localized electrons in 
semiconductors were studied by many authors [t-5J. 
The process was analyzed in the adiabatic approx
imation: if the lattice part of the wave function of 
the system is denoted by <I> Sj l_j ( R), where Sj is 
the set of quantum numbers characterizing the 
state of the fast subsystem and Zj the quantum 
numbers of the lattice, then the cross sections of 
the transitions from the state s1 to the state s2 
are described by expressions of the form: 

J W (£; T) = ~ Pt, [ (<l>s,t,{R), W(R) <l>s,t,(R)) [2 
ltol2 

X 6 (£- (Es,l, -Es,l,l); 

P1, = exp (- Es,t,~) [~ exp (- Es,t,~) r1 , 

[,' 

~ = IjkT, (1) 

where Es·Zj is the total system energy (the total 
wave funclion of the system is <Psj ( r, R) <I>sjlj ( R)). 

A computation of the cross-sections of nonradi
ative capture of electronic excitations of molecu
lar crystals by impurity molecules [6- 8] leads to 
expressions of the form (1), as do a number of 
other problems associated with the electronic ex
citations of molecular crystals. 

W (R) = ~ <r:, (r, R) er<p51 (r, R)dr 

is the dipole moment matrix element which, as a 
rule, depends weakly on R, so that the assumption 
W( R) = const, made in [2- 5J, is usually sufficiently 
justified. For the nonradiative capture process 
W ( R) is a certain scalar function whose depend
ence on R can be essential. 

Let us consider the lattice vibrations to be 
harmonic, i.e., the adiabatic potential in the state 
St equals 

and in the state s2 

U2(R) = f (R-:- R2) Q~ (R- R2) +Eo, 

where the N-dimensional tensor and vector nj 
and Rj describe the elastic properties and equili
brium of the lattice configuration, respectively. 

If R1 = R2, nf = n~ and W ( R) = const, then 
Jw( E; T) is proportional to o ( E- E0 ); hence, 
the quantities A = ~ = R1 and r = n~ - n~ and 
the dependence W ( R) on R specify the diffusion 
of Jw( E; T). Since writing Jw( E; T) in (1) does 
not, in practice, yield any information on the be
havior of Jw ( E; T) as a function of E and T, 
the purpose of a whole series of researches [2- 8] 

was to select an approximation and to construct as 
simple analytic expressions for Jw( E; T) as 
possible. 

If n1 and n~ have no local frequencies, then 
the approximation r = 0 used in [2-4] is satisfac
tory. By assuming also W ( R) = const, Pekar [2] 
and Huang and Rhys [SJ obtained an exact expres
sion for Jw ( E; T) only in the very particular 
case when all the normal lattice vibrations actively 
taking part in the transition have the same fre
quency. For the case of arbitrary dispersion, an 
approximate expression was obtained in [4] for 
Jw ( E; T), valid in a certain neighborhood 

00 

E = ~ EJw (E; T)dE 
-oo 

and for sufficiently strong coupling of the fast sub-
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system to the lattice. This latter means that the 
half-width of Jw ( E; T) must be considerably 
greater than a certain mean energy of the normal 
vibrations actively taking part in the transition. 
Ratner and Zil 'berman [5] obtained approximate 
expressions for Jw( E; T) in the case A ;>!o 0, 
r ;>!o 0, and W( R) = const. 

We propose here a new approach to the study of 
Jw( E; T), which will permit a more graphic 
tracing of the temperature dependence in a number 
of cases and which avoids certain assumptions used 
in previous work [2-s]. This method consists of the 
construction of an equation which Jw( E; T) satis
fies and of finding its solutions; this will afford 
the possibility of constructing Jw( E; T) if the 
form of Jw ( E; T0 ) is known for some tempera
ture T0 < T. The case A ;r. 0, r = 0, and W( R) 
= const is examined in detail in this paper; only 
certain remarks are made with respect to analo
gous constructions for r ;>!o 0 and when taking ac
count of the dependence of W( R) on R. 

2. If r = 0 and W(R) = W(Ro) = const, then 
from the formulas obtained by Kubo and Toyozawa 
[1] we have 

00 

F (E; T) = I w tRo) I' J w (E; T) = 2~ ~ exp { i ( (E- E0) A. 
-00 

where ak = wkAk/211 are nondimensional quanti
ties, { Ak} are the components of the vector A in 
the basis of the eigenvectors Q, {wk} is the spec
trum of the normal lattice vibrations, ~k = t:iwk, 
and nk = [ exp ( ~k/3 ) - 1 ] - 1 • 

The representation (2) enables us to write for 
F ( E; T) the following differential-difference 
equation 

aF (E; T) 1 "\;1 ak ~ek 2 • 

ar = 2T Li 2 sh2 (~ek/2) !1kF (E, T), (3)* 

where 

11~F(E; T) = F(E + ek; T) -2F(E; T) +F(E -ek; T). 

Hence, 8F( E'; T)/8T is related to the values of 
F ( E: T) only in a small neighborhood of E'. The 
function F ( E; T 0 ) with arbitrary T 0 can be 
selected as the "initial" distribution for ( 3), but 
for convenience in what follows we shall consider 
T0 = 0 (see the Appendix). 

If the interaction with the acoustic lattice vibra
tions can be neglected, then one term, correspond
ing to the minimum value of the { ~k} participating 

*sh =sinh. 

in the process, ~ 0 • plays a part in the right side 
of (3) at sufficiently low temperatures. The energy 
~0 corresponds either to the optical branch of the 
vibrations, within which we neglect the dispersion, 
or to a local vibration, i.e., 

aF(E; T) 1 ~e0/2 • 
aT. = 2T Go sh2 (~eo/2) 11[,F(E; T). (4) 

Using the recursion relations for the Bessel 
functions of imaginary argument, an exact solution 
of ( 4) can be obtained if the form of F ( E; 0) is 
known: 

00 

1=-00 

Only those components for which E + l~0 2:: E0 

figure in the sum (5), since it is evident that 
F ( E; 0) = 0 for E < E0• 

For limiting low temperatures we have from 
(5) 

F (E; T) = F (E; 0) + Gct-ll••I15F (E; 0). (6) 

If ~k = ~0 = const, Eq. (4) is valid for arbitrary 
temperature and 

oo I 

F(E; 0) = e-a• ~ ;~ {) (E -E0 -le0), (7) 
1=0 

where a0 = ~ak. 
The expression for F ( E; T) obtained by sub

stituting ( 7) into ( 5) can be reduced by using the 
Lommel expansion [s] to the form 

F (E; T) = exp [- G0 (2n0" + 1) + ~(£";-Eo) J 
00 

X ~ It(2G0 Yn 0 (n0 + 1)6(E-E0 -le0), (8) 
l=-<:;o 

which agrees with the results of Pekar [2] and 
Huang and Rhys [3]. 

In many problems the case when ~ak » 1, i.e., 
when the half-width of F ( E; 0) is considerably 
greater than the energy of the normal vibrations 
actively taking part in the transition, a case ex
amined by a number of authors[4•5J, is realized. 
A good approximation for this case is 

(9) 

where the error due to such a substitution dimin
ishes as the temperature rises, i.e., as F( E; T) 
diffuses. 

Let us introduce instead of T a new imlepend
ent variable T( T) = ~ak~~nk, which has a very 
graphic physical meaning: 2T( T) is the difference 
between the squares of the half-widths of F ( E; T) 
and F( E; 0). Then, taking (9) into account, Eq. 
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(3) assumes the form: 

8F(E; T)/8-r= 82F(E; T)/8£2, (10) 

where F( E; T) will henceforth denote the solution 
~f (10) for EE( - 00 , 00 ) with the initial condition 
F(E; 0) = F(E; 0). Since 7(0) = 0, F(E; 0) de
termines F ( E; T) completely as a function of E 
and T: 

co 

- 1 ~ F (E; T) = . ,r- e-<E-x)'/4<F (x; 0) dx; 
2 y JtT • 

-co 

(11) 

T ( T) is a monotonically increasing function of T, 
hence the following conclusions can be drawn on 
the behavior of F ( E: T), based only on the general 
properties of the solution of the diffusion equation 
such as the principles of the maximum and mini
mum values. Moreover, the signs of BF( E; T)/BT 
and BF( E: T)/BT agree, i.e., the sign of 
BF( E: T)/BT is determined by the dependence of 
F( E: T) on T, which can be obtained from (11) by 
using a sufficiently graphic picture of one dimen
sional diffusion with a constant diffusion coeffi
cient. The latter considerations permit a qualita
tive explanation of the Lyons-White effect [to]. 

However, for quantitative computations know
ledge of the dependence of T on T is required. 
The character of the dependence T( T) is shown 
in the sketch. At low temperatures, according to[ttJ, 

-r (T) = rxT4, (12) 

where a > 0 is independent of the temperature. 
For kT » £k 

-r(T) = k(E- £ 0 ) T, (13) 

where E - Eo can be measured directly and fur
thermore at any temperature, since dE/dT = 0 in 
the case under consideration. 
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If the acoustic lattice vibrations play a notice
able part in the transition, then for sufficiently low 
temperatures terms corresponding to the lowest 
£k should be retained in the right side of ( 3), i.e., 
the condition ~ak » 1 is not necessary for the 
correctness of (10) in this case. Taking account 
of (12), we have 

co 

F(E· T) = 1 \ e-<E-x)'f4a.T'F(x· O)dx. (14) 
' 2 V nct.T4 j ' 

£, 

Since the half-width of the fundamental solution 
(10) is considerably less than the half-width of 
F ( E: 0) at sufficiently low temperatures, F ( x; 0) 
under the integral sign can be expanded in a Taylor 
series about x = E. In the first approximation 

F(E; T) = F(E; 0) + aT4a2F(E; 0) I a£2. (15) 

Let us compare the approximate expression 
(11) with the exact expression of F( E; T). If we 
start from the exact expression for F( E; 0) 

F (E; 0) 
co 

= exp (- .2; ak) 2~ ~ exp { i (E -E0)A. + ~ ake--iEk"} dA., 
-co 

(16) 

then by using (11) it can be shown that for all tem
peratures 

co co 

Mo = ~ F(E; T)dE = ~ F(E; T)dE "= I, 
-00 -co 

00 co 

M1 = ~ (E- E'/ F (E; T}dE = ~ (E -E)1 F (E; T}dE 
-co -co 

for 1=2 and Z=2s+1 (s=0,1,2, ... ), where 
co co 

E = ~ EF(E; T)dE = ~ EF(E; T)dE. 
-00 -co 

For the remaining values of l the ratios of the 
corresponding moments of F ( E; T) and F ( E; T) 
tend exponentially to unity as the temperature is 
lowered. 

If the coupling between the fast subsystem to 
the lattice is strong, i.e., ~ak » 1, then, as 
shown by Pekar and KrivoglazC4J, only the Mz 
with l = 2 and sometimes with l = 3 are essential 
in a certain not too large neighborhood of E. Ae 
the temperature rises, the size of this neighbor
hood grows and the part of Mz with l > 2 de
creases, i.e., F( E; T) tends to a Gaussian curve, 
as follows also from general considerations. 

We carried out a numerical computation of 
F ( E; T) and F ( E; T) in the dispersionless case. 
It seems that for F-centers in KBr (according to 
the results of Huang and Rhys [3] in this case ~ak 
= 22.4 and £0 = 2 x 10-2 eV) the error in replacing 
F( E; T) by F( E; T) for all T and a sufficiently 
large interval E did not exceed 2%, t.e., was al
most within the limits of computational accuracy. 

3. Leaving the discussion of the details to a 
subsequent paper, let us present certain results 
for the cases when r ""' 0 and the dependence of 
W ( R) on R is essential. 
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If A# 0, r # 0, W( R) =canst, then a Fokker
Planck equation of the form 

oJw ~~; T) = A (T) o•J~~:; T) + B (T) oJw ~~; T) , (17) 

for which the behavior of the solution has been 
studied in detail [12], can be written for Jw ( E; T) 
in a first approximation in r. In contrast to the 
r = 0 case, the quantity E depends on the temper
ature, as is certain from the second term on the 
right side of the equation. The area under 
Jw( E; T) is independent of the temperature, ex
actly as in the r = 0 case. 

If the dependence of W ( R) on R is taken into 
account in the first approximation, i.e., if it is 
considered that 

W (R) = W (R0) + (R- R0) grad W (Ro), 

then it can be shown that in the A # 0, r = 0 case 
the quantity Jw is expressed linearly in terms of 
the expressions considered in the preceding sec
tion 

F (E; T), F (E ± Bm ± Bz: T). 

Let us note that in the weak coupling case, i.e., 
for !: ak « 1, terms containing F ( E ± £m· ± £[; T) 
can be neglected in the expressions for Jw( E; T). 
At sufficiently high temperatures, when owing to 
diffusion of F( E; T) the difference in the values 
of F(E;T), F(E±£m;T), and F(E±£m±£z;T) 
is insignificant, Jw ( E: T) is proportional to 
F( E; T) with a proportionality coefficient depend
ent on the temperature. In contrast to the cases 
worked out above, the area under Jw( E; T) de
pends on the temperature, hence the change in the 
area under Jw ( E: T) due to the change in the 
temperature can serve as a criterion of systems 
for which the dependence of W ( R) on R is es
sential. This case must be observed most clearly 
in systems with weak coupling of the fast subsys
tem to the lattice. 

The author is deeply grateful to Corr. member 
I. M. Lifshitz of the U.S.S.R. Academy of Sciences 
for constant attention to the research and for valu
able comments, and also toM. A. Krivoglaz for 
discussions of certain results. 

APPENDIX 

Let us discuss the behavior of F( E; T) as a 
function of {ak} and {£k}· The equation 

aF(E; 0) I aak = F (E- Bk; 0)- F (E; 0) (A.1) 

can be written for F ( E; 0) by using the repre
sentation (16). Since we have F( E: 0) = o( E- E0 ) 

for { ak} = { 0 }, we write 

N l· 

( "'.l )'V[l (a;)' ( ~ ) F (E; 0) = exp - .:.J ak .:.J -1 .~1 6 E -E0 - .LJ l;Bt , 

I i=l I. (A.2) 

where 1 is an integer N-dimensional vector with 
non-negative components. Writing F( E; 0) in the 
form (A.2) can be useful if the transition is effec
tive only through the optical branches of the nor
mal vibrations, within which the dispersion can be 
neglected (local vibrations can be present instead 
of the optical branches). Hence, only a few terms 
in (A.2) are different from zero and in certain 
particular cases a simple exact expression for 
F( E; 0) can be obtained. 

Since no such construction has been made be
fore [1- 4] for £k # canst, let us present the result 
of a computation for the simplest case when the 
transition is accomplished because of two optical 
branches. If £1 = 2£2, then 

~ ( a1)PI2 ( az ) F (E; 0) = e-(a,+a,) ~ ~--- H p i ~ 6 (E -E0- pe2), 
P=O p! 2 fat (A.3) 

where Hp ( z) is the Hermite polynomial and a1 
= !:ak1; the sum is taken over such kt that £k1 
= £1; a2 = !:ak2 for £k2 = £2• 

In conclusion let us indicate the possibility, in 
principle, of measuring certain of the quantities 
{ ak }. Let us introduce for the acoustic vibrations 
a density ak, in the energy interval yf ( £), i.e., 

•a 

~ ak' = r ~ t (e) 'de, 
0 

where k' enumerates the acoustic vibrations, y 

characterizes the coupling force between the 
acoustic vibrations and the fast subsystem, and 
£a is the energy corresponding to the ceiling of 
the acoustic zone. Hence 

Ea ta 

oF(E; O) = I f (e) F (E- e; 0) de- F (E; 0) C f (e) de. (A.4) or .\ J 
0 0 

Let the part of the acoustic vibrations in the 
transition process be small, i.e., y « 1. Expand
ing F( E; 0) in powers of y, we have in first ap
proximation 

•a 

F (E; 0) = F (E; OH,=o( 1-r ~ f (e) de) 
0 

•a 

+ r ~ f (e) F(E- e; 0) !..,=Ode. (A.5) 

Since the spacing between the longest wavelength 
peak F( E; 0)\ y=o corresponding to E = E0 and 

its closest peak equals the least of the energies of 
the optical and local vibrations that take active 
part in the process, i.e., greater than £a, we have 
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from (A.5) and (A.2) for E in the interval (E0, E 0 

+£a) 
•a 

F (E; 0) = exp (- k~k' ak)[( 1- r ~ f (e) de) 

x 6 (E -E0) +rf (E -Eo) J. (A.6) 

Analogous "satellites" butwith different factors 
for '}'f( £) appear on the short wavelength side of 
each peak F ( E: 0) 1 y-=o' Hence the density ak' in 
the energy interval can be found in this case from 
the form of the absorption spectrum. 
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