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For the case of scattering by a Yukawa potential a connection is established between the high 
momentum transfer behavior of the amplitude in low orders of perturbation theory and the 
position of the Hegge poles. Use of higher order approximations makes it possible to show 
that perturbation theory is in agreement with the existence of only moving poles. The same 
approach is then applied to a study of relativistic field theory. It turns out that the simple 
picture, analogous to potential scattering, now does not agree with perturbation theory. As a 
most likely solution of this problem it is suggested that poles accumulate near negative 
integer points (and possibly near zero) because of the existence of many channels in field 
theory. 

IN a previous paper of Shekhter and the authors [t] 

the motion of Hegge poles [2] was studied in the 
scattering of particles by a Yukawa potential in the 
case of a small coupling constant. In the present 
work we study the relation between these poles and 
the asymptotic behavior of the amplitude in pertur­
bation theory. The clarification of this relation is 
of interest, in the first place, because the sum of 
the contributions of individual Hegge poles repre­
sents a very substantial rearrangement of the per­
turbation theory series. 

It is this very reason that makes the study of the 
scattering amplitude with the help of complex or­
bital angular momenta attractive. On the other 
hand, in the case of field theory, which is after all 
the case of principal interest, the Hegge trajec­
tories cannot be determined in the same way as in 
quantum mechanics .CtJ This is related to the fact 
that in field theory one cannot write an equation 
for the pole trajectory in terms of the radial wave 
function for a definite orbital angular momentum. 
To obtain in this case information about the motion 
of the pole it is most convenient to make use of 
the asymptotic behavior in momentum transfer of 
the amplitude in perturbation theory. 

In Sec. 1 we discuss the perturbation theory 
for the scattering of particles by a Yukawa poten­
tial. The asymptotic behavior of the amplitudes in 
low orders turns out to be related to the motion of 
the poles near their limit positions. Already the 
third order approximation makes it possible to 
verify the agreement of perturbation theory with 
the existence of only simple moving poles. 

In Sec. 2 we attempt to study in the same way 
the relativistic field theory. It then turns out that 
the simple picture of Hegge poles, analogous to the 
case of potential scattering, is not in agreement 
with perturbation theory. However aside from the 
obvious possibility that the expansion in the coup­
ling constant is not valid or that there exist non­
Regge-like singularities there is another way out 
related to the existence of many channels in field 
theory. An infinite number of channels could give 
rise to an accumulation of an infinite number of 
poles near negative integer points for small coup­
ling constants and infinite energies. Such a suppo­
sition somewhat unexpectedly gets tangled with the 
recent result of Gribov and Pomeranchuk [aJ on the 
accumulation of poles in a relativistic field theory 
near negative integers due to the existence of the 
crossed channel. In that case, for the poles con­
nected with all thresholds it is reasonable to as­
sume a motion similar to the motion of the poles 
for scattering by a Yukawa potential. In the pres­
ence of accumulating poles perturbation theory 
becomes ineffective for the study of individual 
Hegge terms even for weak coupling. 

1. SCATTERING BY A YUKAWA POTENTIAL 

The expression for an individual Hegge pole 
term in the partial wave amplitude has the form 

which gives a contribution to the total amplitude 
equal to 
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(2) given in first order of perturbation theory by 

Here a, k2 and z are the coupling constant, the 
square of the particle momentum and the cosine of 
the scattering angle. The function li (a, k2 ) de­
scribes the trajectory of the i-th pole. The resi­
due at that pole is defined in the form a ri (a, k2 ), 

since for a = 0 the amplitude should vanish. The 
contribution to the total amplitude is represented, 
according to Mandelstam, [4] in terms of the Le­
gendre functions of the second kind. Such an ex­
pression is valid both to the right and to the left of 
the line Rel = - 1/ 2. 

In going to perturbation theory one expands Eqs. 
(1) and (2) in a power series in a . For the partial 
wave amplitude in n-th order of perturbation theory 
one obtains, obviously, a sum of poles of different 
multiplicities-from simple poles upton-tuple 
poles. All these poles lie at the point l = l i ( 0, k2 ). 

The leading term resulting from them in the asymp­
totic behavior of the total amplitude consists of the 
product of (- z )li(O,k2) and a polynomial of degree 
n - 1 in ln (- z). [·A k-tuple pole in the partial 
wave amplitude gives rise to all the powers of 
ln (- z) from the (k - 1 )-st to the zeroth.] The 
same result is, of course, also obtained by direct 
expansion of the right side of Eq. (2) . 

The n-th order of perturbation theory is deter­
mined by the values of the derivatives of q (a, k2 ) 

and li (a, k2 ) with respect to a evaluated at a 
= 0, up to the (n- 1 )-st derivative. Therefore in 
every successive order two new parameters 
appear-the highest derivatives of ri and li. These 
parameters enter only into the coefficients of the 
simple and double poles in the expansion of fz and, 
consequently, into the coefficients of the first and 
zeroth power of ln (- z ) in the total amplitude. 

The coefficients of the poles of higher multi­
plicity [higher powers of ln (- z)] are determined 
by lower orders of perturbation theory. For ex­
ample the coefficient of the highest power of the 
logarithm is proportional to 
ari ( 0, k2 ) [ li ( 0, k2 ) ]n /n!. Thus a comparison of 
the expansion of Eqs. (1) and (2) in powers of a 
with the amplitude calculated from perturbation 
theory makes it possible to confirm already in 
third order (coefficient of the logarithm squared) 
the agreement of perturbation theory with the ex­
istence of only moving poles. It is interesting to 
note that the resultant structure has on the whole 
the character of a double expansion in a and 
a ln (- z ), similar to the one that occurs in field 
theory (see, for example, the article by L. D. 
Landau in [5]). 

The amplitude for the scattering of a particle of 
mass m by a Yukawa potential V ( r) = ae-J.Lr /r is 

A (l) (k2 , z) = - 2am I [2k2 (1 - z) + f-12 ]. (3) 

For I z + ..) z2 - II > I z0 +..) z~ - II ( zo = 1 
+ fJ. 2 /2k2 ) the amplitude A (1) may be represented 
in the form 

00 

A<1> (k2 • z) = amk-2 ~ P; (z0) Q; (z) (2i -f-1). (4) 
i=O 

Comparing Eqs. (4) and (2) we find in first order 
poles at negative integer points 

l1 (0,k2)=-i-1 (i=O,I, ... ) (5) 

with residues 

(6) 

The same result is of course obtained also by 
direct evaluation of the partial wave amplitude. 

The second order amplitude may be expressed 
as a dispersion integral or evaluated exactly: 

00 '2 -.1 ' ' 
a.•m2 ~ dk'• 1 z0 - z' + Y K (z', z0 , z0 ) 

= - -- In ~----::r===;'==;'= 
2n k'•-k• k'S Y K (z' z' z' ) z'2 - z' - V K (z' z' z' ) 

0 J 0' 0 0 ' 0' 0 

X 2k2q2 + !-12 (!-12 + 4k2) + 2 f q•k• (!-1~ + 4f12k2 + k2q2) J . 
- q• (}.12 - 4k2) + 4}.12 (f-12 + 4k2) + 4 -v- f1"k2 (!-14 + 4}.12k2 + k2q2) , 

(7) 

q2 = 2k2 (1 - z), z' = 1 - q2/2k' 2 , 

K (z1, z2 , z) = z~ + z; + z2 - 2z1z2z - l. (8) 

For large z the expression (7) becomes, as 
could be expected, a sum of negative integer 
powers of z multiplied by expressions linear in 
the logarithm. A study of the terms not containing 
logarithms gives corrections to the residues with 
which we will not concern ourselves in what fol­
lows. To determine the corrections to the position 
of the poles one must express the coefficient of the 
logarithm in the form of a sum of Legendre func­
tions of the second kind. This is easy to do by 
making use of the easily proved identity 

r 1 = ~ (2i + 1) P, (z1 ) P1 (z2) Q1 (z), 
l K (z1, Z2, z) i~o 

z2 > zz1 + V (I - z2) (I - z~). 

Then, by comparing the asymptotic behavior of 
Eq. (7) with the second term in the expansion of 
Eq. (2) in powers of a and making use of Eq. (6) 
for the residue, one can obtain the following tra-

(9) 
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jectory li(a, k2 ) accurate to terms linear in a: 

li(a, k2)=-i-1-V':k2 P,(1+~:). (10) 

Thus even in this approximation the pole becomes 
a moving pole. 

The expression (10) coincides with the result of 
the previous paper CtJ [ Eq. (7)] for the motion of 
the poles near negative integer points. This means 
that the asymptotic behavior of the amplitude in 
perturbation theory reflects the motion of the 
poles near the points to which these poles tend in 
the limit a- 0 or k2 - -co. The segments of the 
trajectory Zi(a, k2 ) correspondingtosmall k2 

are at that excluded since they cannot be exganded 
in a power series in the coupling constant.[!] 

In the oscillatory motion (10) (k2 < -~ 2/4) the 
pole passes several times through the negative 
integer point. As can be seen from Eq. (6) its 
residue vanishes at those instants. This is due to 
the behavior of the potential at small distances 
( ~ 1/r) (private communication from V. N. 
Gribov). 

It is easy to show that for a superposition of 
Yukawa potentials 

V(r) = ~ase-P.s';r 

the residue of the i-th pole takes the form 

-~~ P-(1 11;) 
k2 s lf.s ' + 2k2 ' 

(6a) 

and the trajectory is determined by the equation 

li( l15 , k2) = - i- 1 - V :_ k2 ~ lf.s P; ( 1 + ~~) . (lOa) 
s 

A more detailed study of the motion of the poles in 
the whole energy interval has been given pre­
viously. [t] 

As was explained above the agreement of per­
turbation theory with the existence of only moving 
poles can be ascertained by looking at the coeffi­
cient of the logarithm squared term in the third 
order amplitude. In Appendix I this amplitude is 
obtained in the form of a double integral: 

CO p.(l'ri'+p.) 

=- 4a3m3 (' _~!!_ I dt" 1 · 
,\ t' + q2 ,\ ,r cr (k2 t' t") cr (k2 n 2 t") ' 

9p.s 4p.' f ' t , r , 

Ci w, t'' t") = t't"J-t2 + 2k2(t't" + t'J!2 + t"J-t2) 

- k2 (t'2 + f"2 + 1!4). 

(11) 

(12) 

A detailed study of the asymptotic behavior of 
this amplitude turns out to be rather involved. 

However the main terms corresponding to each 
pole [ ~In 2 (- z)] may be calculated rather simply. 
Such a calculation is given in Appendix II. It gives 
for the i-th pole the result 

+ (- 1); a3m3k- 4 (2i + 1) P7 (z0) Q; (-z) ln2 (- 2z). (13) 

This expression agrees with the main term 
[,.., ln2 (- z)] obtained in the expansion of Eq. (2) 

accurate to terms of order a 3: 

Q o (-z) 
~31 rt(O, k2 ) (211 + 1) -z; -l 0 [l~ (0, k2 ) In (- 2z)] 2 (14) 

· cos nl; 

[Z~=Zi(O,k2 )]. Inplaceof ri<O,k2 ),Z~ and 
li ( 0, k2) in Eq. (14) one shoulc substitute the cor­
responding expressions (6), (5) and (10). 

It thus turns out to be possible to verify the 
"Regge-like" nature of the theory by studying the 
asymptotic behavior of the amplitude in perturba­
tion theory. 

2. REGGE POLES IN FIELD THEORY 

Let us attempt to apply the method outlined in 
the previous Section to the study of the motion of 
the poles in field theory. For simplicity we con­
sider scattering of pions by pions. Let the pion in­
teraction be described by a 'Acp4 term in the La­
grangian. Below we shall take the 71'71' interaction 
into account in terms of nucleon loops. 

The lowest order of perturbation theory the 
scattering amplitude is equal to 'A. This means 
that in lowest order in the coupling constant there 
is only one pole lying at the point l = 0. It is clear 
that the contribution of that pole to the total ampli­
tude would be infinite [ Eq. (2)] if its residue did 
not vanish. The condition that this contribution be 
equal to 'A leads to the requirement 

(15) 

In the next approximation of perturbation theory 
three diagrams arise-the simplest loops, each de­
pending on one of the three Mandelstam invariants 
s, t and u. In what follows t denotes the energy 
and s the momentum transfer, i.e. the energy in 
the crossed channel. In order to determine the 
correction to the pole trajectory one must extract 
the terms containing ln s. The contribution of the 
pole located at zero has the form- ( 'A/71') ln s, 
which together with Eq. (15) gives the values 
Z0 ('A, t) = -'A/11', r 0 ('A, t) ='A/71', 

The asymptotic expansion of the amplitude in 
this order contains not only a constant (and a con­
stant multiplied by a logarithm) but also all nega­
tive integer powers of s. This means that at all 
negative integer points there appear poles, and 
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because of the presence of ln s in all terms at 
each point there appear simultaneously simple and 
double poles. This behavior is substantially dif­
ferent from the simple picture that arose in the 
case of potential scattering. 

As was already explained in the previous Sec­
tion in third order one may verify the agreement 
between perturbation theory and the hypothesis of 
moving poles. Direct computation of the coefficient 
of the ln2 s term in third order shows that the re­
sult does not coincide with the expected value. 
Thus here too there is a substantial difference as 
compared with scattering by a potential. 

The question arises whether the indicated dis­
agreements could not be eliminated by taking into 
account explicitly the interaction of pions via nu­
cleon pairs. Since this interaction contains a new 
parameter-the pion-nucleon coupling constant-one 
can by an appropriate choice of the relation between 
the two coupling constants move the difficulty with 
the pole at zero over into fourth order of perturba­
tion theory. It appears completely improbable that 
there should thereafter exist in fourth and all 
higher orders of perturbation theory the necessary 
relation between the coefficients of all higher pow­
ers of the logarithm. The second difficulty, con­
nected with the poles at negative integer points, 
only becomes deeper with the introduction of nu­
cleon loops. Indeed, in lowest order of perturba­
tion theory for the 1rN interaction (nucleon box) 
there also appear simultaneously simple and 
double poles, but with coefficients that depend on 
t. Therefore they certainly cannot compensate the 
double poles due to the interaction "Acp4. 

Analogous difficulties arise for other forms of 
interactions, for example the scattering of nucleons 
by nucleons. The scattering of pions by nucleons 
and quantum electrodynamics we did not study. 

Aside from the obvious ways out of this situa­
tion, consisting in the inapplicability of the expan­
sion in the coupling constant or the presence of 
non-Regge-like singularities, there exists another 
possibility. It could be that in the limit as the 
coupling constant tends to zero more than one pole. 
tends to each negative integer point.n If, for 
example, two poles tend to each point then the 
number of parameters that determine the asymp­
totic behavior of the amplitude is doubled. There­
fore, as is easy to see, the agreement between per­
turbation theory and the existence of only moving 
poles can now be verified only starting with the 

1lThe authors are grateful to I. T. Dyatlov who called · 
their attention to this possibility. 

fifth order. For a larger number of coincident 
poles the agreement can be established only start­
ing with yet higher orders. 

Precisely this situation occurs in the nonrela­
tivistic theory in the presence of several two­
particle channels. In that case the scattering 
matrix can be expressed in the form of the ratio 
of two matrices in such a way that the poles in 
angular momentum are determined by the zeros of 
the determinant of the denominator matrix.CsJ The 
number of rows and columns of this determinant is 
equal to the number of channels n. The vanishing 
of the determinant is possible due to the vanishing 
of any one of the eigenvalues of the corresponding 
matrix. If the interaction in every channel has the 
form of a Yukawa potential then the poles corre­
sponding to the vanishing of each of the eigenvalues 
tend to the negative integer points in the limit of 
weak coupling or k2 __.. - 00 , analogously to the case 
of single channel scattering. Consequently n poles 
tend to each negative integer point. 

In field theory the number of channels is infinite, 
with a majority of them being multi-particle chan­
nels. It has been shown by Gribov and Pomeran­
chuk [ 7] that to each threshold in field theory, in­
cluding multi-particle thresholds, there corre­
sponds an accumulation of poles at a certain point 
in the Z-plane at the threshold energy. It follows 
from [ t] that for scattering by a Yukawa potential 
the poles of Gribov and Pomeranchuk are the same 
as the poles that for infinite negative energies and 
infinitely weak coupling go to the negative integer 
points. In field theory the poles accumulating at 
any threshold also should, apparently, move to the 
negative integer points when the interaction tends 
to zero. This is supported by the fact that the 
asymptotic expansion of the Feynman diagrams 
contains only negative integer powers of the in­
variants. Then to each negative integer point there 
moves in field theory an infinite number of poles 
corresponding to the infinite number of channels. 

The above outlined proposal is in an amazing 
correspondence to the recent result of Gribov and 
Pomeranchuk,C3J according to which there is at any 
energy an infinite number of poles in the neighbor­
hood of each negative integer, with these poles 
tending to the negative integers precisely for in­
finite negative energy. These poles exist only in 
field theory and are related to the existence of the 
crossed reactions. From our point of view these 
accumulations consist of poles corresponding to 
different thresholds in the sense described above. 
At that the existence of an infinite number of poles 
in the neighborhood of the negative integer points 
at any finite energy appears completely natural, 
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since there always exists an infinite number of 
thresholds lying arbitrarily higher than the given 
energy. If the above indicated proposal on the 
nature of these poles is correct then we are deal­
ing here, apparently, with the only known case of a 
phenomenon due to the crossed reactions being 
simultaneously closely related to the higher inter­
mediate states of the direct reaction. Therefore a 
proof of the correctness of this proposal could have 
most fundamental consequences. 

All of the above considerations apply to poles 
lying in the vicinity of the negative integer points. 
However, from the results obtained at the beginning 
of this section it follows that definite difficulties 
are also due to the presence of the poles in the 
neighborhood of l = 0. For that case we have no 
additional arguments that would indicate an accu­
mulation of poles near zero. If nevertheless such 
an accumulation does take place then one should 
think that the residues of these poles tend to zero 
as the poles approach zero. It is obvious that the 
existence of these poles would lead to extremely 
important experimental consequences. Indeed, for 
scattering with sufficiently large momentum trans­
fer the accumulation of the poles near zero would 
be the nearest singularity, which would determine 
the asymptotic behavior of the amplitude in energy 
(provided, of course, that the vacuum pole does not 
move to the right of zero). 

In conclusion we would like to express our 
gratitude to V. N. Gribov, who awakened our in­
terest in the questions here discussed, repeatedly 
discussed various aspects of this work and made a 
number of valuable comments. We are also grate­
ful to I. T. Dyatlov, G. S. Danilov, I. Ya. Pome­
ranchuk, K. A. Ter-Martirosyan, V. M. Shekhter, 
and I. M. Shmushkevich for useful discussions. 

APPENDIX I 

The unitarity condition gives for the absorptive 
part in k2 of the third order amplitude the follow­
ing integral: 

A <3> (k2 z) = !!_ r: dQ.' [A <2> (k2 z) A <1>* (k2 z') 
1 · ' 4n ~ , 1 , 2 

+A<1> (k2 , z;)A<2>* (k2, z~)J. (A.1) 

The first and second order amplitudes A ( 1) and 
A(2) are given by Eqs. (3) and (7) of the text. For 

k2 > 0 the amplitude A (2) (k2, z) satisfies a dis­
persion relation in the angle with a simple absorp­
tive part: 

00 

(2) ' rx2m2 ~ dz" 1 
A (k2, z1) =-ka , V K( ' z" - z - z"' zo, zo) 

Zt 1 

112 
Zo = I + 2k•' . (A.2) 

After substitution of Eq. (A.2) into Eq. (A.1) the 
integration over dQ' can be carried out. The re­
sult of that integration is most conveniently ex­
pressed in terms of a dispersion integral over z; 
thereafter the expression for A~3 ) is reduced to 
the form 

A (3) (k2 z) = - rxsma \ dz" \ ___!!!'__ 1 
1 ' k6 ~ V -K(z", zo, z0).l z'- z VK (z', Zo, zo) ' 

Zt y (A.3) 

The integration is over a region where both of the 
expressions under the square root sign are posi­
tive: 

r = ZoZ" + y (z~- I) (z"2 - 1). (A.4) 

Let us introduce in place of the angle variables 
z, z' and z" the momentum transfers t, t' and t" 
[ t = - 2k2 ( 1 - z) etc.] Then after interchanging 
the order of integration in t' and t", A~3 ) may be 
written as a dispersion integral in t: 

00 

A<s> (k2 z) = _ 4a3m3 ~ ~ r dt" 
1 ' ~. t'- t J, y cr (k2, t", 11•) y- cr (k•, t", t')' 

(A.5) 

The quantities a are defined by Eq. (12) in the 
text. The integration over t" is over the .region 
where both of the expressions under the square 
root sign are positive: 

t 0 = 9!-12 +41-12 [JI"(l +1-12/k2) (1 +ll2/4k2)- (I -!-12/2k2)]. 

(A.6) 

In order to obtain the amplitude A (3 ) one must 
substitute A~3 ) into the dispersion integral in 
energy. Afterwards the order of integration must 
be changed so that the integration over energy 
(k' 2 ) is carried out first. The limits of integra­
tion are determined by the zeros of the quadratic 
polynomial in k' 2 that stands under the square 
root sign. Therefore the integral is easily evalua­
ted and afterwards the most complicated problem 
turns out to be the determination of the upper limit 
of the integration over t". When that problem is 
solved one arrives at the expression (11) in the 
text ( t = - q2 ). 

APPENDIX II 

Expression (11) of'the text may be rewritten in 
terms of the variables already used in Appendix I 
namely z, z' and z" (z = 1 +t/2k2 etc.). Then 
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00 f3 
(a) 2 2ct3m3 (' dz' (' dz" 

A (k ,z)=-r ~z'-z .lyK(z",zo,zo)VK(z",z',zo)' 
z2 z1 

~=zo+V(zo-l)(z'-1). (A.7) 

If one makes use for both square roots of the 
identity (9) then A (3' ( k2, z ) is brought to the form 

00 

A<3l(k2,z) = 2~:ms L] (2n+1)(2s+1)P~(z0) 
Tt,S=O 

00 f3 

X Ps(z0) L·~z Q.(z') ~dz"Qn(z")P.(z"). (A.8) 
Z2 Zt 

In order that the asymptotic form of A (3) (k2, z) 
involve terms containing ln2 z it is necessary that 
the integration over z" give rise to the appearance 
of In {3. Making use of the explicit expansion of 
Qn and Ps in powers of z'1 one can transform the 
coefficient of the ln {3 term into 

1 k m m r (s- m + 1/2) 
2l'(k+1) L] (- 1) Ck l'(s-k-m+slz)' (A.9) 

m=O 

Here Ck are the binomial coefficients, 
k = ( s - n )/2 and the summation over s and n 
must be performed in such a way as to keep k a 
nonnegative integer. The ratio of the gamma func­
tions is equal to a polynomial of degree ( k - 1 ) in 
the quantity s - k + 3/ 2• For k ,.. 0 all the coeffi­
cients of this polynomial vanish as a consequence 
of the identity 

k 

L] (- 1)mC;'m1 = 0, l = 0, 1, ... , k- 1. (A.10) 
m=o 

Consequently the coefficient of In {3 is equal to 
lisn /( 2s + 1). Asymptotically In {3 ~ ( 1h) In z'. 
After that there arise integrals of the form 

00 

(' __r!:!_ In z' 
jz'-z z'P · 

z, 

Such an integral leads to the appearance of the 
term - ( 1/ 2 ) z-Pln2 z. Taking this into account we 
obtain expression (13) of the text for the coefficient 
of the logarithm squared term. 

Note added in proof (January 19, 1963). 1. After the pre­
sent paper work went to press there appeared a large number 
of papers dealing with the relation between perturbation 

theory and Regge poles. The first to come to our attention 
were the papers of the Dubna authorsJ•.•] In[•] the trajec­
tories of the first two Regge poles for a Yukawa potential are 
computed in perturbation theory. This is done using a method 
analogous to the method of the present paper. In[ 8 ] the Regge 
asymptotic behavior is obtained for a relativistic field theory 
by the method of the renormalization group (the gcp' and hcp4 

interactions). However the results of this article do not seem 
to us to be sufficiently well established since they are based 
on a study of the asymptotic behavior of the amplitude in a 
variable in which the renormalization group does not improve 
on perturbation theory. 

2. Recently one of the authors[•o] has proposed arguments, 
not connected with perturbation theory, in favor of accumula­
tion of poles near zero. Since however these considerations 
are based on the interaction of pions with particles with spin 
it is not quite clear how these considerations might affect 
the properties of a pure A.cp4 interaction. 
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