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The restrictions imposed on the possible trajectories of the Regge poles a ( t) by the analytic 
properties of the function a are investigated. It is being assumed, that the functions a pos
sess "maximal analyticity" [i.e., admit of representations of the form (1) or (2) ]. Inequal
ities satisfied by the functions for t below threshold are established and the corresponding 
restrictions on the masses of the particles belonging to a given trajectory as well as on the 
decrease of cross sections as a function of the scattering angle at large energies (in particu
lar, restrictions on the structure of the "diffraction peak") have been established. 

1. INTRODUCTION 

IN connection with the important role played by the 
concept of moving Regge poles [t] in the investiga
tion of the asymptotic behavior of cross sections of 
various processes in the high-energy region [2- 5] 

and in the clarification of the spectrum of particles, 
the reconstruction of the trajectories a ( t) of these 
poles from experimental data is of special interest. 

In order to explain the observed picture of dif
fraction scattering, Gribov[2J and Chew and 
Frautschi [3] have proposed the existence of a 
trajectory possessing the quantum numbers of the 
vacuum (the Pomeranchuk trajectory a p ( t), with 
a P ( 0) = 1. The analysis of the 1rN and NN scat
tering data has allowed to determine the behavior 
of the vacuum trajectory for small negative t, and 
also to obtain some information about the other 
trajectories, which give smaller contributions to 
the cross sections in the high-energy region ( cf. 
in this connection [a,t4J). In principle scattering 
data allow one to determine trajectories a ( t) for 
t ::::: 0. On the other hand, Goldber'Eer and Blanken
becler [sJ and Chew and Frautschi 7] have ex
pressed the hypothesis that the masses of the 
particles are determined by the pole trajectories 
in the region t 2:: 0. 

Thus there appears the problem of extrapolating 
the pole trajectories into the region t > 0, and also 
into the region of negative t of larger absolute 
values than those for which a ( t) is known from 
the present experimental data. The present paper 
is devoted to one of the aspects of this problem, 
namely to an investigation of those restrictions on 
the possible course of the trajectories imposed by 
the analytic properties of the functions a . We 

shall establish inequalities to which the functions 
a ( t) are subjected for values of t lying below 
threshold (e.g., t < 4~ 2 for the vacuum trajec
tory;~ is the pion mass), and we shall find the 
restrictions which these inequalities impose on the 
masses of the particles which lie on a given trajec
tory, as well as on the decrease of cross sections 
with increasing scattering angle at high energies 
(in particular, the structure of the "diffraction 
peak''). 

We shall assume that the functions a (t) admit 
the representation 

oo_ 

(t) = ....!_ r ex <n dt' 
a 1t J t' -t ' ;x (t') > o, (1) 

1 

or a representation with one subtraction 
00 -

t-t2 \' cx(t')dt' 
a (t) = a (t 2 ) + -n- j (t' _ t) (t' _ '•) , ;: (t') > 0 (2) 

1 

(the threshold value of energy has been put equal 
to one). Such representations have been proposed 
by Gribov and Pomeranchuk [9] and are the most 
natural from the standpoint of ''maximal analyt
icity'' : the functions a have branch points (cuts ) 
only for such values of t, where this follows with 
necessity from the unitarity condition for the par
tial wave amplitudes. The positive character of 
the spectral function a is necessary in order that 
a pole, which has wandered off into the upper half
plane of t near the threshold, should remain there. 
One subtraction is sufficient since the scattering 
amplitude, which is proportional to sa(t), has no 
essential singularity for 1 t 1 - oo [ 9]. 

At present there does not exist a complete proof 
of the Regge pole hypothesis ( cf. [to]), hence one 
can make no rigorous affirmations about the ana-
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lytic properties of the trajectories of these poles. 
In particular, Oehme [tt] has discovered in the 
problem of the relativistic Schrodinger equation 
with a Coulomb potential the existence of complex 
branch points of the functions a (t). The non
relativistic analog of the cause of the appearance 
of complex branch points is the "falling into the 
center." We hope that in a more realistic theory 
than the one discussed by Oehme [1t], the behavior 
of the "potential" near r = 0 will forbid such 
branch points. 

All our results refer to the case of boson tra
jectories (to which, in particular the Pomeranchuk 
trajectory belongs). As Gribov [t2] has shown re
cently, the analytic properties of the fermion tra
jectories are somewhat more complicated than the 
properties implied by Eqs. (1) or (2). 

2. THE CASE OF A DISPERSION REPRESENTA
TION WITHOUT SUBTRACTIONS 

Let us find the restrictions on the possible form 
of the trajectory of the pole a ( t), assuming that 
the function a admits a representation of the form 
(1) and assuming the value of this function and its 
derivative known in a point t 1 ( t 1 < 1, otherwise 
t 1 is arbitrary ) . 

The representation (1) implies that Imt/Ima ( t) 
?:: 0. In other words, a ( t) is a Nevanlinna function 
(or R-function). In the Appendix we derive the 
following inequality for an R-function f (x ), in the 
domain x < 1, if f (x) is real in this domain: 

f (xl) + f' (xi) (x - x1) 

< f (x) < f (xl) + f' (xi) (x- x1) (I - x1)/( I - x) (3) 

(x1 < 1; the prime denotes a derivative). Using 
this inequality and observing that, (1) implies that 
for t < 1, a(t) > 0, we obtain 

max {0; a (11) + a'(t1) (t-t1)} 

<a (t) <a (t1) + a'(t1) (t-tJ (I-11) I (I-t), (4) 

where max {a, b} is the larger of the quantities a 
or b. 

The domain in the (a, t) plane in which the 
trajectory a(t) can lie according to Eq. (4) is 
cross-hatched in Fig. 1. This domain is bounded 
by the t-axis and by the curves 

81: :J. =a (t1) + a'(t1) (t- t1), 

82: :J.= rl{t1)+a'(t1)(f-t1)(1-t1)/(I-t). 

We note that Eq. (4) also implies the inequality 

a(t);;;;.a'(/)(1-t) (t<1); 

FIG. 1 

in particular, for the Pomeranchuk trajectory 
a p ( 0) =sap ( 0) = 1 (from the analysis of experi
mental data given in [a] O!p(O) 1'::! 0.1). 

The inequality (4) also yields limitations on the 
decrease of the scattering a amplitude with the in
crease of the scattering angle () at large energies 
.[8: 
max {s-«(o); ~~ (s, cosO)}<A (s, cos8) I A (s, 1)< ~,(s, cosO), 

<p1 = - 1/ 2a'(O) s(1-cos8), 
cp2 = -a' (0) s ( 1 -cos 8) [2 + s ( 1 -cos 8) ]-1 • (5) 

These limitations are valid in that region of 
scattering angles in which, on the one hand the 
scattering amplitude A ( s, t) ""~r ( t) sa(t) is de
termined by the same Regge pole as for () = 0 and, 
on the other hand, the "coupling constants" of the 
Regge poles r (- t;2s ( 1 - cos ())) can be considered 
as slowly varying functions of the energy (in com
parison with the exponential factor sO!). Particu
larly, if at It I --- oo, r ( t) neither vanishes nor 
becomes infinite and the trajectory of the pole 
which determines the scattering at () = 0 does not 
intersect another trajectory with the same quantum 
numbers, then the restrictions (5) are valid for all 
scattering angles. 

Besides the restrictions on the width of the 
"diffraction peak" (5) one can also determine the 
minimal possible value for the mass m (l) of the 
particle with spin l belonging to a given trajectory: 

[m (!)]2 ....._ I ex' (ti) (1- tl)~ (tl.<: 0). (6) 
<""' - l +ex' (f1) (1 - tl)- ex (t1) ~ 

This relation is an immediate consequence of Eq. 
(4) if one takes into account the fact that the mass 
of the particle with spin 1 satisfies the equation 
a(m2 )=1. 

3. THE CASE OF A DISPERSION REPRESENTA
TION WITH ONE SUBTRACTION 

Let us turn now to the case in which the func
tion a admits the representation (2). As before, 
the function a is an R-function, and therefore one 
can apply to it the inequality (3) and all the in
equalities deriving from it. The function 
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for t2 < 1 ( and otherwise arbitrary), is also an 
R-function. Applying Eq. (3) to this function we 
obtain 

max {0· g -l- g (t - t )} .--- cr (t)- cr (t2) 
' 1 I 2 ' 1 ~ / _ / 2 

.--- 1 - 11 
~ g1 + g2 (t- i1) i- I , 

where 

- Cl (12)- Cl (11)- ct' (11) (12- t1) ">. 0 
g2 - (12-11)2 9' • 

(7) 

As was to be expected, in order to impose more 
severe restrictions on the form of the trajectory 
a (t) than the ones considered in the preceding 
section, one may assume one further characteristic 
of the trajectory (for instance the value of a in 
the point t2 ;r t 1 ). If one knows a particle belonging 
to the trajectory a ( t) one may take as t2 the 
square of its mass. Then a ( t2 ) equals the spin 
of that partie le. If the curvature of the trajectory 
near t 1 is known, it is convenient to go to the limit 
t2- t 1 and to transform (7) to the simpler form 

a1 (t) <;a (t) <; a2 (t) (t > 11), 

a2 (t) <;a (t) <; a1(t) (t1 > t >is), 

a2 (t) <;a (t) <a (t1) -f [~' (t,}l" I a" (t1) (t <Is), (8) 

where 

Is = i 1 - a' (t1) I a" (t1), 

adt) =a (t1) +a' (t1)(i- i1) +fa" (t1)(t- t1)2, 

a2 (t) = a (t1) +a' (t1) (t- l1) 

+f ~" (tt) (t -!1) 2 (I-t'l) I (I-t). 

The region in the (a , t) plane which, according 
to Eqs. (8) can contain the trajectory a(t) is the 
one cross-hatched in Fig. 2. This region is 
bounded by the curves 

C1 : a= a (t1) +a' (t1)(t-t1) +-+a" (tJ (t-!1) 2 , 

C2: a= a (i1) +a' (t1)(t- 11) 

++a" (t1) (t- i 1) 2 (I -/1)/(I- t), 

C3: a= a (t1) - + [a' (t1) ] 2 1 a" (t1). 

The inequalities restricting the decrease of the 
scattering amplitude with increasing scattering 
angle at large energies are the following: 

~· (s, cos 9) <;A (s, cos B) I A (s, I)-<;;~· (s, cos D)' 

'Ps = - f a' (0) s (I -cos B) 

+ i- a" (0) s2 (I -cos B) 2 [2 + s (I -cos B) ]-1 , 

<p4 = min {-fa' (0) s (I - cos B) + fa" (0) s2 (I -cos B)2, 

- f [a' (0))2 [a" (O)J-1} • 

FIG. 2 

The conditions of applicability of these formulas 
are the same as for Eq. (5). 

(9) 

The minimal possible mass of the particle with 
spin l belonging to the trajectory a ( t) is deter
mined from the equation 

a (t1) +a' (IJ (m~in- i 1) 

+fa" (t1) (I- i 1) (m~tn- 11) 1 I (I- m~1n) = l 

(tl < 0) 

or from the equation 

a (t1) + g1 (m~in- !2) 

(10) 

+ g2 (I-/1) (m~1n- i 1) (m~1n- i 2) I (I- m~,) = l (!1 <;0; 

l>a (t2)). (10') 

We observe, that the established restrictions on 
the behavior of the functions a ( t) become weaker 
as t approaches unity or -co. In particular we are 
unable to determine the maximal spin of a stable 
particle belonging to a given Regge trajectory: for 
t- 1 the inequalities (4), (7), and (8) restrict the 
function a ( t ) only from below. Though the function 
a is bounded for t - -co (or even vanishes in the 
no-subtraction case), knowledge of the value of this 
function and of its first two derivatives in the point 
t 1, together with the representation (2) [or (1)] do 
not allow a determination of the quantity a (-co) 
(or the law according to which a ( t) goes to zero). 

In conclusion I wish to express my gratitude to 
N. I. Akhiezer for a valuable comment, to I. Ya. 
Pomeranchuk for a useful discussion and interest 
in this work, and also to I. S. Shapiro for valuable 
observations. 
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APPENDIX 

For a proof of the inequality (3) we shall start 
from the general representation of an R-function 
which is real for x < 1 [ Eq. (1) is a special case 
of this]: 

00 

~ 1 + ux f (x) = flX + v + --do (u), u-x 
1 

(!1 > 0; Im v = 0), 

(A.1) 

where a is a non-decreasing function of bounded 
variation (cf. e.g.[13 J). According to Eq. (A.1) 
we have 

co 

f (x)- f (x1) = 11 + (' 1 + u" da (u), 
x- x1 ,\ (u-x) (u-x1) 

1 

co 
, (' 1 + u2 

f (xl) = 11 + .l (u- xl)" da (u). 
1 

(A.2) 

A comparison of these expressions immediately 
yields the restriction on f ( x ) from below given in 
Eq. (3). Further, by subtracting the second line of 
Eq. (A.2) form the first line, we obtain 

00 

f(x)-f(xl) -f'(x)=(x-x)\ (1+u2)d:>(u) • (A.3) 
x-x1 1 1 .l (u-xl)2(u-x) 

1 

Observing that the right hand side of (A.3) does not 
decrease if one replaces u - x in the denominator 
of the integrand by 1 - x, and utilizing Eq. (A.2) 
we obtain the restriction from above on f ( x) in 
Eq. (3). 

We note that the inequality (3) can be obtained 
as a limiting case from a well-known result of 
N. I. Akhiezer and M. G. Krein, which establishes 
restrictions on the possible values of an R-function 
f(x) for complex x, if it is known that f(x 0 ) = w0 

( Im x0 > 0) and that furthermore the function f ( x ) 
is real and continuous in a given interval on the 
real axis ( cf. [t3], page 162). Using this proof 
one obtains simultaneously sufficiently rigid re
strictions on the behavior of the function a ( t) in 
the compl«lx t-plane. We shall not reproduce 

these restrictions since we are not aware of 
physical quantities in which there appear Regge 
poles with complex t. 
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